Tremp Formation
Tremp Formation | |
---|---|
Stratigraphic range: Maastrichtian-Thanetian ~ | |
![]() Outcrop of the Tremp Formation | |
Type | Geological formation |
Unit of | Tremp-Graus Basin |
Sub-units | See text |
Underlies | Àger Formation, Alveolina Limestone, alluvium |
Overlies | Arén Formation |
Area | ~325 km2 (125 sq mi)[1] |
Thickness | 250–800 m (820–2,620 ft) |
Lithology | |
Primary | Sandstone, shale, conglomerate, limestone |
Other | Marl, gypsum, siltstone, lignite |
Location | |
Coordinates | 42°06′35″N 01°04′22″E / 42.10972°N 1.07278°E |
Region | Pre-Pyrenees, Catalonia |
Country | ![]() |
Extent | ~35 km (22 mi) |
Type section | |
Named for | Tremp |
Named by | Mey et al. |
Year defined | 1968 |
Approximate paleocoordinates | 34°06′N 0°54′E / 34.1°N 0.9°E |
![]() Outline of the Tremp Formation in the Tremp Basin |

The Montsec is visible as an east–west running brown ridge


The Tremp Formation (Spanish: Formación de Tremp, Catalan: Formació de Tremp), alternatively described as Tremp Group (Spanish: Grupo Tremp), is a geological formation in the comarca Pallars Jussà, Lleida, Spain. The formation is restricted to the Tremp or Tremp-Graus Basin (Catalan: Conca de Tremp), a piggyback foreland basin in the Catalonian Pre-Pyrenees. The formation dates to the Maastrichtian to Thanetian,[2] thus the formation includes the Cretaceous-Paleogene boundary that has been well studied in the area, using paleomagnetism and carbon and oxygen isotopes. The formation comprises several lithologies, from sandstone, conglomerates and shales to marls, siltstones, limestones and lignite and gypsum beds and ranges between 250 and 800 metres (820 and 2,620 ft) in thickness. The Tremp Formation was deposited in a continental to marginally marine fluvial-lacustrine environment characterized by estuarine to deltaic settings.
The Tremp Basin evolved into a sedimentary depression with the break-up of Pangea and the spreading of the North American and Eurasian Plates in the Early Jurassic. Rifting between Africa and Europe in the Early Cretaceous created the isolated Iberian microplate, where the Tremp Basin was located in the northeastern corner in a back-arc basin tectonic regime. Between the middle Albian and early Cenomanian, a series of pull-apart basins developed, producing a local unconformity in the Tremp Basin. A first phase of tectonic compression commenced in the Cenomanian, lasting until the late Santonian, around 85 Ma, when Iberia started to rotate counterclockwise towards Europe, producing a series of piggyback basins in the southern Pre-Pyrenees. A more tectonically quiet posterior phase provided the Tremp Basin with a shallowing-upward sequence of marine carbonates until the moment of deposition of the Tremp Formation, in the lower section still marginally marine, but becoming more continental and lagoonal towards the top.
Shortly after deposition of the Tremp Formation, the Boixols Thrust, active to the north of the Tremp Basin and represented by the Sant Corneli anticline, started a phase of tectonic inversion, placing upper Santonian rocks on top of the northern Tremp Formation. The main phase of movement of another major thrust fault, the Montsec to the south of the Tremp Basin, happened not before the Early Eocene. Subsequently, the western Tremp Basin was covered by thick layers of conglomerates, creating a purely continental foreland basin, a trend observed going westward in the neighboring foreland basins of Ainsa and Jaca.
A rich and diverse assemblage of fossils has been reported from the formation, among which more than 1000 dinosaur bones, tracks dating up to just 300,000 years before the Cretaceous-Paleogene boundary, and many well-preserved eggs and nesting sites in situ, spread out over an area of 6,000 square metres (65,000 sq ft). Multiple specimens and newly described genera and species of crocodylians, mammals, turtles, lizards, amphibians and fish complete the rich vertebrate faunal assemblage of the Tremp Formation. Additionally, fresh-to-brackish water clams as Corbicula laletana, bivalves of Hippurites castroi, gastropods, plant remains and cyanobacteria as Girvanella were found in the Tremp Formation. The unique paleoenvironment, well-exposed geology, and importance as national heritage has sparked proposals to designate the Tremp Formation and its region as a protected geological site of interest since 2004, much like the Aliaga geological park and others in Spain.[3]
Due to the exposure, the interaction of tectonics and sedimentation and access, the formation is among the best studied stratigraphic units in Europe, with many universities performing geological fieldwork and professional geologists studying the different lithologies of the Tremp Formation. The abundant paleontological finds are displayed in the local natural science museums of Tremp and Isona, where educational programs have been established explaining the geology and paleobiology of the area. In 2016, the Tremp Basin and surrounding areas were filed to become a Global Geopark,[4] and on April 17, 2018, UNESCO accepted this proposal and designated the site Conca de Tremp-Montsec Global Geopark.[5] Spain hosts the second-most Global Geoparks in the world, after China.[6]
Etymology
[edit]The Tremp Formation was defined and named in 1968 by Mey et al., just as the Tremp Basin after the Pre-Pyrenean town of Tremp.[7] The various subdivisions of the formation or alternatively called group, are named after the villages, rivers, canyons and hills in the basin.[8][9]
Description
[edit]

The Tremp Formation is a marginally marine to fluvial to lacustrine and continental sedimentary unit with a thickness varying between 250 and 800 metres (820 and 2,620 ft).[10] The formation is found in the Tremp-Graus Basin, a piggyback basin enclosed by the Sant Corneli anticline in the north, the Boixols Thrust in the northeast, the Montsec Thrust in the south and the Collegats Formation in the west.[11][12] The Tremp-Graus Basin is bordering the Ainsa Basin to the west, and the Àger Basin to the south.[13] The basin is subdivided into four synclinal areas, from east to west Vallcebre, Coll de Nargó, Tremp and Àger.[14] While in Benabarre, the Tremp Formation overlies the Arén Formation, in Fontllonga the formation rests on top of the Les Serres Limestone.[15] The formation is partly laterally equivalent with the Arén Formation.[16] The Tremp Formation is stratigraphically overlain by the late Paleogene, locally called Ilerdiense, Àger Formation and the Alveolina Limestone,[17] though in many parts of the Tremp Basin the formation is exposed and covered by alluvium.
