Jump to content

Tremp Formation

Coordinates: 42°06′35″N 01°04′22″E / 42.10972°N 1.07278°E / 42.10972; 1.07278
(Redirected from Conques Formation)
Tremp Formation
Stratigraphic range: Maastrichtian-Thanetian
~67.6–56 Ma
Outcrop of the Tremp Formation
TypeGeological formation
Unit ofTremp-Graus Basin
Sub-unitsSee text
UnderliesÀger Formation, Alveolina Limestone, alluvium
OverliesArén Formation
Area~325 km2 (125 sq mi)[1]
Thickness250–800 m (820–2,620 ft)
Lithology
PrimarySandstone, shale, conglomerate, limestone
OtherMarl, gypsum, siltstone, lignite
Location
Coordinates42°06′35″N 01°04′22″E / 42.10972°N 1.07278°E / 42.10972; 1.07278
RegionPre-Pyrenees, Catalonia
Country Spain
Extent~35 km (22 mi)
Type section
Named forTremp
Named byMey et al.
Year defined1968
Approximate paleocoordinates34°06′N 0°54′E / 34.1°N 0.9°E / 34.1; 0.9

Outline of the Tremp Formation in the Tremp Basin
Tremp Formation is located in Spain
Tremp Formation
Type locality of the Tremp Formation in Spain
Topographic map of the Pyrenees, the Tremp-Graus Basin is located just south of the lake southeast of Andorra
The Montsec is visible as an east–west running brown ridge
Paleogeography of Europe in the Maastrichtian
Overview of different units and fossil sites in the Tremp Formation

The Tremp Formation (Spanish: Formación de Tremp, Catalan: Formació de Tremp), alternatively described as Tremp Group (Spanish: Grupo Tremp), is a geological formation in the comarca Pallars Jussà, Lleida, Spain. The formation is restricted to the Tremp or Tremp-Graus Basin (Catalan: Conca de Tremp), a piggyback foreland basin in the Catalonian Pre-Pyrenees. The formation dates to the Maastrichtian to Thanetian,[2] thus the formation includes the Cretaceous-Paleogene boundary that has been well studied in the area, using paleomagnetism and carbon and oxygen isotopes. The formation comprises several lithologies, from sandstone, conglomerates and shales to marls, siltstones, limestones and lignite and gypsum beds and ranges between 250 and 800 metres (820 and 2,620 ft) in thickness. The Tremp Formation was deposited in a continental to marginally marine fluvial-lacustrine environment characterized by estuarine to deltaic settings.

The Tremp Basin evolved into a sedimentary depression with the break-up of Pangea and the spreading of the North American and Eurasian Plates in the Early Jurassic. Rifting between Africa and Europe in the Early Cretaceous created the isolated Iberian microplate, where the Tremp Basin was located in the northeastern corner in a back-arc basin tectonic regime. Between the middle Albian and early Cenomanian, a series of pull-apart basins developed, producing a local unconformity in the Tremp Basin. A first phase of tectonic compression commenced in the Cenomanian, lasting until the late Santonian, around 85 Ma, when Iberia started to rotate counterclockwise towards Europe, producing a series of piggyback basins in the southern Pre-Pyrenees. A more tectonically quiet posterior phase provided the Tremp Basin with a shallowing-upward sequence of marine carbonates until the moment of deposition of the Tremp Formation, in the lower section still marginally marine, but becoming more continental and lagoonal towards the top.

Shortly after deposition of the Tremp Formation, the Boixols Thrust, active to the north of the Tremp Basin and represented by the Sant Corneli anticline, started a phase of tectonic inversion, placing upper Santonian rocks on top of the northern Tremp Formation. The main phase of movement of another major thrust fault, the Montsec to the south of the Tremp Basin, happened not before the Early Eocene. Subsequently, the western Tremp Basin was covered by thick layers of conglomerates, creating a purely continental foreland basin, a trend observed going westward in the neighboring foreland basins of Ainsa and Jaca.

A rich and diverse assemblage of fossils has been reported from the formation, among which more than 1000 dinosaur bones, tracks dating up to just 300,000 years before the Cretaceous-Paleogene boundary, and many well-preserved eggs and nesting sites in situ, spread out over an area of 6,000 square metres (65,000 sq ft). Multiple specimens and newly described genera and species of crocodylians, mammals, turtles, lizards, amphibians and fish complete the rich vertebrate faunal assemblage of the Tremp Formation. Additionally, fresh-to-brackish water clams as Corbicula laletana, bivalves of Hippurites castroi, gastropods, plant remains and cyanobacteria as Girvanella were found in the Tremp Formation. The unique paleoenvironment, well-exposed geology, and importance as national heritage has sparked proposals to designate the Tremp Formation and its region as a protected geological site of interest since 2004, much like the Aliaga geological park and others in Spain.[3]

Due to the exposure, the interaction of tectonics and sedimentation and access, the formation is among the best studied stratigraphic units in Europe, with many universities performing geological fieldwork and professional geologists studying the different lithologies of the Tremp Formation. The abundant paleontological finds are displayed in the local natural science museums of Tremp and Isona, where educational programs have been established explaining the geology and paleobiology of the area. In 2016, the Tremp Basin and surrounding areas were filed to become a Global Geopark,[4] and on April 17, 2018, UNESCO accepted this proposal and designated the site Conca de Tremp-Montsec Global Geopark.[5] Spain hosts the second-most Global Geoparks in the world, after China.[6]

Etymology

[edit]

The Tremp Formation was defined and named in 1968 by Mey et al., just as the Tremp Basin after the Pre-Pyrenean town of Tremp.[7] The various subdivisions of the formation or alternatively called group, are named after the villages, rivers, canyons and hills in the basin.[8][9]

Description

[edit]
Red beds of the Tremp Formation along the road
Cross-bedded sandstones of the Tremp Formation

The Tremp Formation is a marginally marine to fluvial to lacustrine and continental sedimentary unit with a thickness varying between 250 and 800 metres (820 and 2,620 ft).[10] The formation is found in the Tremp-Graus Basin, a piggyback basin enclosed by the Sant Corneli anticline in the north, the Boixols Thrust in the northeast, the Montsec Thrust in the south and the Collegats Formation in the west.[11][12] The Tremp-Graus Basin is bordering the Ainsa Basin to the west, and the Àger Basin to the south.[13] The basin is subdivided into four synclinal areas, from east to west Vallcebre, Coll de Nargó, Tremp and Àger.[14] While in Benabarre, the Tremp Formation overlies the Arén Formation, in Fontllonga the formation rests on top of the Les Serres Limestone.[15] The formation is partly laterally equivalent with the Arén Formation.[16] The Tremp Formation is stratigraphically overlain by the late Paleogene, locally called Ilerdiense, Àger Formation and the Alveolina Limestone,[17] though in many parts of the Tremp Basin the formation is exposed and covered by alluvium.

