Принципы действия
Принципы действия лежат в основе фундаментальной физики, от классической механики до квантовой механики, физики элементарных частиц и общей теории относительности. [1] Принципы действия начинаются с энергетической функции, называемой лагранжианом, описывающей физическую систему. Накопленное значение этой энергетической функции между двумя состояниями системы называется действием . Принципы действия применяют вариационное исчисление к действию . Действие зависит от функции энергии, а функция энергии зависит от положения, движения и взаимодействий в системе: изменение действия позволяет вывести уравнения движения без вектора или сил.
Названия принципов действия со временем менялись и различаются деталями конечных точек путей и характером вариаций. Принципы квантового действия обобщают и оправдывают старые классические принципы. Принципы действия лежат в основе фейнмановской версии квантовой механики, общей теории относительности и квантовой теории поля.
В этой статье представлены концепции принципов действия и обобщаются другие статьи с более подробной информацией о концепциях и конкретных принципах.
Общие понятия
[ редактировать ]Принципы действия представляют собой «интегральные» подходы, а не «дифференциальный» подход ньютоновской механики. [2] : 162 Основные идеи основаны на энергии, путях, энергетической функции, называемой лагранжианом вдоль путей, и выборе пути в соответствии с «действием», непрерывной суммой или интегралом лагранжиана вдоль пути.
Энергия, а не сила
[ редактировать ]Вводное изучение механики, науки о взаимодействующих объектах, обычно начинается с законов Ньютона, основанных на понятии силы , определяемой ускорением, которое она вызывает при применении к массе : . Этот подход к механике фокусируется на одной точке пространства и времени, пытаясь ответить на вопрос: «Что произойдет дальше?». [3] Механика, основанная на принципах действия, начинается с концепции действия , энергетического компромисса между кинетической и потенциальной энергией , определяемого физикой проблемы. Эти подходы отвечают на вопросы, касающиеся начальной и конечной точек: по какой траектории баскетбольный мяч попадет в кольцо? если мы сегодня запустим ракету на Луну, как она сможет приземлиться там через 5 дней? [3] Формы Ньютона и принципа действия эквивалентны, и любая из них может решить одни и те же проблемы, но выбор подходящей формы значительно облегчит решение.
Функция энергии в принципах действия — это не полная энергия ( сохраняющаяся в изолированной системе ), а лагранжиан — разница между кинетической и потенциальной энергией. Кинетическая энергия объединяет энергию движения всех объектов системы; потенциальная энергия зависит от мгновенного положения объектов и управляет их движением. Движение объектов помещает их в новые положения с новыми значениями потенциальной энергии, что дает новое значение лагранжиана. [4] : 125
Использование энергии вместо силы дает немедленные преимущества в качестве основы механики. Механика силы включает трехмерное векторное исчисление с тремя пространственными координатами и тремя координатами импульса для каждого объекта в сценарии; энергия — это скалярная величина, объединяющая информацию от всех объектов, что во многих случаях дает немедленное упрощение. Компоненты силы различаются в зависимости от системы координат; значение энергии одинаково во всех системах координат. [5] : ххв Сила требует инерциальной системы отсчета; [6] : 65 как только скорости приближаются к скорости света , специальная теория относительности оказывает глубокое влияние на механику, основанную на силах. В принципах действия относительность просто требует другого лагранжиана: сам принцип не зависит от систем координат. [7]
Пути, а не точки
[ редактировать ]Пояснительные диаграммы в силовой механике обычно сосредоточены на одной точке, например, на центре импульса , и показывают векторы сил и скоростей. Объяснительные схемы механики, основанной на действии, имеют две точки, между которыми соединяются действительные и возможные пути. [8] Эти схематические обозначения подтверждают различные сильные стороны каждого метода.
В зависимости от принципа действия две точки, соединенные путями на диаграмме, могут представлять два положения частиц в разное время или две точки могут представлять значения в конфигурационном пространстве или в фазовом пространстве . Математические технологии и терминологию принципов действия можно изучить, думая в терминах физического пространства, а затем применять их в более мощных и общих абстрактных пространствах.