The formation comprises several different lithologies, as sandstones, shales, limestones, marls, lignites, gypsum beds, conglomerates and siltstones have been registered.[12][18]
The start age of the Tremp Formation has been established on the basis of the presence of Abathomphalus mayaroensis, a planktonic foraminiferan indicative of the latest Maastrichtian age of the formation.[19] The lower section of the formation at the Elías site has been dated at 67.6 Ma,[20] while the top of the Tremp Formation, in the western portion of the basin overlain by the Alveolina Limestone,[21] named due to the abundance of Alveolina, is set at 56 Ma.[22]
On the northern side of the Axial Zone of the Pyrenees, in the French sub-Pyrenean zone and Aquitaine Platform of the foreland basin bordering the mountain range, the time-equivalent stratigraphic units of the Tremp Formation are the Mas d'Azil Formation and Marnes d'Auzas Formation for the latest Maastrichtian, the Entonnoir Formation for the Danian and the Rieubach Group correlating with the Thanetian portion of the Tremp Formation.[23]
Subdivisions
[edit]Studies performed in the 1990s described the Tremp Formation, also called Garumnian (Spanish: Garumniense de Tremp),[24][25] as a group with a subdivision into:[12]
Claret Formation
[edit]- Etymology - Claret
- Type section - along the road 1311[26]
- Thickness - up to 350 metres (1,150 ft)
- Lithologies - ochre to red shales, gypsum beds and intercalated sandstones and conglomerates
- Depositional environment - transitional marine to continental
- La Guixera Member
- Etymology - La Guixera
- Type section - Mongai[26]
- Thickness - 60 to 350 metres (200 to 1,150 ft)
- Lithologies - gypsum beds alternating with shales, sandstones and conglomerates
- Depositional environment - evaporitic lacustrine deposits at times of retrogradation of alluvial fans[27]
Esplugafreda Formation
[edit]
- Etymology - Esplugafreda canyon
- Type section - Barranco de Esplugafreda, in the valley of the Ribagorçana River east of Areny de Noguera[9]
- Thickness - 70 to 350 metres (230 to 1,150 ft)
- Lithologies - continental red beds; shales, sandstones and conglomerates
- Depositional environment - alluvial fans
Sant Salvador de Toló Formation
[edit]- Etymology - Sant Salvador de Toló
- Type section - Conquès River[9]
- Thickness - 70 to 350 metres (230 to 1,150 ft)
- Lithologies - micritic limestones and greenish shales
- Depositional environment - lacustrine to coastal
Talarn Formation
[edit]
- Etymology - Talarn
- Type section - Barranco de La Mata[28]
- Thickness - 140 metres (460 ft)
- Lithologies - fining-upward sequence of sandstones and conglomerates at the base, grading into siltstones and shales near the top
- Depositional environment - alluvial channel and overbank deposits
Conquès Formation
[edit]- Etymology - Conquès River
- Type section - Barranco de Basturs[8]
- Thickness - 60 to 500 metres (200 to 1,640 ft)
- Lithologies - greenish shales, sandstone lenses and conglomerates at the base
- Depositional environment - perilagoonal[note 1]
- Tossal d'Obà Member

- Etymology - Tossal d'Obà
- Type section - Tossal d'Obà Hill[8]
- Thickness - 7 metres (23 ft)
- Lithologies - micritic limestones and marls
- Depositional environment - distal fluvial to lagoonal-barrier island
- Basturs Member
- Etymology - Basturs
- Type section - Barranco de Basturs[8]
- Thickness - 2.5 to 80 metres (8.2 to 262.5 ft)
- Lithologies - micritic limestones, greenish shales and bioturbated fine sandstones
- Depositional environment - perilagoonal
Posa Formation
[edit]
- Etymology - Ermita La Posa[30]
- Type section - Isona anticlinal[31]
- Thickness - 180 metres (590 ft)
- Lithologies - grey shales, limestones, marls, lignite and sandstones
- Depositional environment - lagoonal to barrier island
Alternative subdivisions
[edit]An alternative subdivision uses Grey Garumnian at the base, overlain by Lower Red Garumnian and Vallcebre Limestone at the top.[32] The Vallcebre limestone is laterally equivalent with another described unit, the Suterranya Limestone.[33] Pujalte and Schmitz in 2005 defined another member, the Claret Conglomerate, as representative of a conglomeratic bed inside the Claret Formation.[2]
In 2015, a new unit was allocated to the uppermost Cretaceous section of the Tremp Group, near the top of the Lower Red Garumnian. The 7 metres (23 ft) thick series of lithologically mature coarse-grained sandstones and microconglomerates rich in feldspars is positioned 7 to 10 metres (23 to 33 ft) below the Danian Vallcebre Limestone and was called the Reptile Sandstone.[34]
Tectonic evolution
[edit]

drawing by Josep Anton Muñoz

drawing by Josep Anton Muñoz



The Tremp Basin was formed in the northeastern corner of the Iberian Plate, a microplate that existed as a separate tectonic block between the Eurasian and African Plates since the Hercynian orogeny that formed the supercontinent Pangea. Progressive opening of the Atlantic Ocean between the Americas and at first Africa, later Iberia and finally Europe, caused large differential motions between these continents,[35] with extensional tectonics starting in the Early Jurassic with the opening of the Neotethys ocean between southwestern Europe and Africa.[36] During this period, evaporites were deposited in the rift basins,[37] later in the tectonic history becoming important décollement surfaces for the compressional movements.[38] The phase of extension continued into the Early Cretaceous when the Iberian Plate started to move counterclockwise to converge with the Eurasian Plate.[39]
Back-arc basin
[edit]Approximately from the late Berriasian to late Albian (120 to 100 Ma), the Iberian Plate was an isolated island, separated from current southern France by a mostly shallow sea with a deeper pelagic channel in between the southwestern Eurasian and northeastern Iberian coasts. The present-day area of the Pyrenees with an area of 1,964 square kilometres (758 sq mi) in those times was much larger due to the various episodes of compressional tectonic forces and resulting shortening afterwards. The Tremp Basin, alternatively called Organyà Basin, was the depocenter of sedimentation during the late Early Cretaceous, showing an estimated vertical sedimentary thickness of 4,650 metres (15,260 ft) comprising mostly hemipelagic marls and limestones,[40] deposited in a back-arc basin setting with normal faults parallel to the Pyrenean axis,[41] and cross-cut by transverse faults, separating the various west-to-east minibasins. These minibasins showed a deepening trend from the Gulf of Biscay to the Mediterranean.[36][42][43]
At the end of formation of the back-arc basin, around 95 Ma, high temperature metamorphism developed as a result of crustal thinning synchronously or immediately after the Albian to Cenomanian basin formation. Lower crustal granulitic rocks, as well as ultramafic upper mantle rocks (lherzolites) were emplaced along the prominent North Pyrenean Fault (NPF) crustal feature. The North Pyrenean Fault developed during the sinistral (left-lateral) displacement of the Iberian Plate, which age is determined by the age of flysch pull-apart basins formed synchronously with the strike-slip movement along the NPF from Middle Albian to Early Cenomanian.[44] This period is characterized by a local unconformity in the Tremp Basin,[45] while this is not registered farther to the west of the Pre-Pyrenean minibasins near Pont de Suert.[46]
Tectonic inversion
[edit]The previous phase was followed by a tectonically more quiet setting in the basins surrounding the slowly rising Pyrenees. Research published in 2014 has revealed a renewed phase of evaporitic deposition from the Coniacian to Santonian in the Cotiella Basin, west of the Tremp Basin.[47] The relative tectonic quiescence lasted until the late Santonian, approximately around 85 Ma,[36][42] with other authors defining this moment at 83 Ma.[48] At this time, continental subduction and back-arc basin inversion commenced,[36] with the remainder of the Neotethys Ocean progressively disappearing. During this phase, sea floor spreading in the Bay of Biscay occurred, leading to a rotation of plate movements, observed more prominently in the eastern part of the Iberian Plate, where convergence rates of 70 kilometres (43 mi) per million years have been noted.[49] As is common in inverted tectonic regimes, the normal faults of the early Mesozoic were reactivated into reverse faults at the end of the Cretaceous and continuing into the Paleogene.[42] The lithospheric subduction has not been interpreted from seismic reflection data, with the ECORS profile obtained in the late 1980s as primary example,[50] due to the large thickness and poor seismic resolution, but later analysis using tomography has identified this feature below the Pre-Pyrenean chain.[51] The presence of lithospheric subduction is a common feature in other Alpine orogenic chains as the Alps and Himalayas.[52]
Piggyback basin
[edit]From the late Santonian to the late Maastrichtian,[53] on the different thrust sheets of the southward compressional Pre-Pyrenees, a series of piggyback basins were formed,[54] one of which was the Tremp Basin.[55] The bathymetry of these basins show a general deepening towards the west, with major turbidite deposition in the Ainsa Basin and farther west.[53] Subsequent ongoing inversion of the basins show a similar trend, with compressional phases becoming younger from east to west. While the onlap and erosion in the Clamosa area started in the early Eocene, around 49 Ma, the western portion experienced this phase terminating around the end of the Eocene, approximately at 35 Ma.[56] In the Jaca Basin, to the west of the Ainsa and Tremp Basins, during the Middle Eocene, flysch was deposited in an underfilled basin setting,[57] while in the western Tremp Basin thick conglomerates, known as the Collegats Formation, were deposited, sourced by the various thrust sheets in the hinterland.[58]
Boixols and Montsec thrusting
[edit]The Boixols–Cotiella thrust sheet was emplaced since the Late Cretaceous, placing late Santonian rocks on top of the northernmost Tremp Formation, found in the subsurface underneath the Sant Corneli anticline. This was followed by the tectonic movement of the Montsec–Peña Montañesa thrust sheet during the Early Eocene and the western Sierras Exteriores thrust sheet from the Mid-Eocene to Early Miocene.[59] The dating of the Montsec Thrust has been established on the basis of the stratigraphies of the overlying hanging wall (Triassic to Cretaceous) onto the Lutetian (locally called Cuisian) fluvial sediments of the Àger Basin to the south of the Montsec.[60][61] These tectonic movements are indicative of the main uplift phase of the Pyrenees.[36]
Salt tectonics
[edit]The involvement of evaporites as décollement surfaces in compressional tectonic regimes is a widespread phenomenon on Earth. The evaporites, mainly salt but also gypsum, function as mobile ductile surfaces along which thrust faults can move. Global examples of halokinesis in compressional inverted tectonic regimes include the south Viking Graben, and Central Graben in the North Sea,[62] offshore Tunisia,[63] the Zagros Mountains of Iraq and Iran,[64][65] northern Carpathians in Poland,[66] western,[67] and eastern Colombian, along the Eastern Frontal Fault System of the Eastern Ranges of the Andes,[68] the Al Hajar Mountains of Oman,[69] Dnieper-Donets Basin in the Ukraine,[70] the Sivas Basin in Turkey,[71] the Kohat-Potwar fold and thrust belt of Pakistan,[72] the Flinders Ranges in South Australia,[73] during the Eurekan orogeny in the Sverdrup Basin of northeastern Canada and western Greenland,[74] and many more.[75]
In the western Cotiella Basin, salt inflation and withdrawal played a major role in the differential sedimentary thicknesses, facies changes and tectonic movements.[76]
Eocene to recent
[edit]After the Middle Eocene, thick conglomerates were deposited in the western Tremp Basin and the thrust sheets reached their maximum displacement, this led to a shift of the depocenter from the Pre-Pyrenees towards the Ebro Basin.[77] Paleomagnetic data show that the Iberian Plate went through another phase of counterclockwise rotation, though not as fast as in the Santonian. Between 25 and 20 Ma, in the late Oligocene and early Miocene, a rotation of 7 degrees has been noted.[78] This phase of rotation correlated with the thrusting in the westernmost areas of the southern Pre-Pyrenees, the Sierras Marginales, leading to continental conditions in that area from the early Miocene (Burdigalian) onwards.[79]
Depositional history
[edit]
The depositional environment of the Tremp Formation varies between continental, lacustrine, fluvial, and marginally marine (estuarine to deltaic and coastal). The continental deposits in the east of the basin have been interpreted as the distal part of alluvial fans, while the presence of cyanobacteria Girvanella in the lacustrine limestones indicates variability in salinity in the lacustrine areas and a possible lateral relation with transitional environments. The presence of great quantities of the fungus Microcodium indicates traces of rootlets.[18] The biochemical data, based on C and O isotope analysis could indicate a rise in temperature, an increase in evaporation and a higher production of plant material at the transition of Maastrichtian and Paleocene.[80] The top of the Tremp Formation is close to the Paleocene–Eocene Thermal Maximum, which could explain the relative lack of diversity in mammal genera.[81]
Four phases in the depositional history of the Tremp Formation are noted:[82]
- Formation of an estuarine regime near the end of a Cretaceous regression in the Pyrenean basins, characterized by coastal plains where thick clays were deposited, cut by sporadic fluvial channels. At the margins of the basin, swampy conditions existed with sedimentation of carbonates. In these zones, the last dinosaurs inhabiting the area before the Cretaceous-Paleogene boundary left their marks in tracks, eggs and bones. These areas were accompanied by marshes, as evidenced by the many plant remains that produced the lignite deposits found in the lower part of the Tremp Formation. During this first phase in the sedimentary sequence of the formation, the Montsec was already a slightly elevated area in the south and along the submerged slopes of that hill, lacustrine limestones were deposited.