The formation comprises several different lithologies, as sandstones, shales, limestones, marls, lignites, gypsum beds, conglomerates and siltstones have been registered.[12][18]

The start age of the Tremp Formation has been established on the basis of the presence of Abathomphalus mayaroensis, a planktonic foraminiferan indicative of the latest Maastrichtian age of the formation.[19] The lower section of the formation at the Elías site has been dated at 67.6 Ma,[20] while the top of the Tremp Formation, in the western portion of the basin overlain by the Alveolina Limestone,[21] named due to the abundance of Alveolina, is set at 56 Ma.[22]

On the northern side of the Axial Zone of the Pyrenees, in the French sub-Pyrenean zone and Aquitaine Platform of the foreland basin bordering the mountain range, the time-equivalent stratigraphic units of the Tremp Formation are the Mas d'Azil Formation and Marnes d'Auzas Formation for the latest Maastrichtian, the Entonnoir Formation for the Danian and the Rieubach Group correlating with the Thanetian portion of the Tremp Formation.[23]

Subdivisions

[edit]

Studies performed in the 1990s described the Tremp Formation, also called Garumnian (Spanish: Garumniense de Tremp),[24][25] as a group with a subdivision into:[12]

Claret Formation

[edit]
  • Etymology - Claret
  • Type section - along the road 1311[26]
  • Thickness - up to 350 metres (1,150 ft)
  • Lithologies - ochre to red shales, gypsum beds and intercalated sandstones and conglomerates
  • Depositional environment - transitional marine to continental
La Guixera Member
  • Etymology - La Guixera
  • Type section - Mongai[26]
  • Thickness - 60 to 350 metres (200 to 1,150 ft)
  • Lithologies - gypsum beds alternating with shales, sandstones and conglomerates
  • Depositional environment - evaporitic lacustrine deposits at times of retrogradation of alluvial fans[27]

Esplugafreda Formation

[edit]
Cross-bedded conglomerates of the Tremp Formation
  • Etymology - Esplugafreda canyon
  • Type section - Barranco de Esplugafreda, in the valley of the Ribagorçana River east of Areny de Noguera[9]
  • Thickness - 70 to 350 metres (230 to 1,150 ft)
  • Lithologies - continental red beds; shales, sandstones and conglomerates
  • Depositional environment - alluvial fans

Sant Salvador de Toló Formation

[edit]
  • Etymology - Sant Salvador de Toló
  • Type section - Conquès River[9]
  • Thickness - 70 to 350 metres (230 to 1,150 ft)
  • Lithologies - micritic limestones and greenish shales
  • Depositional environment - lacustrine to coastal

Talarn Formation

[edit]
Conglomeratic section of the Tremp Formation, lizard providing the scale
  • Etymology - Talarn
  • Type section - Barranco de La Mata[28]
  • Thickness - 140 metres (460 ft)
  • Lithologies - fining-upward sequence of sandstones and conglomerates at the base, grading into siltstones and shales near the top
  • Depositional environment - alluvial channel and overbank deposits

Conquès Formation

[edit]
  • Etymology - Conquès River
  • Type section - Barranco de Basturs[8]
  • Thickness - 60 to 500 metres (200 to 1,640 ft)
  • Lithologies - greenish shales, sandstone lenses and conglomerates at the base
  • Depositional environment - perilagoonal[note 1]
Tossal d'Obà Member
Marls with micritic limestones on top in the Tremp Formation
  • Etymology - Tossal d'Obà
  • Type section - Tossal d'Obà Hill[8]
  • Thickness - 7 metres (23 ft)
  • Lithologies - micritic limestones and marls
  • Depositional environment - distal fluvial to lagoonal-barrier island
Basturs Member
  • Etymology - Basturs
  • Type section - Barranco de Basturs[8]
  • Thickness - 2.5 to 80 metres (8.2 to 262.5 ft)
  • Lithologies - micritic limestones, greenish shales and bioturbated fine sandstones
  • Depositional environment - perilagoonal

Posa Formation

[edit]
La Posa ichnofossil site of the Tremp Formation
  • Etymology - Ermita La Posa[30]
  • Type section - Isona anticlinal[31]
  • Thickness - 180 metres (590 ft)
  • Lithologies - grey shales, limestones, marls, lignite and sandstones
  • Depositional environment - lagoonal to barrier island

Alternative subdivisions

[edit]

An alternative subdivision uses Grey Garumnian at the base, overlain by Lower Red Garumnian and Vallcebre Limestone at the top.[32] The Vallcebre limestone is laterally equivalent with another described unit, the Suterranya Limestone.[33] Pujalte and Schmitz in 2005 defined another member, the Claret Conglomerate, as representative of a conglomeratic bed inside the Claret Formation.[2]

In 2015, a new unit was allocated to the uppermost Cretaceous section of the Tremp Group, near the top of the Lower Red Garumnian. The 7 metres (23 ft) thick series of lithologically mature coarse-grained sandstones and microconglomerates rich in feldspars is positioned 7 to 10 metres (23 to 33 ft) below the Danian Vallcebre Limestone and was called the Reptile Sandstone.[34]

Tectonic evolution

[edit]
Cross-section of the Pyrenees, the Tremp-Graus Basin is located at the left in the South Pyrenean Zone
Regional cross-section from south (left) to north (right) showing the piggyback basin between the Montsec Thrust in the south and the Boixols Thrust in the north
drawing by Josep Anton Muñoz
West-east view of the northern boundary of the Tremp-Graus Basin. The Boixols Thrust placed Upper Santonian limestones on top of the younger Maastrichtian Tremp Formation
drawing by Josep Anton Muñoz
View from the south of the central part of the Tremp-Graus Basin with the Sant Corneli prominently in the background
View from the north of the central part of the Tremp-Graus Basin with the Montsec in the background
View from the west of the Tremp-Graus Basin with the Boixols Thrust and anticline in the background

The Tremp Basin was formed in the northeastern corner of the Iberian Plate, a microplate that existed as a separate tectonic block between the Eurasian and African Plates since the Hercynian orogeny that formed the supercontinent Pangea. Progressive opening of the Atlantic Ocean between the Americas and at first Africa, later Iberia and finally Europe, caused large differential motions between these continents,[35] with extensional tectonics starting in the Early Jurassic with the opening of the Neotethys ocean between southwestern Europe and Africa.[36] During this period, evaporites were deposited in the rift basins,[37] later in the tectonic history becoming important décollement surfaces for the compressional movements.[38] The phase of extension continued into the Early Cretaceous when the Iberian Plate started to move counterclockwise to converge with the Eurasian Plate.[39]

Back-arc basin

[edit]

Approximately from the late Berriasian to late Albian (120 to 100 Ma), the Iberian Plate was an isolated island, separated from current southern France by a mostly shallow sea with a deeper pelagic channel in between the southwestern Eurasian and northeastern Iberian coasts. The present-day area of the Pyrenees with an area of 1,964 square kilometres (758 sq mi) in those times was much larger due to the various episodes of compressional tectonic forces and resulting shortening afterwards. The Tremp Basin, alternatively called Organyà Basin, was the depocenter of sedimentation during the late Early Cretaceous, showing an estimated vertical sedimentary thickness of 4,650 metres (15,260 ft) comprising mostly hemipelagic marls and limestones,[40] deposited in a back-arc basin setting with normal faults parallel to the Pyrenean axis,[41] and cross-cut by transverse faults, separating the various west-to-east minibasins. These minibasins showed a deepening trend from the Gulf of Biscay to the Mediterranean.[36][42][43]

