~~~~~~~~~~~~~~~~~~~~ Arc.Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~ 
Номер скриншота №:
✰ D43CD4010E3A091B2D740C462CC9175F__1717780260 ✰
Заголовок документа оригинал.:
✰ Vector projection - Wikipedia ✰
Заголовок документа перевод.:
✰ Векторная проекция — Википедия, бесплатная энциклопедия ✰
Снимок документа находящегося по адресу (URL):
✰ https://en.wikipedia.org/wiki/Vector_projection ✰
Адрес хранения снимка оригинал (URL):
✰ https://arc.ask3.ru/arc/aa/d4/5f/d43cd4010e3a091b2d740c462cc9175f.html ✰
Адрес хранения снимка перевод (URL):
✰ https://arc.ask3.ru/arc/aa/d4/5f/d43cd4010e3a091b2d740c462cc9175f__translat.html ✰
Дата и время сохранения документа:
✰ 11.06.2024 15:24:32 (GMT+3, MSK) ✰
Дата и время изменения документа (по данным источника):
✰ 7 June 2024, at 20:11 (UTC). ✰ 

~~~~~~~~~~~~~~~~~~~~~~ Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~~ 
Сервисы Ask3.ru: 
 Архив документов (Снимки документов, в формате HTML, PDF, PNG - подписанные ЭЦП, доказывающие существование документа в момент подписи. Перевод сохраненных документов на русский язык.)https://arc.ask3.ruОтветы на вопросы (Сервис ответов на вопросы, в основном, научной направленности)https://ask3.ru/answer2questionТоварный сопоставитель (Сервис сравнения и выбора товаров) ✰✰
✰ https://ask3.ru/product2collationПартнерыhttps://comrades.ask3.ru


Совет. Чтобы искать на странице, нажмите Ctrl+F или ⌘-F (для MacOS) и введите запрос в поле поиска.
Arc.Ask3.ru: далее начало оригинального документа

Векторная проекция — Википедия, бесплатная энциклопедия Jump to content

Векторная проекция

Из Википедии, бесплатной энциклопедии

Векторная проекция (также известная как векторная компонента или векторное разрешение ) вектора , a на) ненулевой вектор b является ортогональной проекцией a на прямую параллельную b на ( или . Проекцию a на b часто записывают как или а б .

Компонент вектора или решающий вектор перпендикуляра к b , также называемый векторным отклонением a иногда от b (обозначается или а б ), [1] — это ортогональная проекция a на плоскость (или, вообще, гиперплоскость ) ортогональную b , . Поскольку оба и являются векторами, а их сумма равна a , то отклонение a от b определяется выражением:

Проекция a на b ( a1 ) и отторжение от b ( a2 ) a .
Когда 90° < θ ≤ 180° , a 1 имеет противоположное направление относительно b .

Для упрощения обозначений в этой статье определяются и Таким образом, вектор параллельно вектор ортогонален и

Проекцию a на b можно разложить на направление и скалярную величину, записав ее как где является скаляром, называемым скалярной проекцией a на b , а единичный вектор в направлении b . Скалярная проекция определяется как [2]

оператор обозначает скалярное произведение , ‖ a ‖ — длина a и , а θ угол между a b где . Скалярная проекция по абсолютной величине равна длине векторной проекции со знаком минус, если направление проекции противоположно направлению b , то есть если угол между векторами больше 90 градусов.

Векторную проекцию можно рассчитать, используя скалярное произведение и как:

Обозначения [ править ]

В этой статье используется соглашение, согласно которому векторы обозначаются жирным шрифтом (например, ) 1 , а скаляры пишутся обычным шрифтом (например, ) 1 .

Скалярное произведение векторов a и b записывается как , норма a пишется ‖ a ‖, угол между a и b обозначается θ .

Определения, основанные на угле θ [ править ]

Скалярная проекция [ править ]

Скалярная проекция a на b является скаляром, равным

где θ — угол между a и b .

Скалярную проекцию можно использовать в качестве масштабного коэффициента для вычисления соответствующей векторной проекции.