- At the end of the Cretaceous, a geologically sudden drop of sea level happened, giving rise to a wide fluvial-dominated basin. In this environment, river channels deposited sandstones and abundant overbank clays with numerous paleosols in the basin. On the southern side of the rising Montsec, the Àger Basin, a similar fluvial system developed with a far more coarse-grained sandy character than in its northern counterpart around Tremp. The paleocurrents in the Àger Basin were towards the north and northwest.[83] The enclosed continental basin turned into a more coastal environment at a transgressional phase with smaller channels where oncolites were laid down. The river systems on both sides of the Montsec were sourced by the easternmost parts of the present Pyrenees, with the Empordà High as provenance area. This east-to-west fluvial system, contrary to the present-day west–east flowing direction of the Ebro Basin, persisted until the Late Eocene. The uppermost unit of the Maastrichtian sequence, the coarse-grained Reptile Sandstone, has been interpreted as a fast-flowing braided river channel.[34]
- The start of the Paleocene was marked by a more tranquil deposition of lacustrine character. It has been hypothesized that the Alpine orogeny during this phase was less active and/or a regional rise in sea level allowed the basin to be flooded. During this phase, the limestones of Vallcebre and its lateral equivalents were deposited in the lake.
- A renewed phase of tectonic activity reactivated the fluvial to alluvial sedimentation, with abundant conglomerates and conglomeratic sandstones as a result. The provenance area for these uppermost sections of the Tremp Formation were first interpreted as the presently high mountains of the Axial Zone of the Pyrenees, at that time a forming orogen. Detailed provenance analysis published in 2015 by Gómez et al. however shows that the Àger basin was fed from the south (Prades area) and the Cadí-Vallcebre area was fed from the southeast (Montseny area), both areas belonging to the Ebro Massif. The Pyrenean basement (Axial Zone) was not a source area during the sedimentation of the Tremp Formation.[84] The latest phase of depositional evolution is noted in a wider area in the Pre-Pyrenees and to the south in the Ebro Basin, that began its formation during the Eocene, building up to its present shape in Oligocene and Miocene times.
Cretaceous-Paleogene boundary
[edit]The Tremp Formation spans the latest stage of the Cretaceous (Maastrichtian) and the earliest stages of the Paleocene (Danian and Thanetian). This has made the formation one of a few European unique localities to study the K/T boundary. In the Tremp Basin, the boundary is registered at Coll de Nargó, Isona and Fontllonga and established on the basis of paleomagnetism and a strong decrease of ∂13C and ∂18O isotopes.[85] The typical iridium layer, found in other sites where the Cretaceous-Paleogene boundary has been noted, as Gubbio in Italy and Caravaca in Spain,[86] has not been registered in the Tremp Formation.[87]
Paleontology
[edit]
The Tremp Formation provided many fossilized dinosaur eggs.[88] The dinosaur eggs of Basturs are contained in the formation bordering the Arén Formation and the area where eggs are found stretches out for 6,000 square metres (65,000 sq ft). A great number of nests are visible as well as numerous fragments of egg shells. The presence of wave ripples indicates a beach-like environment where dinosaurs laid their eggs for a long time. The eggs are subcircular with diameters of approximately 20 centimetres (7.9 in) and egg shell thicknesses between 1.5 and 2 millimetres (0.059 and 0.079 in). Many eggs are found in groups of between four and seven gatherings, indicating the in situ preservation of the nests.[89]
Also, remains of several genera of dinosaurs are described from the Tremp Formation.[90] The Tremp and underlying Arén Formations are the richest sites for dinosaur fossils in the Pyrenees,[19] with only at Basturs more than 1000 bone fragments found.[91] The dinosaur paleofauna has been compared to Hațeg in Romania, famous for the pterosaur Hatzegopteryx named after the location.[92] Furthermore, a rich variety of other reptiles, among which the new species and youngest fossil record of the Cretaceous turtle Polysternon; Polysternon isonae,[93] as well as amphibians, lizards, fish,[94] and mammals,[95] for example the earliest Paleocene multituberculate Hainina pyrenaica,[96] have been registered, showing a unique faunal assemblage for the Cretaceous-Paleogene boundary, not found elsewhere in Europe.[81]
The holes found on the dip slope at Ermita La Posa were initially interpreted as tracks produced by sauropod dinosaurs. Later investigations and interpretations of the depositional environment of the Maastrichtian; the coastal origin of the trackbed with plenty of marine invertebrates, have led researchers to interpret part of the ichnofossils as feeding traces of rays in the intertidal zones. During their feeding activity, the rays produce holes in the top sedimentary layers, when they feed on marine invertebrates buried in the top sediment.[91]
The Reptile Sandstone, when identified as a separate unit, was called as such because of the great abundance of fossil chelonid turtles,[97] Bothremydidae, crocodile teeth, theropod limbs,[98] and hadrosaur femurs.[99]
Sauropod nesting sites
[edit]
A detailed analysis of the nesting sites of Coll de Nargó, at the Pinyes locality, has been performed in 2010 by Vilat et al. The eggs were found in the lower portion of the Lower Red Garumnian, with local facies comprising calcareous silty mudstones, very fine to fine-grained sand bodies, and medium to coarse-grained sandstones. The rocks, in a 36 metres (118 ft) thick interval,[100] are interpreted as sedimentary deposits of a fluvial environment located some distance away from an active stream channel.[101]
Most eggs exposed at the Pinyes locality were incompletely preserved because of recent erosion; however, excavation occasionally revealed relatively intact specimens in the subsurface. Some eggs exposed in cross-section revealed numerous eggshell fragments, predominantly oriented concave up within the mudstone matrix that filled the egg interior. Analysis of the eggshells at Pinyes provided a range of 2.23 to 2.91 millimetres (0.088 to 0.115 in) in shell thickness, with a mean range of 2.40 to 2.67 millimetres (0.094 to 0.105 in). Radial thin sections and SEM images of the eggshells showed a single structural layer of calcite. The eggshell surfaces displayed abundant elliptical pore openings that varied from 65 to 120 microns in width.[100]

The mudstones surrounding the eggs displayed extensive bioturbation, minor faults, and penetrative foliation with a northeast–southwest orientation. Eggshell fragments were often displaced and overlap one another, and the eggs exhibited significant deformation due to compression. Most eggs mapped in the field showed a long axis direction 044, thus having a general northeast–southwest orientation, which coincides with regional stress fields resulting from tectonic compression.[102]
The eggs, in clusters or "clutches" of up to 28 individual eggs, were described as Megaloolithus siruguei, an oospecies well documented from various localities in northern Catalonia and southern France. The description was done on the basis of egg size, shape, eggshell microstructure, tuberculate ornamentation, and the presence of transversal canals in a tubocanaliculate pore system, an unequivocal feature of this oospecies. The egg horizons within the Tremp Formation were continuous before the tectonic inversion phase of the basin. The compressional tectonic regime produced structural deformation of the egg-bearing strata. The dip of the beds in the mountainous region can contribute to misinterpretation of reproductive behavior, hence the analysis of the eggs in combination with tectonic stresses gives a more complete picture of the shapes of the eggs.[103]

An interpretation of the nest excavation at Pinyes was made and compared to other nesting sites of sauropods found all over the world, in particular in the Aix Basin of southern France, the Allen and Anacleto Formations of Argentina, and the Lameta Formation of India. The nest sizes and shapes of Pinyes show great similarities with the other analyzed sites.[104] Research conducted in 2015 by Hechenleitner et al. include a comparison with the Cretaceous Sanpetru Formation of Hațeg paleo-island in Romania, the Los Llanos Formation at Sanagasta geological park in Argentina, and the Boseong Formation of the Gyeongsang Basin in South Korea.[105]
A common nest size of 25 eggs has been suggested for the Pinyes locality. Small egg clusters that display linear or grouped egg arrangements reported at Pinyes and other localities likely reflect recent erosion. The distinct clutch geometry reported at Pinyes and other megaloolithid localities worldwide, strongly suggests a common reproductive behavior that resulted from the use of the hind foot for scratch-digging during nest excavation.[106] Due to their size and weight, the titanosaurs could not heat the eggs by direct body contact, so must have relied on external environmental heat for incubating their eggs.[107] However, modern megapode birds as the maleo (Macrocephalon maleo), the Moluccan megapode (Eulipoa wallacei) and scrubfowls (Megapodius spp.) in Southeast Asia and Australia, burrow their eggs using the heat in the top soil to incubate them and provide protection from predators.[108] The egg spatial distribution, in small clusters linearly to compactly grouped, but contained in round shaped areas of up to 2.3 metres (7.5 ft) would either support burrow- or mound-nesting at Pinyes.[109]
Hadrosaur ichnofossils
[edit]
Over 45 fossil localities yielded hadrosaurid fossils in the Lower Red Garumnian of the eastern Tremp Syncline.[16] Various new specimens of indeterminate Lambeosaurinae were described in 2013 by Prieto Márquez et al.[110] Furthermore, many hadrosaur ichnofossils have been found in the Tremp Formation and were analyzed in great detail by Vila et al. in 2013. The most abundant track types in fluvial settings are the pedal prints of hadrosaurs, while titanosaur ichnofossils and a single theropod track were found in lagoonal environments.[111] The authors concluded:[112]
- The fluvial lower red unit of the Tremp Formation exhibits meandering and braided fluvial systems with favorable conditions for track production and preservation, like those of North America and Asia.
