Противоядие
![]() Доить змею для производства антивинома | |
Клинические данные | |
---|---|
Другие имена | Антиенин, антидионелен |
AHFS / Drugs.com | Монография |
Маршруты администрация | инъекция |
Код ATC | |
Идентификаторы | |
Chemspider |
|
Антионем , также известный как антисветный , антисыворотка яда и иммуноглобулин , является специфическим лечением энвеномации . Он состоит из антител и используется для лечения определенных ядовитых укусов и укусов. [ 1 ] Антионы рекомендуются только в том случае, если существует значительная токсичность или высокий риск токсичности. [ 1 ] Необходимый специфический противоядие зависит от вовлеченных видов. [ 1 ] Это дается инъекцией. [ 1 ]
Побочные эффекты могут быть серьезными. [ 1 ] Они включают сывороточную болезнь , одышку и аллергические реакции, включая анафилаксию . [ 1 ] Антионом традиционно производится путем сбора яда у соответствующего животного и ввода его небольших количеств в домашнее животное. [ 2 ] Антитела, которые затем собираются из крови домашнего животного и очищаются. [ 2 ]
Версии доступны для укусов пауков , укусов змей , укусов рыбы и укусов скорпионов . [ 3 ] Благодаря высокой стоимости продуцирующих антител антител и их короткой годности, когда он не охлаждается, активно исследуются альтернативные методы производства противоядий. [ 4 ] Один из таких различных методов производства включает производство от бактерий. [ 5 ] Другой подход заключается в разработке целенаправленных лекарств (которые, в отличие от антител, обычно являются синтетическими и легче изготавливать в масштабе). [ 6 ]
Антионом был впервые разработан в конце 19 -го века и стал общепринятым в 1950 -х годах. [ 2 ] [ 7 ] Это в списке основных лекарств Всемирной организации здравоохранения . [ 8 ]
Медицинское использование
[ редактировать ]Антионом используется для лечения определенных ядовитых укусов и укусов. [ 1 ] Они рекомендуются только в том случае, если есть значительная токсичность или высокий риск токсичности. [ 1 ] Специфический антител, необходимый зависит от вовлеченных ядовитых видов. [ 1 ]
В США одобренная антивиноем, в том числе для ямы Viper ( Rattlesnake , Copperhead и Water Moccasin ), основан на очищенном продукте, сделанном у овец, известных как Crofab . [ 9 ] Он был одобрен FDA в октябре 2000 года. Антионовое коралловую змею в США больше не производится, и оставшиеся запасы в современном противодействии коралловым змеям, истекшим осенью 2009 года, оставив США без противоядия коралловой змеи. Предпринимаются усилия для получения одобрения на противоядие коралловой змеи, произведенное в Мексике, которое будет работать против коралловых змеиных укусов США, но такое одобрение остается спекулятивным. [ 10 ] [ 11 ]
В качестве альтернативы, когда обычное противоядие недоступно, больницы иногда используют внутривенную версию антипаралитического препарата неостигмин , чтобы задержать эффекты нейротоксической энвенвеномации через змеиный саб. [ 12 ] Также сообщалось о некоторых многообещающих результатах исследований для введения лекарственного средства на носово, как «универсальный противоядие» для нейротоксичного лечения змеи. [ 13 ]
Моновалентный противоядие является специфичным для одного токсина или видов, в то время как поливалент эффективен против множественных токсинов или видов. [ 14 ]
The majority of antivenoms (including all snake antivenoms) are administered intravenously; however, stonefish and redback spider antivenoms are given intramuscularly. The intramuscular route has been questioned in some situations as not uniformly effective.[15]
Side effects
[edit]Antivenoms are purified from animal serum by several processes and may contain other serum proteins that can act as immunogens. Some individuals may react to the antivenom with an immediate hypersensitivity reaction (anaphylaxis) or a delayed hypersensitivity (serum sickness) reaction, and antivenom should, therefore, be used with caution. Although rare, severe hypersensitivity reactions including anaphylaxis to antivenom are possible.[16] Despite this caution, antivenom is typically the sole effective treatment for a life-threatening condition, and once the precautions for managing these reactions are in place, an anaphylactoid reaction is not grounds to refuse to give antivenom if otherwise indicated. Although it is a popular myth that a person allergic to horses "cannot" be given antivenom, the side effects are manageable, and antivenom should be given rapidly as the side effects can be managed.[17]