Действия по пути
[ редактировать ]Принципы действия присваивают номер — действие — каждому возможному пути между двумя точками. Это число вычисляется путем сложения значения энергии для каждого небольшого участка пути, умноженного на время, проведенное на этом участке: [8]
- Действие для пути
где вид кинетики ( ) и потенциал ( ) выражения энергии зависят от физической задачи, а их значение в каждой точке пути зависит от относительных координат, соответствующих этой точке. Энергетическая функция называется лагранжианом; в простых задачах это кинетическая энергия минус потенциальная энергия системы.
Вариант пути
[ редактировать ]Система, движущаяся между двумя точками, выбирает один конкретный путь; другие подобные пути не выбираются. Каждый путь соответствует значению действия. Принцип действия предсказывает или объясняет, что конкретный выбранный путь имеет стационарное значение для действия системы: аналогичные пути рядом с выбранным имеют очень похожую ценность действия. Это изменение ценности действия является ключом к принципам действия.
Символ используется для обозначения изменений пути, поэтому математически принцип действия выглядит как:
это означает, что в стационарной точке изменение действия с некоторыми фиксированными ограничениями равен нулю. [9] : 38 Для принципов действия стационарная точка может быть минимумом или седловой точкой , но не максимумом. [10] Эллиптические планетарные орбиты представляют собой простой пример двух путей с равным действием, по одному в каждом направлении вокруг орбиты; ни то, ни другое не может быть минимальным или «наименьшим действием». [2] : 175 Изменение пути, подразумеваемое это не то же самое, что дифференциал типа . Интеграл действия зависит от координат объектов, а эти координаты зависят от пройденного пути. Таким образом, интеграл действия — это функционал , функция от функции.
Принципы сохранения
[ редактировать ]Важный результат геометрии, известный как теорема Нётер, гласит, что любые сохраняющиеся величины в лагранжиане предполагают непрерывную симметрию, и наоборот. [11] Например, независимый от времени лагранжиан соответствует системе с сохраняющейся энергией; независимость пространственной трансляции подразумевает сохранение импульса; инвариантность углового вращения подразумевает сохранение углового момента. [12] : 489 Эти примеры представляют собой глобальные симметрии, где независимость сама по себе не зависит от пространства и времени; более общие локальные симметрии, функционально зависящие от пространства и времени, приводят к калибровочной теории . [13] Наблюдаемое сохранение изоспина было использовано Чэнь Нин Яном и Робертом Миллсом в 1953 году для построения калибровочной теории мезонов , что привело несколько десятилетий спустя к современной теории физики элементарных частиц. [14] : 202
Четкие принципы
[ редактировать ]Принципы действия применимы к широкому кругу физических проблем, включая всю фундаментальную физику. Единственными серьезными исключениями являются случаи, связанные с трением или когда заданы только начальное положение и скорости. [3] Различные принципы действия имеют разное значение для вариаций; каждое конкретное применение принципа действия требует определенного лагранжиана, описывающего физику. Общее название любого или всех этих принципов — «принцип наименьшего действия». Для обсуждения названий и исторического происхождения этих принципов см. « Имена принципов действия» .
Фиксированные конечные точки с сохраненной энергией
[ редактировать ]Когда общая энергия и конечные точки фиксированы, применяется принцип наименьшего действия Мопертюи . Например, для набора очков в баскетболе мяч должен покинуть руку игрока и пройти через кольцо, но время полета не ограничено. [3] Принцип наименьшего действия Мопертюи математически записывается как условие стационарности сокращенного действия. (иногда пишется ) : где – импульсы частиц или сопряженные импульсы обобщенных координат, определяемые уравнением где является лагранжианом . В некоторых учебниках пишут [15] : 76 [9] : 356 как , чтобы подчеркнуть, что вариация, используемая в этой форме принципа действия, отличается от вариации Гамильтона.Здесь полная энергия фиксируется во время изменения, но не во времени, что является обратным ограничениям принципа Гамильтона. [16] Следовательно, один и тот же путь и конечные точки в двух формах требуют разного времени и энергии. Решениями в случае этой формы принципа Мопертюи являются орбиты : функции, связывающие координаты друг с другом, в которых время является просто индексом или параметром. [16]
Независимые от времени потенциалы; нет сил