- The dinosaurs mainly produced the tracks on the floodplain, within the channels, and on and within crevasse splay deposits in low water stage conditions, and the footprints were infilled by sands during high water stage (stream reactivation).
- The track record is composed of abundant hadrosaur and scarce sauropod and theropod tracks. The hadrosaur tracks are significantly smaller in size but morphologically similar to comparable records in North America and Asia. They are attributable to the ichnogenus Hadrosauropodus.
- A rich track succession composed of more than 40 distinct track levels indicates that hadrosaur footprints are found above the early Maastrichtian–late Maastrichtian boundary and most noticeably in the late Maastrichtian, with tracks occurring abundantly in the Mesozoic part of the C29r magnetochron, during the last 300,000 years of the Cretaceous.
- The occurrence of hadrosaur tracks in the Ibero-Armorican island seems to be characteristic of the late Maastrichtian time interval and thus they are important biochronostratigraphic markers in the faunal successions of the Late Cretaceous in southwestern Europe.
Fossil content
[edit]






AF - треки Hadrosaur
G - Sauropod Track


- Пыльца
Кроме того, много пыльцы было описано из формирования TREMP, к востоку от Изоны и 22 километра (14 миль) к востоку от Tremp: [ 174 ]
- Полиподиацеаспориты Gracingulis , Grams Maximus , P. tatabanyensis , P. vicious
- Leiotriletes Adriennis , L. Dorogensis , L. microdriennis
- Cycadopites kyushuensis , C. minar
- Моноколпольениты dorogensis , одиночный
- Semioculopollis croxton , S. Предоставленный
- Cicatricosisporites cf. Треугольный
- Купрессациты Инсулипапиллатус
- Cupuliferoipollenites маленький
- Cyrillaceaepollenites barghoorniacus
- Гранулатиспориты Palaeogenicus
- Inaperturopollenites giganteus
- Labraforioidaepollenites menatensis
- Laevigatosporites hardi
- Minorpollis hojstrupensis
- Nudopollis минута
- Oculopollis cf. маленький
- Pityosporites замечательно
- Plicapollis
- Пакunctatisporites в Luteticus
- Ретитрололпориты Андреанцки
- Pflugi
- Субтрипорополениты, состоящие из
- Suemigipollis cf. Треугольный
- Тетраколпоропольениты примеры
- Трилобоспориты (туберозопориты)
- Vacuopollis cf. Congavux
- Граномоноколпиты
- Patellasporites
- Платапольениты
- Полипориты
- Ретимоноколпиты
Исследования и выставки
[ редактировать ]
Каждый год более 800 геологов посещают El Pallars Jussà, и более 1500 студентов университетов со всей Европы приезжают в бассейн Tremp-Graus для выполнения своей геологической работы. Бассейн также рассматривается нефтяными компаниями как идеальное место для изучения взаимодействия тектонических движений с различными типами литологий. Музей Comarcal de Ceències Naturals («Музей естественных наук местного района») в Tremp, построенный в Torre de Soldevila в центре города, является популярным местом для посещений в школе. В нем расположена постоянная выставка ископаемого с широким спектром останков, начиная от динозавров до окаменелых беспозвоночных, таких как кораллы, двустворчатые моллюски, гастропод и многое другое. [ 175 ]
Музей деллы Изоны Изоны [ 176 ] Оставленные последними динозаврами, которые жили в долине во время мелового периода. Музей также содержит множество других археологических останков из римского поселения Изоны. В последние годы Consell Comarcal (Региональный совет) продвигал несколько новых инициатив, в том числе создание геологической программы, особенно адаптированной к местным школам, и серию визитов в основные археологические места региона. [ 177 ]
Уникальное палеоокружение, широко распространенная геология и важность, как национальное наследие, вызвали предложения по обозначению формирования TREMP и ее региона как защищенного геологического места интереса, так же, как Геологический парк Алиаги и другие в Испании. [ 3 ] После того, как он был сбит в качестве кандидата с 2016 года, бассейн Темп и окружающие районы в качестве Эль -Палларс Юсса, Байкс Палларс в Палларс Собира, Колл де Нарго в Альтргелл, Виланова де Мей, Камараса и Агер в Ногуере были Глобал . [ 4 ] и включен в глобальную сеть GeoParks . [ 178 ] 17 апреля 2018 года ЮНЕСКО приняла это предложение и назначила Сайт как Global Geopark Global Geopark Montsec, заявив: [ 5 ]
«Эта область на международном уровне признана естественной лабораторией для седиментологии, тектоники, внешней геодинамики, палеонтологии, руды и педологии. Кроме того, другое естественное и культурное наследие также замечательно, включая астрономию и археологические места».
Панорамы
[ редактировать ]Смотрите также
[ редактировать ]
- Список рок-образований, несущих динозавры
- Список фауны позвоночных маастрихтских сцен
- Временная шкала межозримового исследуемого вымирания
- Климат на границе мела -палеогена
- Геология пиренеев
- Формирование Hell Creek - меловая палеогеновая современная ископаемое образование Соединенных Штатов
- Формирование Серрехона - Палеоценовое современное ископаемое образование Колумбии
Примечания и ссылки
[ редактировать ]Примечания
[ редактировать ]- ^ Другие авторы считают формирование Conquès боковым эквивалентом нижней красной единицы формирования TEMP [ 29 ]
- ^ Считается синонимом Pararhabdodon в соответствии с FossilWorks [ 133 ]
Ссылки
[ редактировать ]- ^ Калькулятор области карты Google
- ^ Jump up to: а беременный Pujalte & Schmitz, 2005, с.82
- ^ Jump up to: а беременный Bosch Lacalle, 2004, с.4
- ^ Jump up to: а беременный World Geopark of Unesco Conca de Tremp-Montsec
- ^ Jump up to: а беременный Tremp -Montsec Global Geopark - Unesco .org conca .org
- ^ Global Geoparks Network - Список участников
- ^ Rosell et al., 2013, с.19
- ^ Jump up to: а беременный в дюймовый Cuevas, 1992, с.100
- ^ Jump up to: а беременный в Cuevas, 1992, с.102
- ^ Arribas et al., 1996, с.11
- ^ Lacalle Bosch, 2004, с.1
- ^ Jump up to: а беременный в Cuevas, 1992, с.96
- ^ Lacalle Bosch, 2004, с.2
- ^ Blanco et al., 2014, с.3
- ^ López Martínez et al., 1996, с.63
- ^ Jump up to: а беременный Прието Маркес и др., 2013, с.2
- ^ Из Райса, 1996, с.205
- ^ Jump up to: а беременный Arribas et al., 1996, с.17
- ^ Jump up to: а беременный Al., 2000, с.340
- ^ Puértolas et al., 2011, с.2
- ^ Serra Kiel et al., 1994, с.276
- ^ Лаки и Гил Пенья, 2001, с.24
- ^ Ford et al., 1967, с.434
- ^ Cuevas, 1992, с.97
- ^ Arribas et al., 1996, с.10
- ^ Jump up to: а беременный Cuevas, 1992, с.103
- ^ Cuevas, 1992, с.106
- ^ Cuevas, 1992, с.101
- ^ Puértolas et al., 2010, с.73
- ^ Conca Dellà Museum - положить
- ^ Cuevas, 1992, с.99
- ^ Bravo et al., 2005, с.51
- ^ Díez Canseco, 2016, с.53
- ^ Jump up to: а беременный Blanco et al., 2015b, с.148
- ^ Andeweg, 2002, гл.1 с.1
- ^ Jump up to: а беременный в дюймовый и Sibuet et al., 2004, с.3
- ^ García Senz, 2002, с.
