Принципы действия
Принципы действия лежат в основе фундаментальной физики, от классической механики до квантовой механики, физики элементарных частиц и общей теории относительности. [1] Принципы действия начинаются с энергетической функции, называемой лагранжианом, описывающей физическую систему. Накопленное значение этой энергетической функции между двумя состояниями системы называется действием . Принципы действия применяют вариационное исчисление к действию . Действие зависит от функции энергии, а функция энергии зависит от положения, движения и взаимодействий в системе: изменение действия позволяет вывести уравнения движения без вектора или сил.
Названия принципов действия со временем менялись и различаются деталями конечных точек путей и характером вариаций. Принципы квантового действия обобщают и оправдывают старые классические принципы. Принципы действия лежат в основе фейнмановской версии квантовой механики, общей теории относительности и квантовой теории поля.
В этой статье представлены концепции принципов действия и обобщаются другие статьи с более подробной информацией о концепциях и конкретных принципах.
Общие понятия [ править ]
Принципы действия представляют собой «интегральные» подходы, а не «дифференциальный» подход ньютоновской механики. [2] : 162 Основные идеи основаны на энергии, путях, энергетической функции, называемой лагранжианом вдоль путей, и выборе пути в соответствии с «действием», непрерывной суммой или интегралом лагранжиана вдоль пути.
Энергия, а не сила [ править ]
Вводное изучение механики, науки о взаимодействующих объектах, обычно начинается с законов Ньютона, основанных на понятии силы , определяемой ускорением, которое она вызывает при применении к массе : . Этот подход к механике фокусируется на одной точке пространства и времени, пытаясь ответить на вопрос: «Что произойдет дальше?». [3] Механика, основанная на принципах действия, начинается с концепции действия , энергетического компромисса между кинетической энергией и потенциальной энергией , определяемого физикой проблемы. Эти подходы отвечают на вопросы, касающиеся начальной и конечной точек: по какой траектории баскетбольный мяч попадет в кольцо? если мы сегодня запустим ракету на Луну, как она сможет приземлиться там через 5 дней? [3] Формы Ньютона и принципа действия эквивалентны, и любая из них может решить одни и те же проблемы, но выбор подходящей формы значительно облегчит решение.
Функция энергии в принципах действия — это не полная энергия ( сохраняющаяся в изолированной системе ), а лагранжиан — разница между кинетической и потенциальной энергией. Кинетическая энергия объединяет энергию движения всех объектов системы; потенциальная энергия зависит от мгновенного положения объектов и управляет их движением. Движение объектов помещает их в новые положения с новыми значениями потенциальной энергии, что дает новое значение лагранжиана. [4] : 125
Использование энергии вместо силы дает немедленные преимущества в качестве основы механики. Механика силы включает трехмерное векторное исчисление с тремя пространственными координатами и тремя координатами импульса для каждого объекта в сценарии; энергия — это скалярная величина, объединяющая информацию от всех объектов, что во многих случаях дает немедленное упрощение. Компоненты силы различаются в зависимости от системы координат; значение энергии одинаково во всех системах координат. [5] : ххв Сила требует инерциальной системы отсчета; [6] : 65 как только скорости приближаются к скорости света , специальная теория относительности оказывает глубокое влияние на механику, основанную на силах. В принципах действия относительность просто требует другого лагранжиана: сам принцип не зависит от систем координат. [7]
Пути, а не точки [ править ]
Пояснительные диаграммы в силовой механике обычно сосредоточены на одной точке, например, на центре импульса , и показывают векторы сил и скоростей. Объяснительные схемы механики, основанной на действии, имеют две точки, между которыми соединяются действительные и возможные пути. [8] Эти схематические обозначения подтверждают различные сильные стороны каждого метода.
В зависимости от принципа действия две точки, соединенные путями на диаграмме, могут представлять два положения частиц в разное время или две точки могут представлять значения в конфигурационном пространстве или в фазовом пространстве . Математические технологии и терминологию принципов действия можно изучить, думая в терминах физического пространства, а затем применять их в более мощных и общих абстрактных пространствах.