At the end of formation of the back-arc basin, around 95 Ma, high temperature metamorphism developed as a result of crustal thinning synchronously or immediately after the Albian to Cenomanian basin formation. Lower crustal granulitic rocks, as well as ultramafic upper mantle rocks (lherzolites) were emplaced along the prominent North Pyrenean Fault (NPF) crustal feature. The North Pyrenean Fault developed during the sinistral (left-lateral) displacement of the Iberian Plate, which age is determined by the age of flysch pull-apart basins formed synchronously with the strike-slip movement along the NPF from Middle Albian to Early Cenomanian.[44] This period is characterized by a local unconformity in the Tremp Basin,[45] while this is not registered farther to the west of the Pre-Pyrenean minibasins near Pont de Suert.[46]

Tectonic inversion

[edit]

The previous phase was followed by a tectonically more quiet setting in the basins surrounding the slowly rising Pyrenees. Research published in 2014 has revealed a renewed phase of evaporitic deposition from the Coniacian to Santonian in the Cotiella Basin, west of the Tremp Basin.[47] The relative tectonic quiescence lasted until the late Santonian, approximately around 85 Ma,[36][42] with other authors defining this moment at 83 Ma.[48] At this time, continental subduction and back-arc basin inversion commenced,[36] with the remainder of the Neotethys Ocean progressively disappearing. During this phase, sea floor spreading in the Bay of Biscay occurred, leading to a rotation of plate movements, observed more prominently in the eastern part of the Iberian Plate, where convergence rates of 70 kilometres (43 mi) per million years have been noted.[49] As is common in inverted tectonic regimes, the normal faults of the early Mesozoic were reactivated into reverse faults at the end of the Cretaceous and continuing into the Paleogene.[42] The lithospheric subduction has not been interpreted from seismic reflection data, with the ECORS profile obtained in the late 1980s as primary example,[50] due to the large thickness and poor seismic resolution, but later analysis using tomography has identified this feature below the Pre-Pyrenean chain.[51] The presence of lithospheric subduction is a common feature in other Alpine orogenic chains as the Alps and Himalayas.[52]

Piggyback basin

[edit]

From the late Santonian to the late Maastrichtian,[53] on the different thrust sheets of the southward compressional Pre-Pyrenees, a series of piggyback basins were formed,[54] one of which was the Tremp Basin.[55] The bathymetry of these basins show a general deepening towards the west, with major turbidite deposition in the Ainsa Basin and farther west.[53] Subsequent ongoing inversion of the basins show a similar trend, with compressional phases becoming younger from east to west. While the onlap and erosion in the Clamosa area started in the early Eocene, around 49 Ma, the western portion experienced this phase terminating around the end of the Eocene, approximately at 35 Ma.[56] In the Jaca Basin, to the west of the Ainsa and Tremp Basins, during the Middle Eocene, flysch was deposited in an underfilled basin setting,[57] while in the western Tremp Basin thick conglomerates, known as the Collegats Formation, were deposited, sourced by the various thrust sheets in the hinterland.[58]

Boixols and Montsec thrusting

[edit]

The Boixols–Cotiella thrust sheet was emplaced since the Late Cretaceous, placing late Santonian rocks on top of the northernmost Tremp Formation, found in the subsurface underneath the Sant Corneli anticline. This was followed by the tectonic movement of the Montsec–Peña Montañesa thrust sheet during the Early Eocene and the western Sierras Exteriores thrust sheet from the Mid-Eocene to Early Miocene.[59] The dating of the Montsec Thrust has been established on the basis of the stratigraphies of the overlying hanging wall (Triassic to Cretaceous) onto the Lutetian (locally called Cuisian) fluvial sediments of the Àger Basin to the south of the Montsec.[60][61] These tectonic movements are indicative of the main uplift phase of the Pyrenees.[36]

Salt tectonics

[edit]

The involvement of evaporites as décollement surfaces in compressional tectonic regimes is a widespread phenomenon on Earth. The evaporites, mainly salt but also gypsum, function as mobile ductile surfaces along which thrust faults can move. Global examples of halokinesis in compressional inverted tectonic regimes include the south Viking Graben, and Central Graben in the North Sea,[62] offshore Tunisia,[63] the Zagros Mountains of Iraq and Iran,[64][65] northern Carpathians in Poland,[66] western,[67] and eastern Colombian, along the Eastern Frontal Fault System of the Eastern Ranges of the Andes,[68] the Al Hajar Mountains of Oman,[69] Dnieper-Donets Basin in the Ukraine,[70] the Sivas Basin in Turkey,[71] the Kohat-Potwar fold and thrust belt of Pakistan,[72] the Flinders Ranges in South Australia,[73] during the Eurekan orogeny in the Sverdrup Basin of northeastern Canada and western Greenland,[74] and many more.[75]

In the western Cotiella Basin, salt inflation and withdrawal played a major role in the differential sedimentary thicknesses, facies changes and tectonic movements.[76]

Eocene to recent

[edit]

After the Middle Eocene, thick conglomerates were deposited in the western Tremp Basin and the thrust sheets reached their maximum displacement, this led to a shift of the depocenter from the Pre-Pyrenees towards the Ebro Basin.[77] Paleomagnetic data show that the Iberian Plate went through another phase of counterclockwise rotation, though not as fast as in the Santonian. Between 25 and 20 Ma, in the late Oligocene and early Miocene, a rotation of 7 degrees has been noted.[78] This phase of rotation correlated with the thrusting in the westernmost areas of the southern Pre-Pyrenees, the Sierras Marginales, leading to continental conditions in that area from the early Miocene (Burdigalian) onwards.[79]

Depositional history

[edit]
Depositional model of the Tremp Formation showing a lacustrine delta

The depositional environment of the Tremp Formation varies between continental, lacustrine, fluvial, and marginally marine (estuarine to deltaic and coastal). The continental deposits in the east of the basin have been interpreted as the distal part of alluvial fans, while the presence of cyanobacteria Girvanella in the lacustrine limestones indicates variability in salinity in the lacustrine areas and a possible lateral relation with transitional environments. The presence of great quantities of the fungus Microcodium indicates traces of rootlets.[18] The biochemical data, based on C and O isotope analysis could indicate a rise in temperature, an increase in evaporation and a higher production of plant material at the transition of Maastrichtian and Paleocene.[80] The top of the Tremp Formation is close to the Paleocene–Eocene Thermal Maximum, which could explain the relative lack of diversity in mammal genera.[81]

Four phases in the depositional history of the Tremp Formation are noted:[82]