- ^ López Mir et al., 2014, с.15
- ^ Rushlow et al., 2013, с.844
- ^ García Senz, 2002, с.
- ^ García Senz, 2002, с.
- ^ Jump up to: а беременный в Sibuet et al., 2004, с.14
- ^ García Senz, 2002, с.
- ^ Муньоз, 1992, с.238
- ^ García Senz, 2002, с.
- ^ García Senz, 2002, с.
- ^ López Mir et al., 2014, с.14
- ^ Rosenbaum et al., 2002, с.124
- ^ Rosenbaum et al., 2002, с.122
- ^ Dinarès Turell et al, 1992, с.265
- ^ Sibuet et al., 2004, с.12
- ^ Муньоз, 1992, с.244
- ^ Jump up to: а беременный Senz, 2002, p.
- ^ Муньоз, 1992, с.241
- ^ Dinarès Turell et al, 1992, с.267
- ^ Лаки и Гил Пенья, 2001, с.31
- ^ Teixell et al., 2016, с.262
- ^ Nijman, 1998, с.140
- ^ Fernández et al., 2012, с.545
- ^ Teixell & Muñoz, 2000, с.257
- ^ Fernández et al., 2012, с.548
- ^ Ten Veen et al., 2012, с.460
- ^ Jaillard et al., 2017, с.232
- ^ Khadivi, 2010, с.56
- ^ Muñoz et al., 2017, с.16
- ^ Krzywiec & Sergés, 2006, p
- ^ Fgarcía & Jiménez, 2016, с.31
- ^ Parravano et al., 2015, с.25
- ^ Claringbould et al., 2011, с.1
- ^ Brown et al., 2010, с.80
- ^ Legeay et al., 2017, с.20
- ^ Ghani et al., 2017, с.38
- ^ Backs et al., 2010, с.59
- ^ López Mir et al., 2017, с.110
- ^ Солевые бассейны - Карлос Крамес - Университет Фернандо Пессоа
- ^ López Mir et al., 2014, с.12
- ^ Nijman, 1998, с.138
- ^ Rosenbaum et al., 2002, с.121
- ^ Миллан Гарридо и др., 2000, с.294
- ^ López Martínez et al., 1996, с.65
- ^ Jump up to: а беременный López Martínez & Peláez Campomanes, 1999, с.694
- ^ Rosell et al., 2001, с.54-55
- ^ Гомес, 2015, с.9
- ^ Gómez et al., 2015, с.12
- ^ López Martínez et al., 1996, с.64
- ^ Meléndez & Molina, 2008, с.108
- ^ Meléndez & Molina, 2008, с. 112-113
- ^ Сотни яиц динозавров, найденные в Испании - Inquisitr.com
- ^ Lacalle Bosch, 2004, с.4
- ^ Wisehhample It Old., 2004, pp.588-59933
- ^ Jump up to: а беременный Палеонтология - меловой парк - музей Conca Dellà
- ^ Breate et al., 2000, с.341
- ^ Marmi et al., 2012, с.133
- ^ López Martínez et al., 2001, с.53
- ^ Jump up to: а беременный в дюймовый и фон глин час я López Martínez & Peláez Campomanes, 1999, с.686
- ^ Jump up to: а беременный Peláez Campomanes et al., 2000, с.702
- ^ Jump up to: а беременный Blanco et al., 2015, с.149
- ^ Jump up to: а беременный в дюймовый Blanco et al., 2015, с.152
- ^ Jump up to: а беременный Blanco et al., 2015, с.154
- ^ Jump up to: а беременный Vilat et al., 2010, с.3
- ^ Vilat et al., 2010, с.2
- ^ Vilat et al., 2010, с.4
- ^ Vilat et al., 2010, с.7
- ^ Vilat et al., 2010, с.11
- ^ Hechenleitner et al., 2015, с.6
- ^ Vilat et al., 2010, с.12
- ^ Hechenleitner et al., 2015, с.16
- ^ Hechenleitner et al., 2015, с.17
- ^ Hechenleitner et al., 2015, с.19
- ^ Prieto Márquez et al., 2013, с.22-34
- ^ Vila et al., 2013, с.5
- ^ Vila et al., 2013, с.12-14
- ^ Jump up to: а беременный в дюймовый и фон глин Claret 4 на FossilWorks .org
- ^ Jump up to: а беременный Claret 0 на FossilWorks .org
- ^ Фаба в исчезающих заводах .
- ^ Blanco et al., 2015a, p.10
- ^ Jump up to: а беременный Fumanya Sud at FossilworksФасин
- ^ Blanco et al., 2014, с.7
- ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л м не а п Q. ведущий Nerets at FossilWorks .org
- ^ Amor-3 в FossilWorks .org
- ^ Puértolas et al., 2014, с.4
- ^ Элиас в Fossilworks
- ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л м не а п Q. ведущий с Т в Blasi 2 на FossilWorks .org
- ^ Jump up to: а беременный в дюймовый и Sant Esteve de la Sarga, Моро в FossilWorks .org
- ^ Jump up to: а беременный в Моя сустрранья в FossilWorks .org
- ^ Jump up to: а беременный Torrebilles-1 в FossilWorks .org
- ^ Jump up to: а беременный в дюймовый Esquirol-1 на FossilWorks .org шахта
- ^ Прието-Марикес, а.; Sellés, A. (2023). «Эволюционная конвергенция в небольшом заклинательном динозавре с стиракостетерном Ornithopod из Западной Европы» . Журнал палеонтологии позвоночных . 42 (5). E2210632. doi : 10.1080/02724634.2023.2210632 . S2CID 259335419 .
- ^ Прието Маркес и др., 2019
- ^ Puértolas et al., 2011, с.3
- ^ Jump up to: а беременный в Le Loeuff, 2012, с.551
- ^ Puértolas et al., 2010, с.71
- ^ Pararhhabdodon в FossilWorks .org
- ^ Les llaus at fossilworks .org
- ^ Párraga & Prieto Márquez, 2019
- ^ Вилла, Бернат; Продал, Альберт; Морено-Азэнс, Мигель; Razzolini, роман L.; Гил-дельгадо, Александр; Canudo, Хосе Игнасио; Галлобарт, Ангел (2022-02-07). Титанозавр " Природа экология и эволюция 6 (3): 288–296. Bibcode 2022NatEE...6..288V: два 10.1038/s41559-021-01651-5: ISSN 2397-334X 35132183PMID 246650381S2CID
- ^ Норет на ископаемых заводах .
- ^ Jump up to: а беременный Ullastre & Masriera, 1998, с.115
- ^ Jump up to: а беременный в Esquirol-2 на исчезающих заводах .
- ^ Castelltallat Costa на FossilWorks .org
- ^ Продал, Ag; Villa, B.; Брусат, SL; Керри, PJ; Галобарт, à. (2021). Теропода ) Научные отчеты 11 номер 1 ) ( статьи : два 10.1038/s41598-021-83745-5: 7921422PMC 33649418PMID
- ^ Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Аттила; Pereda-suberbiola, Xabier; Брусатт, Стивен Л. (2015-01-08). «Жизнь острова в меловом композиции - биогеографии, эволюции и вымирании землевладельца позвоночных на позднем меловом европейском архипелаге» . Zookeys (469): 1–161. Bibcode : 2015zook..469 .... 1c . doi : 10.3897/Zookeys.469.8439 . ISSN 1313-2989 . PMC 4296572 . PMID 25610343 .