Действие по пути [ править ]
Принципы действия присваивают номер — действие — каждому возможному пути между двумя точками. Это число вычисляется путем сложения значения энергии для каждого небольшого участка пути, умноженного на время, проведенное на этом участке: [8]
- Действие для пути
где вид кинетики ( ) и потенциал ( ) выражения энергии зависят от физической задачи, а их значение в каждой точке пути зависит от относительных координат, соответствующих этой точке. Энергетическая функция называется лагранжианом; в простых задачах это кинетическая энергия минус потенциальная энергия системы.
Вариант пути [ править ]
Система, движущаяся между двумя точками, выбирает один конкретный путь; другие подобные пути не выбираются. Каждый путь соответствует значению действия. Принцип действия предсказывает или объясняет, что конкретный выбранный путь имеет стационарное значение для действия системы: аналогичные пути рядом с выбранным имеют очень похожую ценность действия. Это изменение ценности действия является ключом к принципам действия.
Символ используется для обозначения изменений пути, поэтому математически принцип действия выглядит как:
это означает, что в стационарной точке изменение действия с некоторыми фиксированными ограничениями равен нулю. [9] : 38 Для принципов действия стационарная точка может быть минимумом или седловой точкой , но не максимумом. [10] Эллиптические планетарные орбиты представляют собой простой пример двух путей с равным действием, по одному в каждом направлении вокруг орбиты; ни то, ни другое не может быть минимальным или «наименьшим действием». [2] : 175 Изменение пути, подразумеваемое это не то же самое, что дифференциал типа . Интеграл действия зависит от координат объектов, а эти координаты зависят от пройденного пути. Таким образом, интеграл действия — это функционал , функция от функции.
сохранения Принципы
Важный результат геометрии, известный как теорема Нётер, гласит, что любые сохраняющиеся величины в лагранжиане предполагают непрерывную симметрию, и наоборот. [11] Например, независимый от времени лагранжиан соответствует системе с сохраняющейся энергией; независимость пространственного перевода предполагает сохранение импульса; инвариантность углового вращения подразумевает сохранение углового момента. [12] : 489 Эти примеры представляют собой глобальные симметрии, где независимость сама по себе не зависит от пространства и времени; более общие локальные симметрии, функционально зависящие от пространства и времени, приводят к калибровочной теории . [13] Наблюдаемое сохранение изоспина было использовано Чэнь Нин Яном и Робертом Миллсом в 1953 году для построения калибровочной теории мезонов , что привело несколько десятилетий спустя к современной теории физики элементарных частиц. [14] : 202
Четкие принципы [ править ]
Принципы действия применимы к широкому кругу физических проблем, включая всю фундаментальную физику. Единственными серьезными исключениями являются случаи, связанные с трением или когда заданы только начальное положение и скорости. [3] Различные принципы действия имеют разное значение для вариаций; каждое конкретное применение принципа действия требует определенного лагранжиана, описывающего физику. Общее название любого или всех этих принципов — «принцип наименьшего действия». Для обсуждения названий и исторического происхождения этих принципов см. « Имена принципов действия» .