  1. Formation of an estuarine regime near the end of a Cretaceous regression in the Pyrenean basins, characterized by coastal plains where thick clays were deposited, cut by sporadic fluvial channels. At the margins of the basin, swampy conditions existed with sedimentation of carbonates. In these zones, the last dinosaurs inhabiting the area before the Cretaceous-Paleogene boundary left their marks in tracks, eggs and bones. These areas were accompanied by marshes, as evidenced by the many plant remains that produced the lignite deposits found in the lower part of the Tremp Formation. During this first phase in the sedimentary sequence of the formation, the Montsec was already a slightly elevated area in the south and along the submerged slopes of that hill, lacustrine limestones were deposited.
  2. At the end of the Cretaceous, a geologically sudden drop of sea level happened, giving rise to a wide fluvial-dominated basin. In this environment, river channels deposited sandstones and abundant overbank clays with numerous paleosols in the basin. On the southern side of the rising Montsec, the Àger Basin, a similar fluvial system developed with a far more coarse-grained sandy character than in its northern counterpart around Tremp. The paleocurrents in the Àger Basin were towards the north and northwest.[83] The enclosed continental basin turned into a more coastal environment at a transgressional phase with smaller channels where oncolites were laid down. The river systems on both sides of the Montsec were sourced by the easternmost parts of the present Pyrenees, with the Empordà High as provenance area. This east-to-west fluvial system, contrary to the present-day west–east flowing direction of the Ebro Basin, persisted until the Late Eocene. The uppermost unit of the Maastrichtian sequence, the coarse-grained Reptile Sandstone, has been interpreted as a fast-flowing braided river channel.[34]
  3. The start of the Paleocene was marked by a more tranquil deposition of lacustrine character. It has been hypothesized that the Alpine orogeny during this phase was less active and/or a regional rise in sea level allowed the basin to be flooded. During this phase, the limestones of Vallcebre and its lateral equivalents were deposited in the lake.
  4. A renewed phase of tectonic activity reactivated the fluvial to alluvial sedimentation, with abundant conglomerates and conglomeratic sandstones as a result. The provenance area for these uppermost sections of the Tremp Formation were first interpreted as the presently high mountains of the Axial Zone of the Pyrenees, at that time a forming orogen. Detailed provenance analysis published in 2015 by Gómez et al. however shows that the Àger basin was fed from the south (Prades area) and the Cadí-Vallcebre area was fed from the southeast (Montseny area), both areas belonging to the Ebro Massif. The Pyrenean basement (Axial Zone) was not a source area during the sedimentation of the Tremp Formation.[84] The latest phase of depositional evolution is noted in a wider area in the Pre-Pyrenees and to the south in the Ebro Basin, that began its formation during the Eocene, building up to its present shape in Oligocene and Miocene times.

Cretaceous-Paleogene boundary

[edit]

The Tremp Formation spans the latest stage of the Cretaceous (Maastrichtian) and the earliest stages of the Paleocene (Danian and Thanetian). This has made the formation one of a few European unique localities to study the K/T boundary. In the Tremp Basin, the boundary is registered at Coll de Nargó, Isona and Fontllonga and established on the basis of paleomagnetism and a strong decrease of ∂13C and ∂18O isotopes.[85] The typical iridium layer, found in other sites where the Cretaceous-Paleogene boundary has been noted, as Gubbio in Italy and Caravaca in Spain,[86] has not been registered in the Tremp Formation.[87]

Paleontology

[edit]
Ichnofossils at La Posa in the Tremp Formation. After initial interpretations as sauropod tracks, later models postulate they were produced by feeding rays.

The Tremp Formation provided many fossilized dinosaur eggs.[88] The dinosaur eggs of Basturs are contained in the formation bordering the Arén Formation and the area where eggs are found stretches out for 6,000 square metres (65,000 sq ft). A great number of nests are visible as well as numerous fragments of egg shells. The presence of wave ripples indicates a beach-like environment where dinosaurs laid their eggs for a long time. The eggs are subcircular with diameters of approximately 20 centimetres (7.9 in) and egg shell thicknesses between 1.5 and 2 millimetres (0.059 and 0.079 in). Many eggs are found in groups of between four and seven gatherings, indicating the in situ preservation of the nests.[89]

Also, remains of several genera of dinosaurs are described from the Tremp Formation.[90] The Tremp and underlying Arén Formations are the richest sites for dinosaur fossils in the Pyrenees,[19] with only at Basturs more than 1000 bone fragments found.[91] The dinosaur paleofauna has been compared to Hațeg in Romania, famous for the pterosaur Hatzegopteryx named after the location.[92] Furthermore, a rich variety of other reptiles, among which the new species and youngest fossil record of the Cretaceous turtle Polysternon; Polysternon isonae,[93] as well as amphibians, lizards, fish,[94] and mammals,[95] for example the earliest Paleocene multituberculate Hainina pyrenaica,[96] have been registered, showing a unique faunal assemblage for the Cretaceous-Paleogene boundary, not found elsewhere in Europe.[81]

The holes found on the dip slope at Ermita La Posa were initially interpreted as tracks produced by sauropod dinosaurs. Later investigations and interpretations of the depositional environment of the Maastrichtian; the coastal origin of the trackbed with plenty of marine invertebrates, have led researchers to interpret part of the ichnofossils as feeding traces of rays in the intertidal zones. During their feeding activity, the rays produce holes in the top sedimentary layers, when they feed on marine invertebrates buried in the top sediment.[91]

The Reptile Sandstone, when identified as a separate unit, was called as such because of the great abundance of fossil chelonid turtles,[97] Bothremydidae, crocodile teeth, theropod limbs,[98] and hadrosaur femurs.[99]

Sauropod nesting sites

[edit]
Underside of a clutch of eggs at Pinyes locality

A detailed analysis of the nesting sites of Coll de Nargó, at the Pinyes locality, has been performed in 2010 by Vilat et al. The eggs were found in the lower portion of the Lower Red Garumnian, with local facies comprising calcareous silty mudstones, very fine to fine-grained sand bodies, and medium to coarse-grained sandstones. The rocks, in a 36 metres (118 ft) thick interval,[100] are interpreted as sedimentary deposits of a fluvial environment located some distance away from an active stream channel.[101]

Most eggs exposed at the Pinyes locality were incompletely preserved because of recent erosion; however, excavation occasionally revealed relatively intact specimens in the subsurface. Some eggs exposed in cross-section revealed numerous eggshell fragments, predominantly oriented concave up within the mudstone matrix that filled the egg interior. Analysis of the eggshells at Pinyes provided a range of 2.23 to 2.91 millimetres (0.088 to 0.115 in) in shell thickness, with a mean range of 2.40 to 2.67 millimetres (0.094 to 0.105 in). Radial thin sections and SEM images of the eggshells showed a single structural layer of calcite. The eggshell surfaces displayed abundant elliptical pore openings that varied from 65 to 120 microns in width.[100]

Paleogeography of the Maastrichtian and distribution of titanosaur nesting sites

The mudstones surrounding the eggs displayed extensive bioturbation, minor faults, and penetrative foliation with a northeast–southwest orientation. Eggshell fragments were often displaced and overlap one another, and the eggs exhibited significant deformation due to compression. Most eggs mapped in the field showed a long axis direction 044, thus having a general northeast–southwest orientation, which coincides with regional stress fields resulting from tectonic compression.[102]