[ редактировать ]Для стационарной системы действие относится просто к сокращенному действию на стационарном пути как: [9] : 434 для энергии и разница во времени . Для твердого тела без результирующей силы действия идентичны, и вариационные принципы становятся эквивалентными Ферма : принципу наименьшего времени [9] : 360
Фиксированные события
[ редактировать ]Когда физическая задача дает две конечные точки как положение и время, то есть как события , принцип действия Гамильтона применяется . Например, представьте, что вы планируете путешествие на Луну. Во время вашего путешествия Луна будет продолжать вращаться вокруг Земли: это движущаяся цель. Принцип Гамильтиона для объектов в позициях математически записывается как Ограничение означает, что мы рассматриваем только пути, которые занимают одинаковое время и соединяют одни и те же две точки, и . Лагранжиан , , представляет собой разницу между кинетической энергией и потенциальной энергией в каждой точке пути. [17] : 62 Решение полученных уравнений дает мировую линию , . [3] Начиная с принципа Гамильтона, локальное дифференциальное уравнение Эйлера – Лагранжа можно вывести для систем с фиксированной энергией. Действие в принципе Гамильтона: , — преобразование Лежандра действия в принципе Мопертюи. [18]
Классическая теория поля
[ редактировать ]Концепции и многие методы, полезные для механики частиц, также применимы к непрерывным полям. Интеграл действия пробегает лагранжианскую плотность, но понятия настолько близки, что плотность часто называют просто лагранжианом. [19] : 15
Квантовые принципы действия
[ редактировать ]Для квантовой механики принципы действия имеют существенные преимущества: нужен только один механический постулат, если в действии используется ковариантный лагранжиан, результат релятивистски правильный, и они явно переходят к классическим эквивалентам. [2] : 128
И Ричард Фейнман , и Джулиан Швингер разработали принципы квантового действия, основанные на ранних работах Поля Дирака . Интегральный метод Фейнмана не был вариационным принципом, а сводился к классическому принципу наименьшего действия; это привело к его диаграммам Фейнмана . Дифференциальный подход Швингера связывает бесконечно малые изменения амплитуды с бесконечно малыми изменениями действия. [2] : 138
Принцип действия Фейнмана
[ редактировать ]Когда квантовые эффекты важны, необходимы новые принципы действия. Вместо того, чтобы частица следовала по пути, квантовая механика определяет амплитуду вероятности. в один момент и время связано с амплитудой вероятности в другой момент позже:
где это классическое действие. [20] Вместо одного пути со стационарным действием складываются все возможные пути (интеграл по ), взвешенный по комплексной амплитуде вероятности, . Фаза амплитуды определяется действием, разделенным на постоянную Планка или квант действия: . Когда действие частицы много больше, чем , , фаза быстро меняется по трассе: амплитуда в среднем достигает небольшого числа. [8] Таким образом, постоянная Планка устанавливает границу между классической и квантовой механикой. [21]
Все пути вносят свой вклад в принцип квантового действия. В конечной точке, где пути встречаются, пути с одинаковыми фазами складываются, а пути с фазами, отличающимися на вычесть. Близко к пути, ожидаемому в классической физике, фазы имеют тенденцию выравниваться; эта тенденция сильнее для более массивных объектов, имеющих большую величину действия. В классическом пределе доминирует один путь — путь стационарного действия. [22]
Принцип действия Швингера
[ редактировать ]Подход Швингера связывает изменения амплитуд перехода, , к вариациям элемента матрицы действий:
где находится оператор действия
Форма Швингера делает анализ изменения самого лагранжиана, например, изменения мощности потенциального источника, особенно прозрачным. [2] : 138
Оптико-механическая аналогия
[ редактировать ]Для каждого пути интеграл действия строит значение от нуля в начальной точке до конечного значения в конце. Любой близлежащий путь будет иметь одинаковые значения на одинаковом расстоянии от начальной точки. Линии или поверхности с постоянным значением частичного действия могут быть нарисованы поперек путей, создавая волнообразное представление действия. Подобный анализ связывает корпускулярные лучи геометрической оптики с волновыми фронтами принципа Гюйгенса – Френеля.
[Мопертюи] ... таким образом указал на ту замечательную аналогию между оптическими и механическими явлениями, которую гораздо раньше наблюдал Джон Бернулли и которая позже была полностью развита в гениальной оптико-механической теории Гамильтона. Эта аналогия сыграла фундаментальную роль в развитии современной волновой механики.
Приложения
[ редактировать ]Принципы действия применяются для вывода дифференциальных уравнений, таких как Эйлера-Лагранжа. уравнения [9] : 44 или как прямое применение к физическим проблемам.