конечные точки с сохраненной Фиксированные энергией
Когда общая энергия и конечные точки фиксированы, применяется принцип наименьшего действия Мопертюи . Например, для набора очков в баскетболе мяч должен покинуть руку игрока и пройти через кольцо, но время полета не ограничено. [3] Принцип наименьшего действия Мопертюи математически записывается как условие стационарности сокращенного действия. (иногда пишется ) :
Независимые от времени потенциалы; нет сил [ править ]
Для стационарной системы действие относится просто к сокращенному действию на стационарном пути как: [9] : 434
Фиксированные события [ править ]
Когда физическая задача дает две конечные точки в виде положения и времени, то есть в виде событий , принцип действия Гамильтона применяется . Например, представьте, что вы планируете путешествие на Луну. Во время вашего путешествия Луна будет продолжать вращаться вокруг Земли: это движущаяся цель. Принцип Гамильтиона для объектов в позициях математически записывается как
Классическая теория поля [ править ]
Концепции и многие методы, полезные для механики частиц, применимы и к непрерывным полям. Интеграл действия пробегает плотность Лагранжа, но понятия настолько близки, что плотность часто называют просто лагранжианом. [19] : 15
действия Квантовые принципы
Для квантовой механики принципы действия имеют существенные преимущества: нужен только один механический постулат, если в действии используется ковариантный лагранжиан, результат релятивистски правильный, и они явно переходят к классическим эквивалентам. [2] : 128
И Ричард Фейнман , и Джулиан Швингер разработали принципы квантового действия, основанные на ранних работах Поля Дирака . Интегральный метод Фейнмана не был вариационным принципом, а сводился к классическому принципу наименьшего действия; это привело к его диаграммам Фейнмана . Дифференциальный подход Швингера связывает бесконечно малые изменения амплитуды с бесконечно малыми изменениями действия. [2] : 138
Принцип действия Фейнмана [ править ]
Когда квантовые эффекты важны, необходимы новые принципы действия. Вместо того, чтобы частица следовала по пути, квантовая механика определяет амплитуду вероятности. в один момент и время связано с амплитудой вероятности в другой момент позже:
где это классическое действие. [20] Вместо одного пути со стационарным действием складываются все возможные пути (интеграл по ), взвешенный по комплексной амплитуде вероятности, . Фаза амплитуды определяется действием, разделенным на постоянную Планка или квант действия: . Когда действие частицы много больше, чем , , фаза быстро меняется по трассе: амплитуда в среднем достигает небольшого числа. [8] Таким образом, постоянная Планка устанавливает границу между классической и квантовой механикой. [21]
Все пути вносят свой вклад в принцип квантового действия. В конечной точке, где пути встречаются, пути с одинаковыми фазами складываются, а пути с фазами, отличающимися на вычесть. Близко к пути, ожидаемому в классической физике, фазы имеют тенденцию выравниваться; эта тенденция сильнее для более массивных объектов, имеющих большую величину действия. В классическом пределе доминирует один путь — путь стационарного действия. [22]
Принцип действия Швингера [ править ]
Подход Швингера связывает изменения амплитуд перехода, , к вариациям элемента матрицы действий:
где находится оператор действия
Форма Швингера делает анализ изменения самого лагранжиана, например, изменения мощности потенциального источника, особенно прозрачным. [2] : 138
Оптико-механическая аналогия [ править ]
Для каждого пути интеграл действия строит значение от нуля в начальной точке до конечного значения в конце. Любой близлежащий путь будет иметь одинаковые значения на одинаковом расстоянии от начальной точки. Линии или поверхности постоянного значения частичного действия могут быть нарисованы поперек путей, создавая волнообразное представление действия. Подобный анализ связывает корпускулярные лучи геометрической оптики с волновыми фронтами принципа Гюйгенса – Френеля.
[Мопертюи] ... таким образом указал на ту замечательную аналогию между оптическими и механическими явлениями, которую гораздо раньше наблюдал Джон Бернулли и которая позже была полностью развита в гениальной оптико-механической теории Гамильтона. Эта аналогия сыграла фундаментальную роль в развитии современной волновой механики.
Приложения [ править ]
Принципы действия применяются для вывода дифференциальных уравнений, таких как Эйлера-Лагранжа. уравнения [9] : 44 или как прямое применение к физическим проблемам.
