Jump to content

Выражение в закрытой форме

В математике выражение , находится в замкнутой форме если оно образовано константами , переменными и конечным набором основных функций, связанных арифметическими операциями ( +, −, ×, / и целыми степенями ) и композицией функций . Обычно разрешенными функциями являются n-й корень степени , показательная функция , логарифм и тригонометрические функции . [1] Однако набор основных функций зависит от контекста.

Проблема закрытой формы возникает, когда вводятся новые способы определения математических объектов , таких как пределы , ряды и интегралы : для заданного объекта, заданного с помощью таких инструментов, естественная проблема состоит в том, чтобы найти, если возможно, в замкнутой форме. выражение этого объекта , то есть выражение этого объекта в терминах предыдущих способов его определения.

Пример: корни многочленов [ править ]

Квадратичная формула

является замкнутой формой решения общего квадратного уравнения

В более общем смысле, в контексте полиномиальных уравнений , замкнутая форма решения — это решение в радикалах ; то есть выражение в закрытой форме, для которого разрешенными функциями являются только n -корни и операции с полями. Фактически теория поля позволяет показать, что если решение полиномиального уравнения имеет замкнутую форму, включающую экспоненты, логарифмы или тригонометрические функции, то оно имеет и замкнутую форму, не включающую эти функции. [ нужна ссылка ]

Имеются выражения в радикалах для всех решений уравнений кубической степени (3-й степени) и уравнений четвертой степени (4-й степени). Размер этих выражений значительно увеличивается с увеличением степени, что ограничивает их полезность.

В более высоких степенях теорема Абеля – Руффини утверждает, что существуют уравнения, решения которых не могут быть выражены в радикалах и, следовательно, не имеют замкнутых форм. Простейшим примером является уравнение Теория Галуа предоставляет алгоритмический метод определения того, может ли конкретное полиномиальное уравнение быть решено в радикалах.

Символическая интеграция [ править ]

Символьное интегрирование состоит по существу из поиска замкнутых форм первообразных функций, заданных выражениями в замкнутой форме. В этом контексте основными функциями, используемыми для определения замкнутых форм, обычно являются логарифмы , показательная функция и корни полинома . Функции, имеющие замкнутую форму для этих основных функций, называются элементарными функциями и включают тригонометрические функции , обратные тригонометрические функции , гиперболические функции и обратные гиперболические функции .

Таким образом, фундаментальная проблема символического интегрирования состоит в том, чтобы, учитывая элементарную функцию, заданную выражением в замкнутой форме, решить, является ли ее первообразная элементарной функцией, и, если да, найти выражение в замкнутой форме для этой первообразной.

Для рациональных функций ; то есть для дробей двух полиномиальных функций ; первообразные не всегда являются рациональными дробями, но всегда представляют собой элементарные функции, которые могут включать логарифмы и корни многочленов. Обычно это доказывается разложением на частичные дроби . Необходимость логарифмов и многочленных корней иллюстрируется формулой

что действительно, если и являются взаимно простыми полиномами, такими что является свободным от квадратов и

Альтернативные определения [ править ]

Изменение определения «хорошо известное» для включения дополнительных функций может изменить набор уравнений с решениями в замкнутой форме. Многие кумулятивные функции распределения не могут быть выражены в замкнутой форме, если только не считать, что специальные функции, такие как функция ошибок или гамма-функция, хорошо известны. Уравнение пятой степени можно решить, если включить в него общие гипергеометрические функции , хотя решение слишком сложно с алгебраической точки зрения, чтобы быть полезным. Для многих практических компьютерных приложений вполне разумно предположить, что гамма-функция и другие специальные функции хорошо известны, поскольку численные реализации широко доступны.

Аналитическое выражение [ править ]

Аналитическое выражение (также известное как выражение в аналитической форме или аналитическая формула ) — это математическое выражение, построенное с использованием хорошо известных операций, которые легко поддаются вычислениям. [ нечеткий ] [ нужна ссылка ] Подобно выражениям закрытой формы, набор разрешенных хорошо известных функций может варьироваться в зависимости от контекста, но всегда включает в себя основные арифметические операции (сложение, вычитание, умножение и деление), возведение в степень до действительного показателя (который включает извлечение n корень ), логарифмы и тригонометрические функции.