Классическая механика
[ редактировать ]Принципы действия могут быть непосредственно применены ко многим задачам классической механики , например, к форме упругих стержней под нагрузкой, [23] : 9 форма жидкости между двумя вертикальными пластинами ( капилляр ), [23] : 22 или движение маятника, когда его опора находится в движении. [23] : 39
Химия
[ редактировать ]Принципы квантового действия используются в квантовой теории атомов в молекулах ( QTAIM ), способе разложения вычисленной электронной плотности молекул на атомы как способ получить представление о химической связи. [24]
Общая теория относительности
[ редактировать ]Вдохновленный работами Эйнштейна по общей теории относительности, известный математик Дэвид Гильберт применил принцип наименьшего действия для вывода уравнений поля общей теории относительности. [25] : 186 Его действие, теперь известное как действие Эйнштейна-Гильберта ,
содержал релятивистски инвариантный элемент объема и скалярная кривизна Риччи, . Масштабный коэффициент Эйнштейна гравитационная постоянная
Другие приложения
[ редактировать ]Принцип действия настолько важен в современной физике и математике , что широко применяется, в том числе в термодинамике , [26] [27] [28] механика жидкости , [29] теория относительности , квантовая механика , [30] физика элементарных частиц и теория струн . [31]
История
[ редактировать ]Принципу действия предшествуют более ранние идеи в оптике . В древней Греции Евклид писал в своей «Катоптрике» , что для пути света, отражающегося от зеркала, угол падения равен углу отражения . [32] Герой Александрийский позже показал, что этот путь был наименьшей длины и наименьшего времени. [33]
Основываясь на ранних работах Пьера Луи Мопертюи , Леонарда Эйлера и Жозефа Луи Лагранжа, определяющих версии принципа наименьшего действия , [34] : 580 Уильям Роуэн Гамильтон и совместно с Карлом Густавом Якоби разработали вариационную форму классической механики, известную как уравнение Гамильтона-Якоби . [35] : 201
В 1915 году Дэвид Гильберт применил вариационный принцип для вывода Альберта Эйнштейна уравнений общей теории относительности . [36]
В 1933 году физик Поль Дирак продемонстрировал, как этот принцип можно использовать в квантовых вычислениях, обнаружив квантовомеханическую основу принципа квантовой интерференции амплитуд. [37] Впоследствии Джулиан Швингер и Ричард Фейнман независимо применили этот принцип в квантовой электродинамике. [38] [39]
Ссылки
[ редактировать ]- ^ Томас А. Мур «Принцип наименьшего действия» в Физической энциклопедии Macmillan, Джон Ригден, редактор, Simon & Schuster Macmillan, 1996, Том 2, страница 840.
- ^ Перейти обратно: а б с д и Юрграу, Вольфганг; Мандельштам, Стэнли (1979). Вариационные принципы в динамике и квантовой теории . Дуврские книги по физике и химии (респ. 3-е изд., изд. 1968 г. изд.). Нью-Йорк, штат Нью-Йорк: Dover Publ. ISBN 978-0-486-63773-0 .
- ^ Перейти обратно: а б с д и Ханц, Йозеф; Тейлор, Эдвин Ф.; Тулея, Славомир (1 июля 2005 г.). «Вариационная механика в одном и двух измерениях» . Американский журнал физики . 73 (7): 603–610. Бибкод : 2005AmJPh..73..603H . дои : 10.1119/1.1848516 . ISSN 0002-9505 .
- ^ Куперсмит, Дженнифер (2017). Ленивая вселенная: введение в принцип наименьшего действия . Оксфорд; Нью-Йорк, штат Нью-Йорк: Издательство Оксфордского университета. ISBN 978-0-19-874304-0 .
- ^ Перейти обратно: а б Ланцос, Корнелиус (1986). Вариационные принципы механики (4-е изд.). Нью-Йорк: Дувр. ISBN 978-0-486-65067-8 .
- ^ Клеппнер, Дэниел; Коленков, Роберт Дж. (2014). «Глава 3: Силы и уравнения движения» . Введение в механику (2-е изд.). Кембридж: Издательство Кембриджского университета. ISBN 978-0521198110 .
- ^ Мур, Томас А. (1 апреля 2004 г.). «Как получить максимальную отдачу от наименьшего действия: предложение» . Американский журнал физики . 72 (4): 522–527. Бибкод : 2004AmJPh..72..522M . дои : 10.1119/1.1646133 . ISSN 0002-9505 .