- ^ Jump up to: а беременный в дюймовый и фон Coll de nargó at fossilworks .org
- ^ Orcau-1 на FossilWorks .org
- ^ Jump up to: а беременный At fossilworks .org
- ^ Serrat de Pellleu at fossilworks .org
- ^ Bravo et al., 2005, с.55
- ^ Costa de la Coma на FossilWorks .org
- ^ Biscarri, isona at fossilworks .org
- ^ Bravo et al., 2005, с.54
- ^ Terrers 2 на FossilWorks .org
- ^ Jump up to: а беременный Orcau-2 Tracksite на FossilWorks .org
- ^ Torrent of Guixers Tracksse на FossilWorks .org
- ^ Клиффы Бойкейдера в исчезающих заводах .org
- ^ Díez Canseco, 2016, с.75
- ^ Orcau 2 на FossilWorks .org
- ^ Sussterranya-1 в FossilWorks .org
- ^ Jump up to: а беременный Св. Корнели в FossilWorks .org
- ^ Jump up to: а беременный Уважаемый и др., 1985, с.249
- ^ Ullastre & Masriera, 1998, с.101
- ^ Marmi, 2016, с.88
- ^ Marmi, 2016, с.63
- ^ Marmi, 2016, с.71
- ^ Marmi, 2016, с.74
- ^ Marmi, 2016, с.69
- ^ Marmi, 2016, с.96
- ^ Marmi, 2016, с.78
- ^ Marmi, 2016, с.90
- ^ Marmi, 2016, с.59
- ^ Marmi, 2016, с.85
- ^ Marmi, 2016, с.66
- ^ Blanco et al., 2015a, p.30
- ^ Jump up to: а беременный Arribas et al., 1996, с.12
- ^ Уважаемый и др., 1985, с.249-250
- ^ Региональный музей естественных наук о Тлеме
- ^ Меловой парк - музей Conca dellà
- ^ Эль -Палларс Юсса, в геологическом раю
- ^ Глобальная конференция GeoParks UNESCO
Библиография
[ редактировать ]Региональная геология
[ редактировать ]- Andeweg, Bernd (2002), кайнозойская тектоническая эволюция полуострова иберийского полуострова, причины и последствия изменения полей стресса (кандидатская диссертация) , Vrije Universiteit Amsterdam , с. 1–192 , извлечен 2018-05-24
- Барнолас, А.; Гил-Педья, И. (2001), антипрессовом Примеры осадочного « наполнения мультипизодического в фрагментированном испанском )
- Dinarès Turell, Jaume; Макклелланд, Элизабет; Сантанах, П. (1992), контрастные вращения в пределах листов тяги и кинематике тектоники тяги, полученные из палеомагнитных данных: пример из южных пиреней , Thrust Tectonics , Springer, Dordrecht, стр. 265–275 , извлеченный 2018-05-24
- Фернандес, О.; Муньос, JA; Arbués, P.; Falivene, O. (2012), «3D -структура и эволюция наклонной системы реле сгиб: бассейн Ainsa (испанские пиренеты)» , Журнал Геологического общества, Лондон , 169 (5): 545–559, Bibcode : 2012jgsoc , 169 (5): 545–559, Bibcod .169..545f , Citeseerx 10.1.1.917.772 , doi : 10.1144/0016-76492011-068 , получен 2018-05-24
- Форд, Мэри; Хеммер, Луи; Vacherat, Arnaud; Галлахер, Керри; Christophoul, Frédéric (2016), «Эволюция ретро-водного бассейна вдоль линии Ecors, Восточные Пиренеи, Франция» , Журнал Геологического общества , 173 (3): 419–437, bibcode : 2016jgsoc.173..419f , doi : 10.1144/jgs2015-129 , получен 2018-05-24
- Гарсия Сенз, Хесус (2002), Обширные бассейны нижних мела в центральных Пиренеях, Обучение и последующие инвестиции (PhD .SIS) , Университет Барселоны , с. 1–310 , получен 2018-05-24 (на испанском)
- Gomez Fat, D.; Roigé, M.; Фондевиль, v.; Oms, O.; Buoy, S.; Трампатус пиренеи : ( палеогеографический бродяги ) южные :2016CrRes..57..414G, два 10.1016/j.cretres.2015.09.010, retrieved :
- Meléndez, A.; Молина, Э. (2008), Граница мелового третичного (KT) (PDF) , A. García-Cortés et al. ред. Испанский геологический контекст. Публикации Геологического и горнодобывающего института Испании , с. 107–133 , получен 2018-05-24
- Миллан Гарридо, Х. (2000), «Тектоническая деятельность, зарегистрированная в месторождениях третичного южного центрального пиренеев» (PDF) , журнал Геологической Соедии Испании , 13 : 279–300 , извлечен 2018-05-24 ( на испанском)
- Muñoz, Josep Anton (1992), Эволюция континентального пояса столкновения: сбалансированное поперечное сечение коры Ecors-Pyrenees , Thrust Tectonics , Springer, Dordrecht, с. 235–246 , извлеченные 2018-05-24
- Nijman, Wouter (1998), «Сдвиг цикличности и оси бассейна в бассейне Piggyback: к моделированию эоценового бассейна Tremp-àger, Южный Пиренеи, Испания» , Специальные публикации Геологического общества , 134 : Gibcode: Геологическое общество: 134 (1): 135–162, (1): 135–162, Bibcode Bibcode : Геологическое общество: 1998GSLSP.134..135N , Citeseerx 10.1.1.851.3649 , doi : 10.1144/gsl.sp.1998.134.01.07 , получен 2018-05-24
- Розенбаум, Гидеон; Листер, Гордон С.; Duboz, Cécile (2002), «Относительные движения Африки, Иберии и Европы во время альпийской орогеники» , Tectonophysics , 359 (1): 117–129, Bibcode : 2002tectp.359..117r , Citeseerx 10.1.503.1527 , doi : 10.1016/s0040-1951 (02) 00442-0 , Получено 2018-05-24
- Rushlow, Caitlin R.; Барнс, Джейсон Б.; Элерс, Тодд А.; Vergés, Jaume (2013), «Эксгумация южного пиренейского пояс сгиба (Испания) от орогенного роста для распада» (PDF) , Tectonics , 32 (4): 843–860, Bibcode : 2013tecto..32..843r , doi : 10.1002/tect.20030 , получен 2018-05-24
- Сибуэт, Жан-Клод; Шривастава, Шири П.; Spakman, Wim (2004), «Пиреневая орогении и кинематика плиты» (PDF) , Журнал геофизических исследований , 109 (B8): 1–18, Bibcode : 2004Jgrb..109.8104S , doi : 10.1029/2003JB002514 , Полученное 2018-05. -24
- Тейкселл, Антонио; Labaume, Pierre; Yves (2016), западно « - . пиренеев центрированных Lagabrielle , коры Эволюция ..257t , doi : 10.1016/j.crte.2015.10.010 , получен 2018-05-24
- Teixell, A.; Muñoz, Josep Anton (2000), «Эволюция муэтификации Tectono-Sedimary во время теритиза: синтез, основанный на трансверсале реки Ногуера Рибагорсана» журнал Геологической социально ) PDF ( , Получено 2018-05-24 (на испанском)
Местная геология
[ редактировать ]- 2004), Bosch Lacalle , Albert ( Политехнический университет Барселоны , с. 1–123 2018-05-24 ,
- Díez Canseco Estebán, Davinia (2017), Характеристика мариноконтинентального перехода Маастрихтенсинс-даненза на северо-западе интеграции седиментологических данных Tremp-Graus, биоэстратиграфическая и ИКнологическая (PhD Ahesis) (PDF) , универсадская компенсация , пп. 1–105 , Получено 2018-05-24 (на испанском)
- Jose L. (1992), бассейна до-пироэновской реки. Гармня Стратиграфия , « « Cuevas из »
- López Martínez, N.; Ardévol, L.; Аррибас Мокороа, я; Civis, J.; Delgado ) , González . 1996 ( JA 24 (на испанском)
- Pujalte, v.; Schmitz, B. (2005), «Revisión de la extrigrafía Tremp (« Garumniense », Cuenca de Tremp-Graus, Pirineos Southernas)-Страстиграфия Tremp Group Revisited (« Garumnian », Бассейн Трем-Граус, Юг Pyrenees) " (PDF) , GeoGaceta , 38 : 79–82 , Получено 2018-05-24 (на испанском)
- Mikel (1996), «Влияние тафономических и палеологических факторов на распределение моллюсков в районе типа Renzi , Iliadiens De 214 , Получено 2018-05-24 (на испанском)
- Розелл, Дж.; Gómez Gras, D.; Linares, R. (2013), Map Geológico de España - 290 ISO - 1: 50 000 (PDF) , IGME , стр. 1–86 , Получено 2018-05-24 (на испанском)
- Розелл, Дж.; Linares, R.; ( Геологического PDF , журнал Испании общества )
- Серра Кил, Дж.; Canudo, J.; Половина, J.; Mill, E.; Ortiz, N.; Пасха, Джо; Samso, JM; Tosquella, J. (1994), третичного бассейна Граус-Трему (суперенаская центральная зона)» PDF) , журнал Геологического общества Испании «Стратиграфия Crono морских отложений нижнего ( -05-24 (на испанском)
- Улластра, Хуан; Mariera, Alicia (1998), «Новый вклад в стратиграфическое знание континентального палеоцена каталонских пиренеев (Испания)» (PDF) , Treballs о геологии Барселоны , 7 : 95–128 , получен 2018- 05-24 (на испанском)
Соляная тектоника
[ редактировать ]- Backé, Гийом; Бейнс, Грэм; Джайлс, Дэвид (2010), Деформация в области подвалов и геометрия солевых диапиров в хребтах Flinders, Южная Австралия (PDF) , конференция GSL-SEPM-Соль тектоника, седиментация и проспективность, с. 59 , Получено 2018-05-24
- Браун, Джонатан; Боуйер, Мэтью; Zolotarenko, Vladyslav (2010), клинья и буферы: новая структурная перспектива бассейна Dnieper-Donets, на суше Украины (PDF) , конференция GSL-SEPM-тектоника соля, седиментация и проспективность, с. 80 , Получено 2018-05-24
- Claringbould, Johan S.; Сарг, Дж. Фредерик; Хайден, Бритни Б.; Trudgill, Bruce D. (2011), Трехмерная структурная эволюция солевого, куполообразного, реактивированного комплекса разломов, Джебель Мадар, Оман , AAPG Ежегодная конференция и выставка, Хьюстон, Техас, с. 1–30 , извлечен 2018- 05-24
- Гарсия, Хелберт; Jiménez, Giovanny (2016), «Структурный анализ антиклинала Zipaquirá Anticline (Восточная Кордильяра, Колумбия)», Бюллетень наук о Земле, Национальный университет Колумбии , 39 (39): 21–32, doi : 10.15446/rbct.n39.50333.