Method of preparation
[edit]Most antivenoms are prepared by freeze drying (also called cryodesiccation or lyophilization). The process involves freezing the antisera, followed by application of high vacuum. This causes frozen water to sublimate. Sera is reduced to powder with no water content. In such an environment, microorganisms and enzymes cannot degrade the antivenom, and it can be stored for up to 5 years [at normal temperatures]. Liquid antivenoms may also be stored for 5 years, but they must be stored at low temperatures (below 8 °C/46 °F).[18]
Mechanism
[edit]Antivenoms act by binding to and neutralizing venoms. The principle of antivenom is based on that of vaccines, developed by Edward Jenner; however, instead of inducing immunity in the person directly, it is induced in a host animal and the hyperimmunized serum is transfused into the person.[19] The host animals may include horses, donkeys, goats, sheep, rabbits, chickens, llamas, and camels.[20] In addition, opossums are being studied for antivenom production.[21] Antivenoms for medical use are often preserved as freeze-dried ampoules, but some are available only in liquid form and must be kept refrigerated. They are not immediately inactivated by heat, however, so a minor gap in the cold chain is not disastrous.
History
[edit]The use of serum from immunized animals as a treatment for disease was pioneered in 1890 by Emil von Behring and Shibasaburo Kitasato, who first demonstrated that the infectious diseases diphtheria and tetanus could be prevented or cured using transfusions from an immune animal to a susceptible one.[22] On February 10, 1894, Albert Calmette at the Pasteur Institute, and independently Césaire Auguste Phisalix and Gabriel Bertrand at the National Museum of National History in France, announced that they had achieved the same result—treatment of a vulnerable animal with serum from an immunized one—this time using snake venom as the source of protection and disease.[23] Calmette went on subsequently to immunize horses using venom from Indian cobras, and the resulting Serum Antivenimeux (antivenomous serum) became the first commercially-available antivenom product.[24][25]
Natural immunity of snakes to their own venom was observed at least as long ago as 1767, by Felice Fontana in his work Ricerche Fisiche sopra il Veleno della Vipera (Physical Research on the Venom of the Viper).[26] Surgeon-Major Edward Nicholson wrote in the November 1870 Madras Medical Journal that he had witnessed a Burmese snake-catcher inoculating himself with cobra venom. However, the snake-catcher was unsure whether this was actually effective and therefore continued to treat his snakes with care. Nicholson, along with other Britons, began to consider that venom might provide its own cure. Although Scottish surgeon Patrick Russell had noted in the late 18th century that snakes were not affected by their own venom,[27] it was not until the late 19th century that Joseph Fayrer, Lawrence Waddell, and others began to consider venom-based remedies again. However, they and other naturalists working in India did not have the funding to fully develop their theories. In 1895 Sir Thomas Fraser, Professor of Medicine at the University of Edinburgh, picked up Fayrer and Waddell's research to produce a serum to act against cobra venom. His "antivenene" was effective in the laboratory, but failed to make an impact as the public were focused on contemporary Pasteurian discoveries.[28]