The eggs, in clusters or "clutches" of up to 28 individual eggs, were described as Megaloolithus siruguei, an oospecies well documented from various localities in northern Catalonia and southern France. The description was done on the basis of egg size, shape, eggshell microstructure, tuberculate ornamentation, and the presence of transversal canals in a tubocanaliculate pore system, an unequivocal feature of this oospecies. The egg horizons within the Tremp Formation were continuous before the tectonic inversion phase of the basin. The compressional tectonic regime produced structural deformation of the egg-bearing strata. The dip of the beds in the mountainous region can contribute to misinterpretation of reproductive behavior, hence the analysis of the eggs in combination with tectonic stresses gives a more complete picture of the shapes of the eggs.[103]

Interpretation of nest excavation and egg laying by a titanosaur

An interpretation of the nest excavation at Pinyes was made and compared to other nesting sites of sauropods found all over the world, in particular in the Aix Basin of southern France, the Allen and Anacleto Formations of Argentina, and the Lameta Formation of India. The nest sizes and shapes of Pinyes show great similarities with the other analyzed sites.[104] Research conducted in 2015 by Hechenleitner et al. include a comparison with the Cretaceous Sanpetru Formation of Hațeg paleo-island in Romania, the Los Llanos Formation at Sanagasta geological park [es] in Argentina, and the Boseong Formation of the Gyeongsang Basin in South Korea.[105]

A common nest size of 25 eggs has been suggested for the Pinyes locality. Small egg clusters that display linear or grouped egg arrangements reported at Pinyes and other localities likely reflect recent erosion. The distinct clutch geometry reported at Pinyes and other megaloolithid localities worldwide, strongly suggests a common reproductive behavior that resulted from the use of the hind foot for scratch-digging during nest excavation.[106] Due to their size and weight, the titanosaurs could not heat the eggs by direct body contact, so must have relied on external environmental heat for incubating their eggs.[107] However, modern megapode birds as the maleo (Macrocephalon maleo), the Moluccan megapode (Eulipoa wallacei) and scrubfowls (Megapodius spp.) in Southeast Asia and Australia, burrow their eggs using the heat in the top soil to incubate them and provide protection from predators.[108] The egg spatial distribution, in small clusters linearly to compactly grouped, but contained in round shaped areas of up to 2.3 metres (7.5 ft) would either support burrow- or mound-nesting at Pinyes.[109]

Hadrosaur ichnofossils

[edit]
Hadrosaur tracks have been found in many areas of the Tremp Formation and were produced in various depositional environments

Over 45 fossil localities yielded hadrosaurid fossils in the Lower Red Garumnian of the eastern Tremp Syncline.[16] Various new specimens of indeterminate Lambeosaurinae were described in 2013 by Prieto Márquez et al.[110] Furthermore, many hadrosaur ichnofossils have been found in the Tremp Formation and were analyzed in great detail by Vila et al. in 2013. The most abundant track types in fluvial settings are the pedal prints of hadrosaurs, while titanosaur ichnofossils and a single theropod track were found in lagoonal environments.[111] The authors concluded:[112]

  1. The fluvial lower red unit of the Tremp Formation exhibits meandering and braided fluvial systems with favorable conditions for track production and preservation, like those of North America and Asia.
  2. The dinosaurs mainly produced the tracks on the floodplain, within the channels, and on and within crevasse splay deposits in low water stage conditions, and the footprints were infilled by sands during high water stage (stream reactivation).
  3. The track record is composed of abundant hadrosaur and scarce sauropod and theropod tracks. The hadrosaur tracks are significantly smaller in size but morphologically similar to comparable records in North America and Asia. They are attributable to the ichnogenus Hadrosauropodus.
  4. A rich track succession composed of more than 40 distinct track levels indicates that hadrosaur footprints are found above the early Maastrichtian–late Maastrichtian boundary and most noticeably in the late Maastrichtian, with tracks occurring abundantly in the Mesozoic part of the C29r magnetochron, during the last 300,000 years of the Cretaceous.
  5. The occurrence of hadrosaur tracks in the Ibero-Armorican island seems to be characteristic of the late Maastrichtian time interval and thus they are important biochronostratigraphic markers in the faunal successions of the Late Cretaceous in southwestern Europe.