- ^ Перейти обратно: а б с «Лекции Фейнмана по физике, том II, глава 19: Принцип наименьшего действия» . www.feynmanlectures.caltech.edu . Проверено 3 ноября 2023 г.
- ^ Перейти обратно: а б с д и Гольдштейн, Герберт; Пул, Чарльз П.; Сафко, Джон Л. (2008). Классическая механика (3-е изд., [Начдр.] изд.). Сан-Франциско, Мюнхен: Эддисон Уэсли. ISBN 978-0-201-65702-9 .
- ^ Грей, компьютерная графика; Тейлор, Эдвин Ф. (май 2007 г.). «Когда действие не имеет значения» . Американский журнал физики . 75 (5): 434–458. Бибкод : 2007AmJPh..75..434G . дои : 10.1119/1.2710480 . ISSN 0002-9505 .
- ^ Хилл, Эл. (1 июля 1951 г.). «Принцип Гамильтона и теоремы сохранения математической физики» . Обзоры современной физики . 23 (3): 253–260. Бибкод : 1951РвМП...23..253Х . дои : 10.1103/RevModPhys.23.253 . ISSN 0034-6861 .
- ^ Пенроуз, Роджер (2005). Дорога в реальность: полное руководство по законам Вселенной . Нью-Йорк: Альфред А. Кнопф. ISBN 978-0-679-45443-4 .
- ^ Брэдинг, Кэтрин (1941). «Какая симметрия? Нётер, Вейль и сохранение электрического заряда» . Исследования по истории и философии науки. Часть B: Исследования по истории и философии современной физики . 33 (1): 3–22. Бибкод : 2002ШПМП..33....3Б . дои : 10.1016/S1355-2198(01)00033-8 .
- ^ Бэгготт, Дж. Э. (2013). Квантовая история: история за 40 мгновений (Впечатление: 3-е изд.). Оксфорд: Оксфордский университет. Нажимать. ISBN 978-0-19-956684-6 .
- ^ Хэнд, Луи Н.; Финч, Джанет Д. (2008). Аналитическая механика (7-е печатное изд.). Кембридж: Кембриджский университет. Нажимать. ISBN 978-0-521-57572-0 .
- ^ Перейти обратно: а б Грей, Крис Г. (9 декабря 2009 г.). «Принцип наименьшего действия» . Схоларпедия . 4 (12): 8291. Бибкод : 2009SchpJ...4.8291G . doi : 10.4249/scholarpedia.8291 .
- ^ Киббл, TWB; Беркшир, FH (2004). Классическая механика (5-е изд.). Издательство Имперского колледжа. ISBN 9781860944352 .
- ^ Грей, компьютерная графика; Карл, Г; Новиков, В.А. (01.02.2004). «Прогресс в классических и квантовых вариационных принципах» . Отчеты о прогрессе в физике . 67 (2): 159–208. arXiv : физика/0312071 . Бибкод : 2004РПФ...67..159Г . дои : 10.1088/0034-4885/67/2/R02 . ISSN 0034-4885 .
- ^ Пескин, Майкл Э. (31 января 2018 г.). Введение в квантовую теорию поля . Бока-Ратон: CRC Press. дои : 10.1201/9780429503559 . ISBN 978-0-429-50355-9 .
- ^ Фейнман, Р.П. (1 апреля 1948 г.). «Пространственно-временной подход к нерелятивистской квантовой механике» . Обзоры современной физики . 20 (2): 367–387. Бибкод : 1948РвМП...20..367Ф . дои : 10.1103/RevModPhys.20.367 . ISSN 0034-6861 .
- ^ Кертис, Лоренцо Дж (1 сентября 2011 г.). «Взгляд на XXI век как введение в физику» . Европейский журнал физики . 32 (5): 1259–1274. Бибкод : 2011EJPh...32.1259C . дои : 10.1088/0143-0807/32/5/014 . ISSN 0143-0807 .
- ^ Огборн, Джон; Тейлор, Эдвин Ф (24 декабря 2004 г.). «Квантовая физика объясняет законы движения Ньютона» (PDF) . Физическое образование . 40 (1): 26–34. дои : 10.1088/0031-9120/40/1/001 . ISSN 0031-9120 .