In 1901, Vital Brazil, working at the Instituto Butantan in São Paulo, Brazil, developed the first monovalent and polyvalent antivenoms for Central and South American Crotalus and Bothrops genera,[29] as well as for certain species of venomous spiders, scorpions, and frogs. In Mexico in 1905, Daniel Vergara Lope developed an antivenom against scorpion venom, by immunizing dogs.[30] In Australia, the Commonwealth Serum Laboratories (CSL) began antivenom research in the 1920s. CSL has developed antivenoms for the redback spider, funnel-web spiders and all deadly Australian snakes.[31] In the USA, the H.K. Mulford company began producing "Nearctic Crotalidae antivenin"[32] in 1927, via a consortium called the Antivenin Institute of America.[33]
Over time, a variety of improvements have been made in the specificity, potency, and purity of antivenom products, including "salting out" with ammonium sulphate or caprylic acid,[34] enzymatic reduction of antibodies with papain or with pepsin, affinity purification, and a variety of other measures.[35] Many equine facilities now use plasmapheresis to collect blood plasma instead of blood serum.[36][37]
Availability
[edit]There is an overall shortage of antivenom to treat snakebites. Because of this shortage, clinical researchers are considering whether lower doses may be as effective as higher doses in severe neurotoxic snake envenoming.[38]
Antivenom undergoes successive price markups after manufacturing, by licencees, wholesalers and hospitals.[39] When weighed against profitability (especially for sale in poorer regions), the result is that many snake antivenoms, world-wide, are very expensive. Availability, from region to region, also varies.[40]
Internationally, antivenoms must conform to the standards of pharmacopoeia and the World Health Organization (WHO).[20][41]
In 2024 researchers have discovered a synthetic antibody that can neutralize a key type of neurotoxin produced by four different deadly snake species from South Asia, Southeast Asia, and Africa. This might be a step toward an antivenom that could be used on any of the 200 or so dangerous venomous snakes throughout the world.[42]
Antivenoms have been developed for the venoms associated with the following animals:[43]
Spiders
[edit]Antivenom | Species | Country |
---|---|---|
Funnel web spider antivenom | Sydney funnel-web spider | Australia |
Soro antiaracnidico | Brazilian wandering spider | Brazil |
Soro antiloxoscelico | Recluse spider | Brazil |
Suero antiloxoscelico | Chilean recluse | Chile |
Aracmyn | All species of Loxosceles and Latrodectus | Mexico |
Redback spider antivenom | Redback spider | Australia |
Black widow spider (Latrodectus Mactans) antivenin (equine origin) | Southern black widow spider | United States |
SAIMR spider antivenom | Button spider | South Africa |
Anti-Latrodectus antivenom | Black widow spider | Argentina |
Acarids
[edit]Antivenom | Species | Country |
---|---|---|
Tick antivenom | Paralysis tick | Australia |
Insects
[edit]Antivenom | Species | Country |
---|---|---|
soro antilonomico | Lonomia obliqua caterpillar | Brazil |
Scorpions
[edit]Antivenom | Species | Country |
---|---|---|
Scorpion Venom Anti Serum (India) Purified lyophilized enzyme refined Equine Immunoglobulins | Buthus tamulus | India |
ANTISCORP - Premium (Scorpion Venom Antiserum North Africa) Purified lyophilized enzyme refined Equine Immunoglobulins | Androctonus amoerexi and Leiurus quinquestraiatus | India |
INOSCORPI MENA (Middle East and North Africa) | Androctonus australis, Androctonus mauritanicus, Androctonus crassicauda, Buthus occitanus mardochei, Buthus occitanus occitanus, Leiurus quinquestriatus quinquestriatus, Leiurus quinquestriatus hebreus | Spain |
Alacramyn | Centruroides limpidus, C. noxius, C. suffusus | Mexico |
Suero Antialacran | Centruroides limpidus, C. noxius, C. suffusus | Mexico |
Tunisian polyvalent antivenom | All Iranian scorpions | Tunisia |
Anti-Scorpion Venom Serum I.P. (AScVS) | Indian red scorpion | India |
Anti-scorpionique | Androctonus spp., Buthus spp. | Algeria |
Scorpion antivenom | Black scorpion, Buthus occitanus | Morocco |
Soro antiscorpionico | Tityus spp. | Brazil |
SAIMR scorpion antivenin | Parabuthus spp. | South Africa |
Purified prevalent Anti-Scorpion Serum (equine source) | Leiurus spp. and Androctonus scorpions | Egypt |
Marine animals
[edit]Antivenom | Species | Country |