Классическая механика [ править ]
Принципы действия могут быть непосредственно применены ко многим задачам классической механики , например, к форме упругих стержней под нагрузкой, [23] : 9 форма жидкости между двумя вертикальными пластинами ( капилляр ), [23] : 22 или движение маятника, когда его опора находится в движении. [23] : 39
Химия [ править ]
Принципы квантового действия используются в квантовой теории атомов в молекулах ( QTAIM ), способе разложения вычисленной электронной плотности молекул на атомы как способ получить представление о химической связи. [24]
Общая теория относительности [ править ]
Вдохновленный работами Эйнштейна по общей теории относительности, известный математик Дэвид Гильберт применил принцип наименьшего действия для вывода уравнений поля общей теории относительности. [25] : 186 Его действие, теперь известное как действие Эйнштейна-Гильберта ,
содержал релятивистски инвариантный элемент объема и скалярная кривизна Риччи, . Масштабный коэффициент Эйнштейна гравитационная постоянная
Другие приложения [ править ]
Принцип действия настолько важен в современной физике и математике , что широко применяется, в том числе в термодинамике , [26] [27] [28] механика жидкости , [29] теория относительности , квантовая механика , [30] физика элементарных частиц и теория струн . [31]
История [ править ]
Принципу действия предшествуют более ранние идеи в оптике . В Древней Греции Евклид писал в своей «Катоптрике» , что для пути света, отражающегося от зеркала, угол падения равен углу отражения . [32] Герой Александрийский позже показал, что этот путь был наименьшей длины и наименьшего времени. [33]
Основываясь на ранних работах Пьера Луи Мопертюи , Леонарда Эйлера и Жозефа Луи Лагранжа, определяющих версии принципа наименьшего действия , [34] : 580 Уильям Роуэн Гамильтон и совместно с Карлом Густавом Якоби разработали вариационную форму классической механики, известную как уравнение Гамильтона-Якоби . [35] : 201
В 1915 году Дэвид Гильберт применил вариационный принцип для вывода Альберта Эйнштейна уравнений общей теории относительности . [36]
В 1933 году физик Поль Дирак продемонстрировал, как этот принцип можно использовать в квантовых вычислениях, обнаружив квантовомеханическую основу принципа квантовой интерференции амплитуд. [37] Впоследствии Джулиан Швингер и Ричард Фейнман независимо применили этот принцип в квантовой электродинамике. [38] [39]
Ссылки [ править ]
- ^ Томас А. Мур «Принцип наименьшего действия» в Физической энциклопедии Macmillan, Джон Ригден, редактор, Simon & Schuster Macmillan, 1996, Том 2, страница 840.
- ^ Jump up to: Перейти обратно: а б с д и Юрграу, Вольфганг; Мандельштам, Стэнли (1979). Вариационные принципы в динамике и квантовой теории . Дуврские книги по физике и химии (респ. 3-е изд., изд. 1968 г. изд.). Нью-Йорк, штат Нью-Йорк: Dover Publ. ISBN 978-0-486-63773-0 .
- ^ Jump up to: Перейти обратно: а б с д и Ханц, Йозеф; Тейлор, Эдвин Ф.; Тулея, Славомир (1 июля 2005 г.). «Вариационная механика в одном и двух измерениях» . Американский журнал физики . 73 (7): 603–610. Бибкод : 2005AmJPh..73..603H . дои : 10.1119/1.1848516 . ISSN 0002-9505 .
- ^ Куперсмит, Дженнифер (2017). Ленивая вселенная: введение в принцип наименьшего действия . Оксфорд; Нью-Йорк, штат Нью-Йорк: Издательство Оксфордского университета. ISBN 978-0-19-874304-0 .
- ^ Jump up to: Перейти обратно: а б Ланцос, Корнелиус (1986). Вариационные принципы механики (4-е изд.). Нью-Йорк: Дувр. ISBN 978-0-486-65067-8 .
- ^ Клеппнер, Дэниел; Коленков, Роберт Дж. (2014). «Глава 3: Силы и уравнения движения» . Введение в механику (2-е изд.). Кембридж: Издательство Кембриджского университета. ISBN 978-0521198110 .
- ^ Мур, Томас А. (1 апреля 2004 г.). «Как получить максимальную отдачу от наименьшего действия: предложение» . Американский журнал физики . 72 (4): 522–527. Бибкод : 2004AmJPh..72..522M . дои : 10.1119/1.1646133 . ISSN 0002-9505 .
- ^ Jump up to: Перейти обратно: а б с «Лекции Фейнмана по физике, том II, глава 19: Принцип наименьшего действия» . www.feynmanlectures.caltech.edu . Проверено 3 ноября 2023 г.
- ^ Jump up to: Перейти обратно: а б с д и Гольдштейн, Герберт; Пул, Чарльз П.; Сафко, Джон Л. (2008). Классическая механика (3-е изд., [Начдр.] изд.). Сан-Франциско, Мюнхен: Эддисон Уэсли. ISBN 978-0-201-65702-9 .