- Гани, Хумад; Zeilinger, Герольд; Sobel, Edward R.; Heidarzadeh, Ghasem (2017), Структурные вариации в гималайском складке и тяге, тематическое исследование из складного пояса Kohat-Potwar в Пакистане (PDF) , складные и тяги: структурный стиль, конференция эволюции и разведки, с. 38 , Получено 2018-05-24
- Jaillard, Etiénne; Буйллин, Жан-Пьер; Уали, Джамель; Дюмон, Тьерри; Латил, Жан-Луи; Chihaoui, Abir (2017), «Альбианская соляная тектоника в центральной части Туниса: доказательства пассивной края атлантического типа» , Журнал африканских наук о Земле , 135 : 220–234, Bibcode : 2017jafes.135..220J , DOI : 10.1016. /j.jafrearsci.2017.09.009 , Получено 2018-05-24
- Khadivi, Shokofeh (2010), Тектоническая эволюция и рост горного пояса Загрос (FARS, Иран): ограничения от магнитостратиграфии, седиментологии и низкотемпературной термохронометрии (PhD) (PDF) , Université Pierre & Marie Curie , стр. 1– 225 , Получено 2018-05-24
- Крузей, Петр; Sergés, Jaume (2006), «Соляная тектоника в сжатых условиях: сравнение S Pyrenees и N Carpains» (PDF) , Geolines , 20 : 81 , извлечены 2018-05-24
- Legeay, Etiénne; Рингенбах, Жан-Клод; Кергарават, Чарли; Пичат, Александр; Мон, Джеффрой; Вергес, Жаме; Кава, Каан СеВки; Callot, Jean-Paul (2017), Структура и кинематика бассейна Central Sivas (индейка): пояс складного и броста с тектоникой соли (PDF) , складные и толстые ремни: конструкция конструкции, эволюция и разведка, с. 20 , Получено 2018-05-24
- Лопес Мир, Берта; Шнайдер, Саймон; Hülse, Peter (2017), Роль тектонического наследования в последнем мелах -палеогеновом эврикане орогении (NE Canadian Arctic) (PDF) , складные и толстые пояса: конференция по структурному стилю, эволюция и разведку, с. 110 , получен 2018-05-24
- Лопес Мир, Берта; Муньос, Джозеф Антон; Структура эволюция " и 018-05-24 : 1–16, retrieved
- Муньос, Джозеп Антон; Рок, Эдвард; Железный, Ирол; Роуэн, Марк; Слева, Эстер; PLA, Ориол; Раса, Нурия; Сантолария, Пол; Gratacos, Pablo (2017), Jumps : Tectonic 16 , Получено 2018-05-2
- Парравано, Ванесса; Тейкселл, Антонио; Mora, Andrés (2015), «Влияние соли на тектоническое развитие лобного удара по поясу восточной Кордильеры (Guatiquía, колумбийские Анды)» (PDF) , интерпретация , SAA (4): 17–27, bibcode : 2015nt ..... 3a..17p , doi : 10.1190/int-2015-0011.1 , получен 2018-05-24
- Десять Веен, Йохан Х.; Ван Гессель, SF; Den Dulk, M. (2012), «Тектоника с тонкой и толстой соли в Нидерландах; количественный подход» , Geology and Mijnbouw , 91 (4): 447–464, Bibcode : 2012-njgo..91. 447t , doi : 10.1017/s0016774600000330 , получен 2018-05-24
Палеонтологические публикации
[ редактировать ]Динозавры
[ редактировать ]- Браво, Ана Мария; Вилла, Бернат; Галобарт, Ангел; Остатки яиц динозавров в верхнем меловом фоне Синклинана Валсбра (Бергюда, провинция Барселона )) , Испанский журнал , 10 49–57 , палеонологии :
- Canudo, Ji; Pereda suberbiola, x.; López Martínez, N. (2000), «Динозавры превосходного маастрихтизенса Huesca и его важность в изучении вымирания мера/третичного предела» (PDF) , Geo-Temas , 1 : 339–342 , извлеченный 2018 -05 -24 (на испанском)
- Раннее, Э. Мартин; Зеленый Тиннер, Джеральд; Фиорелли, Лукас Э. (2015), «Что насчет динозавров Титана и современного австралийца?» (PDF) , Peerj , 3: 1341: 1–32 , отступил 2018-05-24
- Лопес Мартинес, снег; Canudo, Хосе Игнасио; Ardel, Lluís; Suberbiola pereda, Xabier; Orue ethxebarria, Xabier; Баскский бассейн, слава; Руис òmññaca, Хосе Игнасио; Мурелага, Ксабье; ) "New dinosaur sites correlated with Upper Maastrichtian pelagic deposits in the Spanish Pyrenees: implications for the dinosaur extinction pattern in Europe" , , Feist 2001 Monique ( Bibcode..22 41L , два : 10,1006/cres . ...