Fossil content

[edit]
Crocodylian finds in the Tremp Formation at Fumanya Sud
Неопределенная кость динозавра в образовании TEMP возле Бастурса
Неопределенные яйца динозавров в образовании Тлемпа возле Бастурса
Неопределенные яйца динозавров в образовании Тлемпа возле Бастурса
Отслеживать возникновение в формировании TREMP
Отслеживать сохранение в формировании TREMP
Отслеживать морфологии и характеристики
AF - треки Hadrosaur
G - Sauropod Track
Устрицы в формировании Тлемпа возле Изоны
Крупный план устриц
Group Name Member Image Notes
Mammals Afrodon ivani MP 6 mammal zone [95][113]
Nosella europaea MP 6 [95][113]
Teilhardimys musculus MP 6 [95][113]
Paschatherium cf. dolloi MP 6 [95][113][114]
Adapisorex sp. MP 6 [95][113]
Hainina pyrenaica MP 6 [95][96][113]
Pleuraspidotherium sp. upper
[95]
Condylarthra indet. MP 6 [95][113][114]
Crocodiles Allodaposuchus hulki Conquès [115][116]
Allodaposuchus palustris Grey Garumnian
[117][118]
Allodaposuchus precedens La Posa
[119]
Agaresuchus subjuniperus Conquès
[120][121]
Arenysuchus gascabadiolorum Conquès
[122]
Acynodon sp. Завоеван
[ 123 ]
Ткани крокодилии. Позирует
Рептилия SST.
[ 98 ] [ 124 ]
Ящерицы Lacertilia indet. Позирует [ 125 ]
Черепахи Polysternon isonae Завоеван [ 126 ]
Solemys sp. Серый Гаронн [ 127 ]
Ткани Testudinata. Позирует [ 124 ]
Chelonii indet. Рептилия SST. [ 97 ]
Bothremydidae ткань. Завоеван
Рептилия SST.
[ 98 ] [ 123 ]
Helochelydrinae ткань. Завоеван [ 123 ]
Анкилосурцы Nodosauridae Indet. Позирует [ 119 ]
Styracosternans Сканг Талан [ 128 ]
Хадрозавры Adynomosaurus arcanus Завоеван [ 129 ]
Arenysaurus ardevoli Завоеван
[ 130 ] [ 131 ] [ 132 ]
KOUTALISAURUS KOHLERORUM
[ 131 ] [ Примечание 2 ]
Pararhabdodon isonensis Завоеван
[ 131 ] [ 134 ]
ср. Позирует
[ 119 ]
Ткань Hadrosauria. Позирует
Рептилия SST.
[ 99 ] [ 119 ]
Lambeosaurinae ткани. Позирует [ 124 ]
Игуанодонты Iguanodontidae ткани. Позирует [ 119 ]
Rhabdodontids Pareisactus evrostos Завоеван [ 135 ]
Rhabdodon Old Позирует
[ 125 ]
Извините Abditosaurus Kuehnei Завоеван [ 136 ]
Titanosaurus cf. индийский Позирует
[ 137 ]
? Позирует
[ 119 ] [ 138 ]
Сауропода ткань. Серый Гаронн [ 139 ]
Somphospondyli ткань. Завоеван [ 140 ]
Титанозаврия ткани. Позирует [ 119 ] [ 127 ]
Тероподы Richardoestesia sp. Позирует
Завоеван
[ 119 ] [ 123 ]
? Paronychodon sp. Завоеван
[ 123 ]
? Пирораптор Олимпий Позирует
[ 119 ]
Тамарро Insperatus Талан [ 141 ]
Coelurosauria ткани. Позирует [ 119 ]
Манирапторная ткань. Завоеван [ 123 ]
? Megalosauridae Indet. ( Abelisauridae ) Позирует [ 119 ] [ 142 ]
? Позирует [ 119 ]
Теопода ткань. Рептилия SST. [ 98 ]
Ящерицы Anquididae Indet. Завоеван [ 123 ]
Scleroglossa ткань. Завоеван [ 123 ]
Змеи Альтинофидия ткань. Завоеван [ 123 ]
Шкалы Разорванная промышленность. Завоеван [ 123 ]
Яйца Cairanoolithus roussetensis верхний [ 143 ]
Megaloolithus aureliensis верхний [ 143 ]
Megaloolithus baghensis Позирует
Завоеван
Нижний Красный Гаремн
[ 143 ] [ 144 ]
[ 145 ] [ 146 ]
Megaloolithus mammillare Позирует
Завоеван
Нижний Красный Гаремн
[ 119 ] [ 143 ] [ 145 ]
[ 147 ] [ 148 ]
Megaloolithus siruguei Завоеван
Серый Гаронн
Нижний Красный Гаремн
[ 117 ] [ 143 ]
[ 149 ] [ 150 ] [ 151 ]
Prismatoolithidae indet. Завоеван [ 123 ]
Ихнофоссили Ornithopodichnites Magna Позирует [ 152 ]
Orcauichnites garumniensis Позирует [ 152 ]
Hadrosauropodus sp. Завоеван
Нижний Красный Гаремн
[ 153 ] [ 154 ]
Ophiomorpha sp. верхний [ 143 ]
Спирографиты Ellipticus Завоеван [ 126 ]
Taenidium Barretti , T. Bowni ,
Arenicolites Isp. , Loloichnus Isp. В
Palaeophycus Isp. , ISP P -теолиты.
Нижний Красный Гаремн [ 155 ]
Амфибии Albanerpeton Nexuosus Завоеван
[ 123 ]
Аф - Paradiscoglossus sp. Завоеван [ 123 ]
Ампибийская ткань. Завоеван [ 123 ]
Palaeoatrachida Indet. Завоеван [ 123 ]
Рыба Купатеция пропитана ,
Паратригонорина Амблизода ,
Hemiscyllium sp. , Ткани Lamniformes.
Позирует [ 156 ]
Igdabatis indicns , Rhombodus ibericus Позирует [ 157 ]
Батоида ткани. Позирует [ 119 ]
Lepisosteidae ткани. Завоеван [ 123 ]
Остеихтис ткань. Позирует [ 119 ]
Пикнодонтообразная ткань. Завоеван [ 123 ]
Телеостеи ткани. Завоеван [ 123 ]
Двустворчатые молнии Абрикардия Сикорис ,
Гиппурителла Кастрои , Х. Лаперуси ,
Radiolitella Pretty
ниже [ 158 ]
Курбан Лалтан [ 159 ]
Устрица Garumnica Позирует [ 119 ]
Рудисты Гиппуриты Кастрои [ 159 ]
Прерадиолиты Баучерни ниже [ 158 ]
Гастропод Pyrgulifera cf. Шилленс Позирует [ 119 ]
Cerithium sp. Серый Гаронн [ 139 ]
Cyclophorus sp. Позирует [ 124 ]
Lychnus sp. Позирует [ 124 ]
Melanoides sp. Позирует [ 125 ]
Neritina sp. Позирует [ 119 ]
Pyrgulifera sp. Серый Гаронн [ 127 ]
Остракоды Ilyocypris Colloti Серый Гаронн [ 160 ]
Флора Celastrophyllum bilobatum Серый Гаронн [ 161 ]
Cinnamomophyllum Vicente-Village Серый Гаронн [ 162 ]
Cornophyllum erendeenensis Серый Гаронн [ 163 ]
Menispermophyllum isonensis Серый Гаронн [ 164 ]
Салицифильм Серратум Серый Гаронн [ 165 ]
Dicotylophlllum cf. Протеиоиды Серый Гаронн [ 166 ]
Сабалиты ср. Longirhachis Серый Гаронн [ 127 ]
Alnophylum sp. Серый Гаронн [ 167 ]
Betuliphyllum sp. Серый Гаронн [ 168 ]
Daphnogene sp. Серый Гаронн [ 169 ]
Ettingshausenia sp. Серый Гаронн [ 170 ]
Myrtophyllum sp. Серый Гаронн [ 171 ]
Трачеофита ткани. Серый Гаронн [ 139 ]
Водоросли Amblyochara antava Завоеван [ 123 ]
Сертулин Пекки Завоеван [ 123 ]
Микара Кристата , М. Нана ,
М. Панката , М. Афф. Laevigata
[ 172 ]
Nitellopsis (Campaniella) Paracolensis ,
Microchara sp. , Vidaliella gerundensis
верхний [ 138 ]
SP Fitiella. Завоеван [ 123 ]
Грибы Микрокодий [ 173 ]
Цианобактерии Крип [ 173 ]
Пыльца

Кроме того, много пыльцы было описано из формирования TREMP, к востоку от Изоны и 22 километра (14 миль) к востоку от Tremp: [ 174 ]

Исследования и выставки

[ редактировать ]
Вход в Региональный музей естественных наук рядом с башней Солдовила в Темппе

Каждый год более 800 геологов посещают El Pallars Jussà, и более 1500 студентов университетов со всей Европы приезжают в бассейн Tremp-Graus для выполнения своей геологической работы. Бассейн также рассматривается нефтяными компаниями как идеальное место для изучения взаимодействия тектонических движений с различными типами литологий. Музей Comarcal de Ceències Naturals («Музей естественных наук местного района») в Tremp, построенный в Torre de Soldevila в центре города, является популярным местом для посещений в школе. В нем расположена постоянная выставка ископаемого с широким спектром останков, начиная от динозавров до окаменелых беспозвоночных, таких как кораллы, двустворчатые моллюски, гастропод и многое другое. [ 175 ]

Музей деллы Изоны Изоны [ 176 ] Оставленные последними динозаврами, которые жили в долине во время мелового периода. Музей также содержит множество других археологических останков из римского поселения Изоны. В последние годы Consell Comarcal (Региональный совет) продвигал несколько новых инициатив, в том числе создание геологической программы, особенно адаптированной к местным школам, и серию визитов в основные археологические места региона. [ 177 ]

Уникальное палеоокружение, широко распространенная геология и важность, как национальное наследие, вызвали предложения по обозначению формирования TREMP и ее региона как защищенного геологического места интереса, так же, как Геологический парк Алиаги и другие в Испании. [ 3 ] После того, как он был сбит в качестве кандидата с 2016 года, бассейн Темп и окружающие районы в качестве Эль -Палларс Юсса, Байкс Палларс в Палларс Собира, Колл де Нарго в Альтргелл, Виланова де Мей, Камараса и Агер в Ногуере были Глобал . [ 4 ] и включен в глобальную сеть GeoParks . [ 178 ] 17 апреля 2018 года ЮНЕСКО приняла это предложение и назначила Сайт как Global Geopark Global Geopark Montsec, заявив: [ 5 ]

«Эта область на международном уровне признана естественной лабораторией для седиментологии, тектоники, внешней геодинамики, палеонтологии, руды и педологии. Кроме того, другое естественное и культурное наследие также замечательно, включая астрономию и археологические места».