- ^ Грей, компьютерная графика; Тейлор, Эдвин Ф. (май 2007 г.). «Когда действие не имеет значения» . Американский журнал физики . 75 (5): 434–458. Бибкод : 2007AmJPh..75..434G . дои : 10.1119/1.2710480 . ISSN 0002-9505 .
- ^ Хилл, Эл. (1 июля 1951 г.). «Принцип Гамильтона и теоремы сохранения математической физики» . Обзоры современной физики . 23 (3): 253–260. Бибкод : 1951РвМП...23..253Х . дои : 10.1103/RevModPhys.23.253 . ISSN 0034-6861 .
- ^ Пенроуз, Роджер (2005). Дорога в реальность: полное руководство по законам Вселенной . Нью-Йорк: Альфред А. Кнопф. ISBN 978-0-679-45443-4 .
- ^ Брэдинг, Кэтрин (1941). «Какая симметрия? Нётер, Вейль и сохранение электрического заряда» . Исследования по истории и философии науки. Часть B: Исследования по истории и философии современной физики . 33 (1): 3–22. Бибкод : 2002ШПМП..33....3Б . дои : 10.1016/S1355-2198(01)00033-8 .
- ^ Бэгготт, Дж. Э. (2013). Квантовая история: история за 40 мгновений (Впечатление: 3-е изд.). Оксфорд: Оксфордский университет. Нажимать. ISBN 978-0-19-956684-6 .
- ^ Хэнд, Луи Н.; Финч, Джанет Д. (2008). Аналитическая механика (7-е печатное изд.). Кембридж: Кембриджский университет. Нажимать. ISBN 978-0-521-57572-0 .
- ^ Jump up to: Перейти обратно: а б Грей, Крис Г. (9 декабря 2009 г.). «Принцип наименьшего действия» . Схоларпедия . 4 (12): 8291. Бибкод : 2009SchpJ...4.8291G . doi : 10.4249/scholarpedia.8291 .
- ^ Киббл, TWB; Беркшир, FH (2004). Классическая механика (5-е изд.). Издательство Имперского колледжа. ISBN 9781860944352 .
- ^ Грей, компьютерная графика; Карл, Г; Новиков, В.А. (01.02.2004). «Прогресс в классических и квантовых вариационных принципах» . Отчеты о прогрессе в физике . 67 (2): 159–208. arXiv : физика/0312071 . Бибкод : 2004РПФ...67..159Г . дои : 10.1088/0034-4885/67/2/R02 . ISSN 0034-4885 .
- ^ Пескин, Майкл Э. (31 января 2018 г.). Введение в квантовую теорию поля . Бока-Ратон: CRC Press. дои : 10.1201/9780429503559 . ISBN 978-0-429-50355-9 .
- ^ Фейнман, Р.П. (1 апреля 1948 г.). «Пространственно-временной подход к нерелятивистской квантовой механике» . Обзоры современной физики . 20 (2): 367–387. Бибкод : 1948РвМП...20..367Ф . дои : 10.1103/RevModPhys.20.367 . ISSN 0034-6861 .
- ^ Кертис, Лоренцо Дж (1 сентября 2011 г.). «Взгляд на XXI век как введение в физику» . Европейский журнал физики . 32 (5): 1259–1274. Бибкод : 2011EJPh...32.1259C . дои : 10.1088/0143-0807/32/5/014 . ISSN 0143-0807 .
- ^ Огборн, Джон; Тейлор, Эдвин Ф (24 декабря 2004 г.). «Квантовая физика объясняет законы движения Ньютона» (PDF) . Физическое образование . 40 (1): 26–34. дои : 10.1088/0031-9120/40/1/001 . ISSN 0031-9120 .
- ^ Jump up to: Перейти обратно: а б с Диттрих, Уолтер (2021). Развитие принципа действия: дидактическая история от Эйлера-Лагранжа до Швингера . SpringerBriefs по физике. Чам: Международное издательство Springer. дои : 10.1007/978-3-030-69105-9 . ISBN 978-3-030-69104-2 .