- ^ Перейти обратно: а б с Диттрих, Уолтер (2021). Развитие принципа действия: дидактическая история от Эйлера-Лагранжа до Швингера . SpringerBriefs по физике. Чам: Международное издательство Springer. дои : 10.1007/978-3-030-69105-9 . ISBN 978-3-030-69104-2 .
- ^ Бадер, Ричард Ф.В. (июнь 2005 г.). «Квантово-механические основы концептуальной химии» . Monatshefte für Chemie - Ежемесячный химический журнал . 136 (6): 819–854. дои : 10.1007/s00706-005-0307-x . ISSN 0026-9247 .
- ^ Рохо, Альберто; Блох, Энтони, ред. (2018). «Относительность и наименьшее действие». Принцип наименьшего действия: история и физика . Кембридж: Издательство Кембриджского университета. стр. 162–188. дои : 10.1017/9781139021029.007 . ISBN 978-0-521-86902-7 .
- ^ Гарсиа-Моралес, Владимир; Пеллисер, Хулио; Мансанарес, Хосе А. (2008). «Термодинамика, основанная на принципе наименьшего сокращенного действия: производство энтропии в сети связанных осцилляторов». Анналы физики . 323 (8): 1844–58. arXiv : cond-mat/0602186 . Бибкод : 2008АнФиз.323.1844Г . дои : 10.1016/j.aop.2008.04.007 . S2CID 118464686 .
- ^ Гей-Бальмаз, Франсуа; Ёсимура, Хироаки (2018). «От лагранжевой механики к неравновесной термодинамике: вариационная перспектива» . Энтропия . 21 (1): 8. arXiv : 1904.03738 . Бибкод : 2018Entrp..21....8G . дои : 10.3390/e21010008 . ISSN 1099-4300 . ПМЦ 7514189 . PMID 33266724 .
- ^ Био, Морис Энтони (1975). «Принцип виртуальной диссипации и уравнения Лагранжа в нелинейной необратимой термодинамике». Бюллетень класса наук . 61 (1): 6–30. дои : 10.3406/barb.1975.57878 . ISSN 0001-4141 .
- ^ Грей, Крис (2009). «Принцип наименьшего действия» . Схоларпедия . 4 (12): 8291. Бибкод : 2009SchpJ...4.8291G . doi : 10.4249/scholarpedia.8291 .
- ^ Фейнман, Ричард Филлипс (1942), Принцип наименьшего действия в квантовой механике (диссертация), Bibcode : 1942PhDT.........5F
- ^ «Принцип наименьшего действия – damtp» (PDF) . Архивировано из оригинала (PDF) 10 октября 2015 г. Проверено 18 июля 2016 г.
- ^ Хельцбергер, Макс (1966). «Оптика от Евклида до Гюйгенса». Прикладная оптика . 5 (9): 1383–93. Бибкод : 1966ApOpt...5.1383H . дои : 10.1364/AO.5.001383 . ПМИД 20057555 .
В катоптрике утверждается закон отражения, а именно, что входящие и исходящие лучи образуют одинаковый угол с нормалью поверхности.
- ^ Клайн, Моррис (1972). Математическая мысль от древности до современности . Нью-Йорк: Издательство Оксфордского университета. стр. 167–68 . ISBN 0-19-501496-0 .
- ^ Клайн, Моррис (1972). Математическая мысль от древности до современности . Нью-Йорк: Издательство Оксфордского университета. стр. 167–168 . ISBN 0-19-501496-0 .
- ^ Накане, Мичиё и Крейг Г. Фрейзер. «Ранняя история динамики Гамильтона-Якоби 1834–1837». Центавр 44.3-4 (2002): 161-227.
- ^ Мехра, Джагдиш (1987). «Эйнштейн, Гильберт и теория гравитации». В Мехре, Джагдиш (ред.). Концепция физика о природе (Переиздание). Дордрехт: Рейдель. ISBN 978-90-277-2536-3 .
- ^ Дирак, Поль AM (1933). «Лагранжиан в квантовой механике» (PDF) . Физический журнал Советского Союза . 3 (1): 64–72.
- ^ Р. Фейнман, Квантовая механика и интегралы по траекториям, McGraw-Hill (1965), ISBN 0-07-020650-3
- ^ Дж. С. Швингер, Квантовая кинематика и динамика, В. А. Бенджамин (1970), ISBN 0-7382-0303-3