---|---|---|
CSL box jellyfish antivenom | Box jellyfish | Australia |
CSL stonefish antivenom | Stonefish | Australia |
Snakes
[edit]Antivenom | Species | Country |
---|---|---|
PANAF PREMIUM (Sub-Sahara Africa) Purified lyophilized enzyme refined Equine Immunoglobulins [44] | Echis ocellatus, Echis leucogaster, Echis carinatus, Bitis arietans, Bitis rhinoceros, Bitis nasicornis, Bitis gabonica, Dendroaspis polylepis, Dendroaspis viridis, Dendroaspis angusticeps, Dendroaspis jamesoni, Naja nigricollis, Naja melanoleuca and Naja haje | India |
Snake Venom Antiserum (India) Purified lyophilized enzyme refined Equine Immunoglobulins | Naja naja, Vipera russelii and Echis carinatus | India |
INOSERP MENA (Middle East and North Africa) | Bitis arietans, Cerastes cerastes, Cerastes gasperettii,Cerastes vipera, Daboia deserti, Daboia mauritanica, Daboia palaestinae, Echis carinatus sochureki, Echis coloratus, Echis khosatzkii, Echis leucogaster, Echis megalocephalus, Echis omanensis, Echis pyramidum, Macrovipera lebetina obtusa, Macrovipera lebetina transmediterranea, Macrovipera lebetina turanica, Montivipera bornmuelleri, Montivipera raddei kurdistanica, Pseuocerastes fieldi, Pseudocerastes persicus, Vipera latastei, Naja haje, Naja nubiae, Naja pallida and Walterinnesia aegyptia | Spain |
INOSERP PAN-AFRICA (Sub-Sahara Africa) | Echis ocellatus, Bitis arietans, Dendroaspis polylepis and Naja nigricollis | Spain |
EchiTAbG (Sub-Sahara Africa)[45] | Echis ocellatus, Echis pyramidum | Wales, UK |
Polyvalent snake antivenom Anavip | South American rattlesnake Crotalus durissus and fer-de-lance Bothrops asper | Mexico (Instituto Bioclon); South America |
Polyvalent snake antivenom | Saw-scaled viper Echis carinatus, Russell's viper Daboia russelli, spectacled cobra Naja naja, common krait Bungarus caeruleus (These are the "Big Four" snakes which account for nearly 75% of snakebites in India). | India |
Death adder antivenom | Death adder | Australia |
Taipan antivenom | Taipan | Australia |
Black snake antivenom | Pseudechis spp. | Australia |
Tiger snake antivenom | Australian copperheads, tiger snakes, Pseudechis spp., rough-scaled snake | Australia |
Brown snake antivenom | Brown snakes | Australia |
Polyvalent snake antivenom | Australian snakes as listed above | Australia |
Sea snake antivenom | Sea snakes | Australia |
Vipera tab | Vipera spp. | UK |
Polyvalent crotalid antivenin (CroFab—Crotalidae Polyvalent Immune Fab (Ovine)) | North American pit vipers (all rattlesnakes, copperheads, and cottonmouths) | North America |
Soro antibotropicocrotalico | Pit vipers and rattlesnakes | Brazil |
Antielapidico | Coral snakes | Brazil |
SAIMR polyvalent antivenom | Mambas, cobras, Rinkhalses, puff adders (Unsuitable small adders: B. worthingtoni, B. atropos, B. caudalis, B. cornuta, B. heraldica, B. inornata, B. peringueyi, B. schneideri, B. xeropaga) | South Africa[46] |
SAIMR echis antivenom | Saw-scaled vipers | South Africa |
SAIMR Boomslang antivenom | Boomslang | South Africa |
Panamerican serum | Coral snakes | Costa Rica |
Anticoral | Coral snakes | Costa Rica |
Anti-mipartitus antivenom | Coral snakes | Costa Rica |
Anticoral monovalent | Coral snakes | Costa Rica |
Antimicrurus | Coral snakes | Argentina |
Coralmyn | Coral snakes | Mexico |
Anti-micruricoscorales | Coral snakes | Colombia |
crotalidae immune F(ab')2 (equine)) (Anavip) | North American species of Crotalinae | US |
Terminology
[edit]The name "antivenin" comes from the French word venin, meaning venom, which in turn was derived from Latin venenum, meaning poison.[47]
Historically, the term antivenin was predominant around the world, its first published use being in 1895.[48] In 1981, the World Health Organization decided that the preferred terminology in the English language would be venom and antivenom rather than venin and antivenin or venen and antivenene.[49]
References
[edit]- ^ Jump up to: a b c d e f g h i World Health Organization (2009). Stuart MC, Kouimtzi M, Hill SR (eds.). WHO Model Formulary 2008. World Health Organization. pp. 396–397. hdl:10665/44053. ISBN 9789241547659.