Панорамы

[ редактировать ]
Вид на восточную часть бассейна Темп -Формирование на переднем плане
Панорама красных кроватей в формировании Termp, от Abella de la Conca

Смотрите также

[ редактировать ]

Примечания и ссылки

[ редактировать ]

Примечания

[ редактировать ]
  1. ^ Другие авторы считают формирование Conquès боковым эквивалентом нижней красной единицы формирования TEMP [ 29 ]
  2. ^ Считается синонимом Pararhabdodon в соответствии с FossilWorks [ 133 ]
  1. ^ Калькулятор области карты Google
  2. ^ Jump up to: а беременный Pujalte & Schmitz, 2005, с.82
  3. ^ Jump up to: а беременный Bosch Lacalle, 2004, с.4
  4. ^ Jump up to: а беременный World Geopark of Unesco Conca de Tremp-Montsec
  5. ^ Jump up to: а беременный Tremp -Montsec Global Geopark - Unesco .org conca .org
  6. ^ Global Geoparks Network - Список участников
  7. ^ Rosell et al., 2013, с.19
  8. ^ Jump up to: а беременный в дюймовый Cuevas, 1992, с.100
  9. ^ Jump up to: а беременный в Cuevas, 1992, с.102
  10. ^ Arribas et al., 1996, с.11
  11. ^ Lacalle Bosch, 2004, с.1
  12. ^ Jump up to: а беременный в Cuevas, 1992, с.96
  13. ^ Lacalle Bosch, 2004, с.2
  14. ^ Blanco et al., 2014, с.3
  15. ^ López Martínez et al., 1996, с.63
  16. ^ Jump up to: а беременный Прието Маркес и др., 2013, с.2
  17. ^ Из Райса, 1996, с.205
  18. ^ Jump up to: а беременный Arribas et al., 1996, с.17
  19. ^ Jump up to: а беременный Al., 2000, с.340
  20. ^ Puértolas et al., 2011, с.2
  21. ^ Serra Kiel et al., 1994, с.276
  22. ^ Лаки и Гил Пенья, 2001, с.24
  23. ^ Ford et al., 1967, с.434
  24. ^ Cuevas, 1992, с.97
  25. ^ Arribas et al., 1996, с.10
  26. ^ Jump up to: а беременный Cuevas, 1992, с.103
  27. ^ Cuevas, 1992, с.106
  28. ^ Cuevas, 1992, с.101
  29. ^ Puértolas et al., 2010, с.73
  30. ^ Conca Dellà Museum - положить
  31. ^ Cuevas, 1992, с.99
  32. ^ Bravo et al., 2005, с.51
  33. ^ Díez Canseco, 2016, с.53
  34. ^ Jump up to: а беременный Blanco et al., 2015b, с.148
  35. ^ Andeweg, 2002, гл.1 с.1
  36. ^ Jump up to: а беременный в дюймовый и Sibuet et al., 2004, с.3
  37. ^ García Senz, 2002, с.
  38. ^ López Mir et al., 2014, с.15
  39. ^ Rushlow et al., 2013, с.844
  40. ^ García Senz, 2002, с.
  41. ^ García Senz, 2002, с.
  42. ^ Jump up to: а беременный в Sibuet et al., 2004, с.14
  43. ^ García Senz, 2002, с.
  44. ^ Муньоз, 1992, с.238
  45. ^ García Senz, 2002, с.
  46. ^ García Senz, 2002, с.
  47. ^ López Mir et al., 2014, с.14
  48. ^ Rosenbaum et al., 2002, с.124
  49. ^ Rosenbaum et al., 2002, с.122
  50. ^ Dinarès Turell et al, 1992, с.265
  51. ^ Sibuet et al., 2004, с.12
  52. ^ Муньоз, 1992, с.244
  53. ^ Jump up to: а беременный Senz, 2002, p.
  54. ^ Муньоз, 1992, с.241
  55. ^ Dinarès Turell et al, 1992, с.267
  56. ^ Лаки и Гил Пенья, 2001, с.31
  57. ^ Teixell et al., 2016, с.262
  58. ^ Nijman, 1998, с.140
  59. ^ Fernández et al., 2012, с.545
  60. ^ Teixell & Muñoz, 2000, с.257
  61. ^ Fernández et al., 2012, с.548
  62. ^ Ten Veen et al., 2012, с.460
  63. ^ Jaillard et al., 2017, с.232
  64. ^ Khadivi, 2010, с.56
  65. ^ Muñoz et al., 2017, с.16
  66. ^ Krzywiec & Sergés, 2006, p
  67. ^ Fgarcía & Jiménez, 2016, с.31
  68. ^ Parravano et al., 2015, с.25
  69. ^ Claringbould et al., 2011, с.1
  70. ^ Brown et al., 2010, с.80
  71. ^ Legeay et al., 2017, с.20
  72. ^ Ghani et al., 2017, с.38
  73. ^ Backs et al., 2010, с.59
  74. ^ López Mir et al., 2017, с.110
  75. ^ Солевые бассейны - Карлос Крамес - Университет Фернандо Пессоа
  76. ^ López Mir et al., 2014, с.12
  77. ^ Nijman, 1998, с.138
  78. ^ Rosenbaum et al., 2002, с.121
  79. ^ Миллан Гарридо и др., 2000, с.294
  80. ^ López Martínez et al., 1996, с.65
  81. ^ Jump up to: а беременный López Martínez & Peláez Campomanes, 1999, с.694
  82. ^ Rosell et al., 2001, с.54-55
  83. ^ Гомес, 2015, с.9
  84. ^ Gómez et al., 2015, с.12
  85. ^ López Martínez et al., 1996, с.64
  86. ^ Meléndez & Molina, 2008, с.108
  87. ^ Meléndez & Molina, 2008, с. 112-113
  88. ^ Сотни яиц динозавров, найденные в Испании - Inquisitr.com
  89. ^ Lacalle Bosch, 2004, с.4
  90. ^ Wisehhample It Old., 2004, pp.588-59933
  91. ^ Jump up to: а беременный Палеонтология - меловой парк - музей Conca Dellà
  92. ^ Breate et al., 2000, с.341
  93. ^ Marmi et al., 2012, с.133
  94. ^ López Martínez et al., 2001, с.53
  95. ^ Jump up to: а беременный в дюймовый и фон глин час я López Martínez & Peláez Campomanes, 1999, с.686
  96. ^ Jump up to: а беременный Peláez Campomanes et al., 2000, с.702
  97. ^ Jump up to: а беременный Blanco et al., 2015, с.149
  98. ^ Jump up to: а беременный в дюймовый Blanco et al., 2015, с.152
  99. ^ Jump up to: а беременный Blanco et al., 2015, с.154
  100. ^ Jump up to: а беременный Vilat et al., 2010, с.3
  101. ^ Vilat et al., 2010, с.2
  102. ^ Vilat et al., 2010, с.4
  103. ^ Vilat et al., 2010, с.7
  104. ^ Vilat et al., 2010, с.11
  105. ^ Hechenleitner et al., 2015, с.6
  106. ^ Vilat et al., 2010, с.12