- Прието Маркес, Альберт; Фондевиль, Виктор; Продал, Альберт Г.; Вагнер, Джонатан Р.; ,: ( ) , a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European Archipelago" , Galobart Angel 2019 : 19–37, Bibcode:2019CrRes..96...19P, doi:10.1016/j.cretres.2018.12.002, retrieved
- Прието Маркес, Альберт; Далла Веккия, Фабио М.; Гат, Родриго; Galobart, Angel (2013), «Разнообразие, отношения и биогеография динозавров ламбейозавра от европейского архипелага, с описанием нового аралозаурина canardia garonnensis », Plos One , 8 (7): 1–44, Bibcode : 2013ploso .. .869835p , doi : 10.1371/Journal.pone.0069835 , PMC 3724916 , PMID 23922815
- Прието Маркес, А.; Вагнер, младший (2009), « Pararhabdodon isonensis и Tsintaosaurus spinorhinus : новая клада ламбейозавровских адрозавридов из Евразии» , Creataceous Research , 30 (5): 1238, Bibcode : 2009crres..30.1238p , doi : 10.1016/j.cretres. 2009.06.005 , HDL : 2152/41080 , получен 2018-05-24
- Мерке Священник, А.; Gaet, R.; Ривас, Г.; Сотрудничество, á.; 2006 , M. ) Boada « , ( Адрозавроидные динозавры 1671 /462-4634 (2006) 26
- Вилла, Бернат; OMS, Ориол; Фондевиль, Виктор; Гат, Родриго; Галобарт, Ангел; Поток, фиолетовый; Canudo ) Jose 2013 , ( , Ignacio doi:10.1371/journal.pone.0072579, PMC 3760888, PMID PMC
- Вилла, Бернат; Джексон, Фрэнки Д.; Удача, Джозеф; Продал, Альберт Г.; ) Angel , 2010 , Galobart ( , doi:10.1371/journal.pone.0010362, PMC 2864735, PMID PMC
- Weishampel, David B. (2004), Распространение динозавров (поздние меловые, Европа) , Dinosauria, 2 -е, Беркли: Университет Калифорнийской прессы, стр. 588–593
Другие группы
[ редактировать ]- Аррибас, я; Estrada, R.; Обрадор, А.; Rampone, G. (1996), «Распределение и лечение микрокодиума в формировании TREMP: Anticline de Campllong (Восточные Пиренеи, провинция Барселона)» (PDF) , журнал Геологического общества Испании , 9 : 9–18 , получен 2018 -05-24 (на испанском)
- Белый, Александр; Удача, Джозеф; Висенте, рассвет; Луджан, Ангел Х.; Гарсия Марса, Джорди Алексис; ), из ( 2015a Проданный , Испании Альберт Г. : 1–35 , Получено 2018-05-2
- Бланко, Алехандро; Мендес, Джозеп М.; Marmi, Josep (2015b), «Окаменечная запись самого верхнего маастрихтского песчаника рептилий (формация TREMP, северо -восточный иберийский полуостров)» , Испанский журнал палеонтологии , 30 : 147–160, DOI : 10.7203/SJP.30.17231 , Заберил 2018 год. -05-24
- Бланко, Алехандро; Партолас Паскуал, Эдуардо; Мрамол, Джозеп; Вила, Бернат; Sellés, Albert G. (2014), « Aldiposuchus palustris sp. Nov. от верхнего мелового чудовища (юго -восточный пиренец, иберийский полуостров): систематика, палеээкология и палеобиогеография загадочных альдипосианских крокодийцев», Polos One , 9 ) 9) 9)) : 1–34, Bibcode : 2014ploso ... 9k5837b , doi : 10.1371/journal.pone.0115837 , PMC 4281157 , PMID 25551630
- Kedves, M.; Солнце дверного, н.; Дверей, J.; Civis, J. (1985), «Палинологическое исследование отложений маастрихенса овраза позы (Prepyrenes, Lerida, Испания)» (PDF) , An. Ассоциирован Палинол. Lcng. Особенно , 2 : 247–253 ,
- Лопес Мартинес, Нивес; Peláez Campomanes, Pablo (1999), «Новые млекопитающие из юго-центральных пиренеев (Tremp Formation, Испания) и их применение на морских корреляциях позднего палеоцена» (PDF) , Bulletin de la Société Géologique de France , 170 : 681–696. Получено 2018-05-24
- Josep , ) Marmi 2016 ( doi:2016.22.0057 ,
- Marmi, J.; Luján, á.h.; Риера, В.; Gaete, R.; Oms, O.; Galobart, à (2012), «Самый молодой вид Polysternon : новая черепаха Bothremydid из самого верхнего маастрихтика южных пиреней» , Creatacerous Research , 35 : 133–142, Bibcode : 2012crres..35..133m , doi : 10.1016 /j.cretres.2011.12.004 , Получено 2018-05-24
- Паррага, Хавьер; Прието Маркес, Альберт (2019), " Pareisactus evrostos , новый базальный игуанодиан (Dinosauria: Ornithopoda) из верхнего мелового чудовища Юго-Западной Европы" , Zootaxa , 4555 (2) .2.5 : 2 , PMID 3070960 , извлечен 2019-02-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1 : 2.
- Peláz Campdomanes, P.; López Martínez, N.; Альварес Сьерра, Массачусетс; Daams, R. (2000), «Самое раннее млекопитающее европейского палеонена: многотуркуляция хайнина » (PDF) , Журнал палеонтологии , 74 (4): 701–711, doi : 10.1666/002-3 0701: Temote> 2.0 .2 , Получено 2018-05-2
- Puértolas Pascual, E.; Canudo, Ji; Moreno Azanza, M. (2014), «Эусухианский крокодиломорф Allodaposuchus subjuniperus sp. Nov., Новый вид из последнего мела (верхнего маастрихта) Испании» , «Историческая биология » , 26 (1): 91–10, bibcode : 2014hbio ». ... 26 ... 91p , doi : 10.1080/08912963.2012.763034 , Получено 2018-05-24
- Pascual Puertolas, E.; Crucado Caballero, P.; Canudo, Ji; Гаска, JM; Moreno Azanza, M.; Castanera, D.; Гриль, Дж.; Ezquerro, L. (2012), суперка « превосходных маастрихтенз ( Новые месторождения позвоночных , 14 : 1–4 , получен 2018-05-24 (на испанском)
- Пуертолас, Эдуардо; Canudo, Хосе I.; Cruzado Caballero, Penélope (2011), «Новый крокодилиан из покойного маастрихта Испании: последствия для начального излучения крокодилоидов», PLOS One , 6 (6): 1–12, BibCode : 2011Ploso ... 620011p , doi : 10.1371/journal.pone.0020011 , PMC 3110596 , PMID 21687705
- Puértolas, E.; Cruzado Cabellero, P.; Бадиола, А.; Гаска, JM; Moreno Azenza, M.; Canudo, Ji (2010), Nuevo Crocodilomorfo Eusuquio de la Cuenca de Tremp ( Maastrichtiense Superiou Sobre Paleontología de Dinosaurios y на Entorno, pp. 71–74 , Получено 2018-05-24 (на испанском)
Дальнейшее чтение
[ редактировать ]- Ako, Ojong Gilbert (2008), Структурное развитие Ypress - Lutetian -последовательности северо -восточного бассейна Эйнса, Пиренеи, Испания (магистерская диссертация) (PDF) , Университет Осло , с. 1–103 , Получено 2018-05-2
- Barnolas Cortinas, A. (1991), Осадочная эволюция между бассейном Graus-Term и бассейном Jaca-Pamplona , I Конгресс испанской группы третичной, стр. 1–62 , Получено 2018-05-24 (на испанском)
- Бентам, Питер А.; Burbank, Douglas W.; Puigdefábregas, Cai (1992), «Временные и пространственные контроли на аллювиальной архитектуре осевой дренажной системы: формация поздней эоценовой эспаниллы, бассейн Южного Пиренана, Испания» (PDF) , Research Basin , 4 (3–4): 335– 352, Bibcode : 1992basr .... 4..335b , doi : 10.1111/j.1365-2117.1992.tb00052.x , Получено 2018-05-24
- Лопес Мартинес, Н. (2001), Вымирание динозавров и их регистрация в меридональных пиренеях - вымирание динозавров и его южно -дипреновые дни (PDF) , дни палеонтологии II динозавра и его окрестности. Младенцы комнаты (Бургос, Испания), стр. 70–98 , получен 2018-05-24 (на испанском)
- Муньос, Джозеп Антон; Beamud, Элизабет; Фернандес, Оскар; Arbués, Pau; Деньги Турулл, Джеймс; (2013), " PDF , Tectonics , 32 5 ( ) 32,1142M , два 10.1002/tect.20070) ... :
- Puigdefàbregas, C.; Муньос, JA; Vergés, J. (1992), Evolution Thrustring and Foreland Basin в южных пиренеях , Thrust Tectonics , Springer, Dordrecht, с. 247–254 , получен 2018-05-24
- Рал, Джеффри М.; Хейнс, Сэмюэль Х.; van der Pluijm, Ben A. (2011), «Связи между деформацией орогенной клина и эрозионной эксгумацией: данные из-за иллиточного возраста анализа разломов и детритальной термохронологии синтектонических конгломератов в испанских пиренеях» (PDF) , Земля и планетальная наука Письма , 307 (1): 180–190, Bibcode : 2011e & PSL.307..180R , doi : 10.1016/j.epsl.2011.04.036 , получен 2018-05-24
- Riera Rubio, Violeta (2010), Интегрированное исследование (геология и палеонтология) преемственности динозавров (Maastrichtiense) субиреневого склона (PhD Методы) (PDF) , Автономный университет Барселоны , с. 1–274 , Получено 2018-05-24 (на испанском)
- Улластра, Хуан; Masriera, Alicia (2006), «Антиклинала Bóixols - Muntanya de Nargó: стратиграфические и структурные соображения, основанные на новой геологической картографии (каталонская пиренеи, Испания)» (PDF) , трещины геологического музея Барселоны , 14 : 5–35 , Получено 2018-05-24 (по-испански)
- Вилла, Бернат; OMS, Ориол; Марми, Джозеф; Галобарт, Ангел; Gaete, Rodrigo (2006), Последние динозавры пиренеев и его следов» PDF) Учение наук о Земле , 14 : « , (
Внешние ссылки
[ редактировать ]- (на испанском) образование пиренеев
- ТРУМСКОЕ ОБУЧЕНИЕ
- Геологические образования Испании
- Палеонтология в Испании
- Палеонтологические места Европы
- Ископаемые стратиграфические единицы Европы
- Верхний меловой серии Европы
- Серия палеоцена Европы
- Брицеловая Испания
- Маастрихтская сцена
- Данийская сцена
- Танетианская сцена
- Формирования песчаника
- Сланцевые образования
- НАЗНАЧЕНИЕ ФОРМАЦИИ
- Формации алеза
- Конгломератные образования
- Мресевые формирования
- Уголь в Испании
- Речные отложения
- Озерные месторождения
- Аллювиальные месторождения
- Дельтовые месторождения
- Испаритные месторождения
- География провинции Ллейда
- Пре-пироене
- Участники Global GeoParks Network