- ^ Jump up to: a b c Dart RC (2004). Medical Toxicology. Lippincott Williams & Wilkins. pp. 250–251. ISBN 9780781728454. Archived from the original on 2017-01-09.
- ^ British national formulary : BNF 69 (69 ed.). British Medical Association. 2015. p. 43. ISBN 9780857111562.
- ^ Knudsen C, Laustsen AH (April 2018). "Recent Advances in Next Generation Snakebite Antivenoms". Tropical Medicine and Infectious Disease. 3 (2): 42. doi:10.3390/tropicalmed3020042. PMC 6073149. PMID 30274438.
- ^ Molteni M. "Bacteria Are Brewing Up the Next Generation of Antivenoms". Wired – via www.wired.com.
- ^ "How to simplify the treatment of snake bites". The Economist. 2021-01-02. ISSN 0013-0613. Retrieved 2021-01-02.
- ^ Gad SC (2007). Handbook of Pharmaceutical Biotechnology. John Wiley & Sons. p. 692. ISBN 9780470117101. Archived from the original on 2017-01-09.
- ^ World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
- ^ "CroFab Crotalidae Polyvalent Immune Fab (Ovine)". SavageLabs.com. Archived from the original on 2016-03-03. Retrieved 2016-02-08. Link to PDF for full prescribing information, retrieved 11/11/12
- ^ "Coral Snake & Antivenom FAQ's". Florida Poison Information Center - Tampa. May 2017. Archived from the original on 2019-11-01. Retrieved October 31, 2019.
- ^ "North American Micrurus (Coral Snake Venoms)". Toxnet: Toxicology Data Network. September 15, 2015. Retrieved October 31, 2019.
- ^ Franklin, Deborah, "Potential Treatment For Snakebites Leads To A Paralyzing Test Shortages of coral snake antivenom were previously reported,[24][25][26] but one source states that production has resumed[27] and, as of July 2021, Pfizer indicates that antivenom is available.[28] Archived 2014-08-09 at the Wayback Machine", NPR.org, July 31, 2013.
- ^ "Universal antidote for snakebite: Experimental trial represents promising step Archived 2014-07-07 at the Wayback Machine", California Academy of Sciences via Science Daily, May 28, 2014.
- ^ Whyte I (2012). "Antivenom update" (PDF). Australian Prescriber. 35 (5): 152–155. doi:10.18773/austprescr.2012.069.
- ^ Isbister GK (December 2002). "Failure of intramuscular antivenom in Red-back spider envenoming". Emergency Medicine. 14 (4): 436–439. doi:10.1046/j.1442-2026.2002.00356.x. PMID 12534488.
- ^ Bhoite RR, Bhoite GR, Bagdure DN, Bawaskar HS (2015). "Anaphylaxis to scorpion antivenin and its management following envenomation by Indian red scorpion, Mesobuthus tamulus". Indian Journal of Critical Care Medicine. 19 (9): 547–549. doi:10.4103/0972-5229.164807. PMC 4578200. PMID 26430342.