  107. ^ Hechenleitner et al., 2015, с.16
  108. ^ Hechenleitner et al., 2015, с.17
  109. ^ Hechenleitner et al., 2015, с.19
  110. ^ Prieto Márquez et al., 2013, с.22-34
  111. ^ Vila et al., 2013, с.5
  112. ^ Vila et al., 2013, с.12-14
  113. ^ Jump up to: а беременный в дюймовый и фон глин Claret 4 на FossilWorks .org
  114. ^ Jump up to: а беременный Claret 0 на FossilWorks .org
  115. ^ Фаба в исчезающих заводах .
  116. ^ Blanco et al., 2015a, p.10
  117. ^ Jump up to: а беременный Fumanya Sud at FossilworksФасин
  118. ^ Blanco et al., 2014, с.7
  119. ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л м не а п Q. ведущий Nerets at FossilWorks .org
  120. ^ Amor-3 в FossilWorks .org
  121. ^ Puértolas et al., 2014, с.4
  122. ^ Элиас в Fossilworks
  123. ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л м не а п Q. ведущий с Т в Blasi 2 на FossilWorks .org
  124. ^ Jump up to: а беременный в дюймовый и Sant Esteve de la Sarga, Моро в FossilWorks .org
  125. ^ Jump up to: а беременный в Моя сустрранья в FossilWorks .org
  126. ^ Jump up to: а беременный Torrebilles-1 в FossilWorks .org
  127. ^ Jump up to: а беременный в дюймовый Esquirol-1 на FossilWorks .org шахта
  128. ^ Прието-Марикес, а.; Sellés, A. (2023). «Эволюционная конвергенция в небольшом заклинательном динозавре с стиракостетерном Ornithopod из Западной Европы» . Журнал палеонтологии позвоночных . 42 (5). E2210632. doi : 10.1080/02724634.2023.2210632 . S2CID   259335419 .
  129. ^ Прието Маркес и др., 2019
  130. ^ Puértolas et al., 2011, с.3
  131. ^ Jump up to: а беременный в Le Loeuff, 2012, с.551
  132. ^ Puértolas et al., 2010, с.71
  133. ^ Pararhhabdodon в FossilWorks .org
  134. ^ Les llaus at fossilworks .org
  135. ^ Párraga & Prieto Márquez, 2019
  136. ^ Вилла, Бернат; Продал, Альберт; Морено-Азэнс, Мигель; Razzolini, роман L.; Гил-дельгадо, Александр; Canudo, Хосе Игнасио; Галлобарт, Ангел (2022-02-07). Титанозавр " Природа экология и эволюция 6 (3): 288–296. Bibcode 2022NatEE...6..288V: два 10.1038/s41559-021-01651-5: ISSN   2397-334X  35132183PMID  246650381S2CID
  137. ^ Норет на ископаемых заводах .
  138. ^ Jump up to: а беременный Ullastre & Masriera, 1998, с.115
  139. ^ Jump up to: а беременный в Esquirol-2 на исчезающих заводах .
  140. ^ Castelltallat Costa на FossilWorks .org
  141. ^ Продал, Ag; Villa, B.; Брусат, SL; Керри, PJ; Галобарт, à. (2021). Теропода ) Научные отчеты 11 номер 1 ) ( статьи : два 10.1038/s41598-021-83745-5:  7921422PMC  33649418PMID
  142. ^ Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Аттила; Pereda-suberbiola, Xabier; Брусатт, Стивен Л. (2015-01-08). «Жизнь острова в меловом композиции - биогеографии, эволюции и вымирании землевладельца позвоночных на позднем меловом европейском архипелаге» . Zookeys (469): 1–161. Bibcode : 2015zook..469 .... 1c . doi : 10.3897/Zookeys.469.8439 . ISSN   1313-2989 . PMC   4296572 . PMID   25610343 .
  143. ^ Jump up to: а беременный в дюймовый и фон Coll de nargó at fossilworks .org
  144. ^ Orcau-1 на FossilWorks .org
  145. ^ Jump up to: а беременный At fossilworks .org
  146. ^ Serrat de Pellleu at fossilworks .org
  147. ^ Bravo et al., 2005, с.55
  148. ^ Costa de la Coma на FossilWorks .org
  149. ^ Biscarri, isona at fossilworks .org
  150. ^ Bravo et al., 2005, с.54
  151. ^ Terrers 2 на FossilWorks .org
  152. ^ Jump up to: а беременный Orcau-2 Tracksite на FossilWorks .org
  153. ^ Torrent of Guixers Tracksse на FossilWorks .org
  154. ^ Клиффы Бойкейдера в исчезающих заводах .org
  155. ^ Díez Canseco, 2016, с.75
  156. ^ Orcau 2 на FossilWorks .org
  157. ^ Sussterranya-1 в FossilWorks .org
  158. ^ Jump up to: а беременный Св. Корнели в FossilWorks .org
  159. ^ Jump up to: а беременный Уважаемый и др., 1985, с.249
  160. ^ Ullastre & Masriera, 1998, с.101
  161. ^ Marmi, 2016, с.88
  162. ^ Marmi, 2016, с.63
  163. ^ Marmi, 2016, с.71
  164. ^ Marmi, 2016, с.74
  165. ^ Marmi, 2016, с.69
  166. ^ Marmi, 2016, с.96
  167. ^ Marmi, 2016, с.78
  168. ^ Marmi, 2016, с.90
  169. ^ Marmi, 2016, с.59
  170. ^ Marmi, 2016, с.85
  171. ^ Marmi, 2016, с.66
  172. ^ Blanco et al., 2015a, p.30
  173. ^ Jump up to: а беременный Arribas et al., 1996, с.12
  174. ^ Уважаемый и др., 1985, с.249-250
  175. ^ Региональный музей естественных наук о Тлеме
  176. ^ Меловой парк - музей Conca dellà
  177. ^ Эль -Палларс Юсса, в геологическом раю
  178. ^ Глобальная конференция GeoParks UNESCO

Библиография

[ редактировать ]

Региональная геология

[ редактировать ]

Местная геология

[ редактировать ]

Соляная тектоника

[ редактировать ]

Палеонтологические публикации

[ редактировать ]
Динозавры
[ редактировать ]
Другие группы
[ редактировать ]

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b42d467f713ea0fa397a7d5c5dc022dc__1726447860
URL1:https://arc.ask3.ru/arc/aa/b4/dc/b42d467f713ea0fa397a7d5c5dc022dc.html
Заголовок, (Title) документа по адресу, URL1:
Tremp Formation - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)