- ^ Бадер, Ричард Ф.В. (июнь 2005 г.). «Квантово-механические основы концептуальной химии» . Monatshefte für Chemie - Ежемесячный химический журнал . 136 (6): 819–854. дои : 10.1007/s00706-005-0307-x . ISSN 0026-9247 .
- ^ Рохо, Альберто; Блох, Энтони, ред. (2018). «Относительность и наименьшее действие». Принцип наименьшего действия: история и физика . Кембридж: Издательство Кембриджского университета. стр. 162–188. дои : 10.1017/9781139021029.007 . ISBN 978-0-521-86902-7 .
- ^ Гарсиа-Моралес, Владимир; Пеллисер, Хулио; Мансанарес, Хосе А. (2008). «Термодинамика, основанная на принципе наименьшего сокращенного действия: производство энтропии в сети связанных осцилляторов». Анналы физики . 323 (8): 1844–58. arXiv : cond-mat/0602186 . Бибкод : 2008АнФиз.323.1844Г . дои : 10.1016/j.aop.2008.04.007 . S2CID 118464686 .
- ^ Гей-Бальмаз, Франсуа; Ёсимура, Хироаки (2018). «От лагранжевой механики к неравновесной термодинамике: вариационная перспектива» . Энтропия . 21 (1): 8. arXiv : 1904.03738 . Бибкод : 2018Entrp..21....8G . дои : 10.3390/e21010008 . ISSN 1099-4300 . ПМЦ 7514189 . PMID 33266724 .
- ^ Био, Морис Энтони (1975). «Принцип виртуальной диссипации и уравнения Лагранжа в нелинейной необратимой термодинамике». Бюллетень класса наук . 61 (1): 6–30. дои : 10.3406/barb.1975.57878 . ISSN 0001-4141 .
- ^ Грей, Крис (2009). «Принцип наименьшего действия» . Схоларпедия . 4 (12): 8291. Бибкод : 2009SchpJ...4.8291G . doi : 10.4249/scholarpedia.8291 .
- ^ Фейнман, Ричард Филлипс (1942), Принцип наименьшего действия в квантовой механике (диссертация), Bibcode : 1942PhDT.........5F
- ^ «Принцип наименьшего действия – damtp» (PDF) . Архивировано из оригинала (PDF) 10 октября 2015 г. Проверено 18 июля 2016 г.
- ^ Хельцбергер, Макс (1966). «Оптика от Евклида до Гюйгенса». Прикладная оптика . 5 (9): 1383–93. Бибкод : 1966ApOpt...5.1383H . дои : 10.1364/AO.5.001383 . ПМИД 20057555 .
В катоптрике утверждается закон отражения, а именно, что входящие и исходящие лучи образуют одинаковый угол с нормалью поверхности.
- ^ Клайн, Моррис (1972). Математическая мысль от древности до современности . Нью-Йорк: Издательство Оксфордского университета. стр. 167–68 . ISBN 0-19-501496-0 .
- ^ Клайн, Моррис (1972). Математическая мысль от древности до современности . Нью-Йорк: Издательство Оксфордского университета. стр. 167–168 . ISBN 0-19-501496-0 .
- ^ Накане, Мичиё и Крейг Г. Фрейзер. «Ранняя история динамики Гамильтона-Якоби 1834–1837». Центавр 44.3-4 (2002): 161-227.
- ^ Мехра, Джагдиш (1987). «Эйнштейн, Гильберт и теория гравитации». В Мехре, Джагдиш (ред.). Концепция физика о природе (Переиздание). Дордрехт: Рейдель. ISBN 978-90-277-2536-3 .
- ^ Дирак, Поль AM (1933). «Лагранжиан в квантовой механике» (PDF) . Физический журнал Советского Союза . 3 (1): 64–72.
- ^ Р. Фейнман, Квантовая механика и интегралы по траекториям, McGraw-Hill (1965), ISBN 0-07-020650-3
- ^ Дж. С. Швингер, Квантовая кинематика и динамика, В. А. Бенджамин (1970), ISBN 0-7382-0303-3