- ^ See, for example, the Antivenom Precautions paragraph of the Medication section of Forster J (2006-03-14). "Snake Envenomations, Sea". eMedicine Emergency Medicine (environmental). Archived from the original on 26 June 2006. Retrieved 2006-06-25.
- ^ Warrell D (2016). Guidelines for the management of snakebites (2nd ed.). New Delhi: World Health Organization. p. 111,136,192. ISBN 9788177394979.
- ^ Gad S. Handbook of Pharmaceutical Biotechnology. p. 692.
- ^ Jump up to: a b "Guidelines for the production, control and regulation of snake antivenom immunoglobulins" (PDF). WHO Technical Series No, 1004. WHO. 2017. Retrieved 15 January 2020.
- ^ "Opossum Compounds Isolated to Help Make Antivenom". Scientific American. 2015-03-30. Retrieved 2020-02-01.
- ^ "Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren". Deutsche Medizinische Wochenschrift. 16 (49): 1113–1114. December 1890. doi:10.1055/s-0029-1207589. ISSN 0012-0472. S2CID 80469638.
- ^ Bochner R (8 June 2016). "Paths to the discovery of antivenom serotherapy in France". Journal of Venomous Animals and Toxins Including Tropical Diseases. 22 (20): 20. doi:10.1186/s40409-016-0074-7. PMC 4898362. PMID 27279829.
- ^ "Venoms, venomous animals and antivenomous serum-therapeutics / by A. Calmette ; translated by Ernest E. Austen". Wellcome Collection. Retrieved 2023-05-24.
- ^ "Serum Antivenimeux Desseche, 10cc - Dried Antivenin Serum for Snake Bites". Smithsonian Institution. Retrieved 2023-05-24.
- ^ Fontana F (1767). Ricerche fisiche sopra il veleno della vipera. Wellcome Library. In Lucca : Nella stamperia di Jacopo Giusti.
- ^ Bhaumik R (2018-11-01). "Colonial Encounter on Indian Snakes and their Venoms: The Transmission and Transformation of Western Ophiological Knowledge in British India, 1780s-1910s" (PDF). Indian Journal of History of Science. 53 (4). doi:10.16943/ijhs/2018/v53i4/49536. ISSN 0019-5235.
- ^ Bhaumik R (2018-11-01). "Colonial Encounter on Indian Snakes and their Venoms: The Transmission and Transformation of Western Ophiological Knowledge in British India, 1780s-1910s" (PDF). Indian Journal of History of Science. 53 (4). doi:10.16943/ijhs/2018/v53i4/49536. ISSN 0019-5235.
- ^ De Franco M, Kalil J (July 2014). "The Butantan Institute: history and future perspectives". PLOS Neglected Tropical Diseases. 8 (7): e2862. doi:10.1371/journal.pntd.0002862. PMC 4080994. PMID 24992341.
- ^ Jean-Philippe C, Alfredo C, Leslie B, Alejandro A (December 2020). "Factors involved in the resilience of incidence and decrease of mortality from scorpion stings in Mexico". Toxicon. 188: 65–75. Bibcode:2020Txcn..188...65C. doi:10.1016/j.toxicon.2020.10.011. PMID 33065199. S2CID 223558071.
- ^ "CSL antivenoms 1956". Power House Museum. Archived from the original on 7 August 2016. Retrieved 24 February 2017.
- ^ "Antivenin Nearctic Crotalidae - North American Anti-Snake-Bite Serum". Smithsonian Institution. Retrieved 2023-05-24.
- ^ do Amaral A (1927). Bulletin of the Antiven Institute of America. Vol. 1 (1st ed.). US: Antivenin Institute of America.