Векторная проекция [ править ]

Векторная проекция a на b — это вектор, величина которого является скалярной проекцией a на b с тем же направлением, что и b . А именно, оно определяется как

где - соответствующая скалярная проекция, как определено выше, и единичный вектор того же направления, что и b :

Векторное отклонение [ править ]

По определению, векторное отклонение a от b равно:

Следовательно,

Определения с точки зрения a и b [ править ]

Когда θ неизвестен, косинус θ можно вычислить через a и b с помощью следующего свойства скалярного произведения a b

Скалярная проекция [ править ]

Благодаря вышеупомянутому свойству скалярного произведения определение скалярной проекции принимает вид: [2]

В двух измерениях это становится

Векторная проекция [ править ]

Точно так же определение векторной проекции a на b принимает вид: [2]

что эквивалентно либо
или [3]

Скалярное отклонение [ править ]

В двух измерениях скалярное отклонение эквивалентно на проекции , который повернут на 90° влево. Следовательно,

Такое скалярное произведение называется «скалярным произведением преступника». [4]

Векторное отклонение [ править ]

По определению,

Следовательно,

Используя скалярное отклонение с использованием скалярного произведения преступника, это дает

Свойства [ править ]

Если 0° ≤ θ этом случае, скалярная проекция a на b ≤ 90°, как в совпадает с длиной векторной проекции.

Скалярная проекция [ править ]

Скалярная проекция a на b — это скаляр, имеющий отрицательный знак, если 90 градусов < θ 180 градусов . Она совпадает с длиной c векторной проекции, если угол меньше 90°. Точнее:

  • а 1 = ‖ а 1 ‖, если 0° ≤ θ ≤ 90° ,
  • а 1 знак равно −‖ а 1 ‖, если 90° < θ ≤ 180° .

Векторная проекция [ править ]

Векторная проекция a на b — это вектор a1 , который либо равен нулю, либо параллелен b . Точнее:

  • a 1 = 0, если θ = 90° ,
  • a 1 и b имеют одинаковое направление, если 0° ≤ θ < 90° ,
  • a1 90 и b имеют противоположные направления, если ° < θ ≤ 180° .

Векторное отклонение [ править ]

Отбрасывание вектора a на b представляет собой вектор a 2 , который либо равен нулю, либо ортогонален b . Точнее:

  • a 2 = 0, если θ = 0° или θ = 180° ,
  • a2 если ортогонален b, 0 < θ < 180° ,

Матричное представление [ править ]

Ортогональная проекция может быть представлена ​​матрицей проекции. [ нужна цитата ] Чтобы спроецировать вектор на единичный вектор a = ( a x , a y , a z ) , его необходимо умножить на эту матрицу проекции:

Использует [ править ]

Векторная проекция является важной операцией в Граму – Шмидту ортонормализации баз векторного пространства по . Он также используется в теореме о разделяющей оси , чтобы определить, пересекаются ли две выпуклые формы.

Обобщения [ править ]

Поскольку понятия длины вектора и угла между векторами можно обобщить на любое n -мерное пространство внутреннего произведения , это справедливо и для понятий ортогональной проекции вектора, проекции вектора на другой и отклонения вектора от другого. .

В некоторых случаях внутренний продукт совпадает со скалярным произведением. Всякий раз, когда они не совпадают, в формальных определениях проекции и отклонения вместо скалярного произведения используется внутренний продукт. Для трехмерного пространства внутреннего продукта понятия проекции вектора на другой и отклонения вектора от другого можно обобщить до понятий проекции вектора на плоскость и отклонения вектора от плоскости. [5] Проекция вектора на плоскость — это его ортогональная проекция на эту плоскость. Отбрасыванием вектора от плоскости называется его ортогональная проекция на прямую, ортогональную этой плоскости. Оба являются векторами. Первая параллельна плоскости, вторая ортогональна.

Для данного вектора и плоскости сумма проекции и отклонения равна исходному вектору. Аналогично, для пространств внутреннего продукта с более чем тремя измерениями понятия проекции на вектор и отклонения от вектора могут быть обобщены до понятий проекции на гиперплоскость и отклонения от гиперплоскости . В геометрической алгебре они могут быть далее обобщены до понятий проецирования и отклонения общего мультивектора на/от любой обратимой k -лопасти.

См. также [ править ]

Ссылки [ править ]

  1. ^ Первасс, Г. (2009). Геометрическая алгебра с приложениями в технике . п. 83. ИСБН  9783540890676 .
  2. ^ Перейти обратно: а б с «Скалярные и векторные проекции» . www.ck12.org . Проверено 7 сентября 2020 г.
  3. ^ «Скалярное произведение и прогнозы» .
  4. ^ Хилл, Ф.С. младший (1994). Графические драгоценные камни IV . Сан-Диего: Академическая пресса. стр. 138–148.
  5. ^ MJ Бейкер, 2012. Проекция вектора на плоскость. Опубликовано на сайте euclideanspace.com.

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец оригинального документа.
Arc.Ask3.Ru
Номер скриншота №: D43CD4010E3A091B2D740C462CC9175F__1717780260
URL1:https://en.wikipedia.org/wiki/Vector_projection
Заголовок, (Title) документа по адресу, URL1:
Vector projection - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть, любые претензии не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, денежную единицу можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)