- ^ Rojas G, Jiménez JM, Gutiérrez JM (March 1994). "Caprylic acid fractionation of hyperimmune horse plasma: description of a simple procedure for antivenom production". Toxicon. 32 (3): 351–363. Bibcode:1994Txcn...32..351R. doi:10.1016/0041-0101(94)90087-6. PMID 8016856.
- ^ Boyer L, Degan J, Ruha AM, Mallie J, Mangin E, Alagón A (December 2013). "Safety of intravenous equine F(ab')2: insights following clinical trials involving 1534 recipients of scorpion antivenom". Toxicon. 76: 386–393. doi:10.1016/j.toxicon.2013.07.017. PMID 23916602.
- ^ Levine L, Broderick EJ (1970). "The plasmapheresis of hyperimmunized horses". Bulletin of the World Health Organization. 42 (6): 998–1000. hdl:10665/262354. PMC 2427561. PMID 5312259.
- ^ «Лошади ключ к созданию противодействия для одобрения FDA» . Фронтеры . 2011-08-02 . Получено 2023-05-24 .
- ^ Agarwal R, Aggarwal AN, Gupta D, Behera D, Jindal SK (июнь 2005 г.). «Низкая доза противоядия змеи так же эффективна, как и высокая доза у пациентов с тяжелой нейротоксичной змеей» . Журнал экстренной медицины . 22 (6): 397–399. doi : 10.1136/emj.2004.020727 . PMC 1726801 . PMID 15911942 .
- ^ Льюис Д. (11 сентября 2015 г.). «Почему один флакон противоядия может стоить 14 000 долларов» . Смитсоновский институт . Получено 9 января 2017 года .
- ^ «Антионовое снабжение для укусов змей» . www.pharmaceutical-technology.com . 24 апреля 2019 года.
- ^ Theakston Rd, Warrell DA, Griffiths E (апрель 2003 г.). «Отчет о семинаре ВОЗ о стандартизации и контроле противоядий». Токсикона . 41 (5): 541–57. Bibcode : 2003txcn ... 41..541t . doi : 10.1016/s0041-0101 (02) 00393-8 . PMID 12676433 .
- ^ Мощный новый противоядие повышает надежды на универсальное решение для летальных змеиных кубиков (отчет). 2024-02-21. doi : 10.1126/science.zqvsmhr .
- ^ «Приложение: противодействие таблицам». Клиническая токсикология . 41 (3): 317–27. 2003. DOI : 10.1081/CLT-120021117 . S2CID 218867125 .
- ^ Кальвет JJ, Ариас А.С., Родригес Y, (Сентябрь 2016 г.). Echis ocelis: Токсичный 119 Elsevier: 280–288. Bibcode : 2016txcn . два 10.1016/j.toxicon.2016.06.022: 27377229PMID
- ^ Антионом змеи для Sub - Arana Africa Echitabg (PDF) , Всемирная организация здравоохранения, 20 июня 2019 года , извлеченная 14 декабря 2019 года.
- ^ Spawls S, Branch B (1995). Опасные змеи Африки. Ральф Кертис книги . Дубай: Восточная пресса. п. 192. ISBN 0-88359-029-8 .
- ^ Вайнштейн С.А. (сентябрь 2015 г.). «Змеиные яды: краткий трактат об этимологии, происхождении терминологии и определениях». Токсикона . 103 Elsevier: 188–195. Bibcode : 2015txcn..103..188W . doi : 10.1016/j.toxicon.2015.07.005 . PMID 26166305 .
- ^ «Антифицировать» . Merriam-Webster.com Словарь . Мерриам-Уэбстер.
- ^ Всемирная организация здравоохранения (1981). Прогресс в характеристике ядов и стандартизации противоядий . Женева: Кто компенсирует публикации. п. 5. ISBN 92-4-170058-0 .
Внешние ссылки
[ редактировать ]- Антиведом Индекс , совместный проект ассоциации зоопарков и аквариумов и Американской ассоциации центров контроля ядовитых
- Программа реагирования на ядом пожарной спасения в Майами-Дейде Службы