Однако класс выражений, считающихся аналитическими, обычно шире, чем класс выражений в замкнутой форме. В частности, обычно допускаются специальные функции , такие как функции Бесселя и гамма-функция , а также часто бесконечные ряды и цепные дроби . С другой стороны, пределы вообще и интегралы в частности обычно исключаются. [ нужна ссылка ]

Если аналитическое выражение включает в себя только алгебраические операции (сложение, вычитание, умножение, деление и возведение в степень до рационального показателя) и рациональные константы, то его более конкретно называют алгебраическим выражением .

Сравнение разных классов выражений [ править ]

Выражения в замкнутой форме — важный подкласс аналитических выражений, которые содержат конечное число применений известных функций. В отличие от более широких аналитических выражений, выражения в замкнутой форме не включают бесконечные ряды или цепные дроби ; ни один из них не включает интегралы или пределы . Действительно, по теореме Стоуна-Вейерштрасса любая непрерывная функция на единичном интервале может быть выражена как предел полиномов, поэтому любой класс функций, содержащих полиномы и замкнутых в пределах, обязательно будет включать все непрерывные функции.

Точно так же , что уравнение или система уравнений говорят имеет решение в замкнутой форме тогда и только тогда, когда хотя бы одно решение может быть выражено в виде выражения в замкнутой форме; и говорят, что оно имеет аналитическое решение тогда и только тогда, когда хотя бы одно решение может быть выражено в виде аналитического выражения. Существует тонкое различие между « функцией замкнутой формы » и « замкнутой формы числом » при обсуждении «решения в замкнутой форме», обсуждаемом в ( Chow 1999 ) и ниже . Закрытое или аналитическое решение иногда называют явным решением .

Арифметические выражения Полиномиальные выражения Алгебраические выражения Выражения закрытой формы Аналитические выражения Математические выражения
Постоянный Да Да Да Да Да Да
Элементарная арифметическая операция Да Только сложение, вычитание и умножение. Да Да Да Да
Конечная сумма Да Да Да Да Да Да
Конечный продукт Да Да Да Да Да Да
Конечная цепная дробь Да Нет Да Да Да Да
Переменная Нет Да Да Да Да Да
Они полностью объяснят Нет Да Да Да Да Да
Целочисленный корень n-й степени Нет Нет Да Да Да Да
Рациональный показатель Нет Нет Да Да Да Да
Целочисленный факториал Нет Нет Да Да Да Да
Иррациональный показатель Нет Нет Нет Да Да Да
Экспоненциальная функция Нет Нет Нет Да Да Да
Логарифм Нет Нет Нет Да Да Да
Тригонометрическая функция Нет Нет Нет Да Да Да
Обратная тригонометрическая функция Нет Нет Нет Да Да Да
Гиперболическая функция Нет Нет Нет Да Да Да
Обратная гиперболическая функция Нет Нет Нет Да Да Да
Корень многочлена , не являющегося алгебраическим решением Нет Нет Нет Нет Да Да
Гамма-функция и факториал нецелого числа Нет Нет Нет Нет Да Да
Функция Бесселя Нет Нет Нет Нет Да Да
Специальная функция Нет Нет Нет Нет Да Да
Бесконечная сумма (ряд) (включая степенной ряд ) Нет Нет Нет Нет Только конвергентный Да
Бесконечный продукт Нет Нет Нет Нет Только конвергентный Да
Бесконечная цепная дробь Нет Нет Нет Нет Только конвергентный Да
Лимит Нет Нет Нет Нет Нет Да
Производная Нет Нет Нет Нет Нет Да
Интеграл Нет Нет Нет Нет Нет Да

Работа с выражениями незамкнутой формы [ править ]

Преобразование в выражения закрытой формы [ править ]

Выражение:

не находится в замкнутой форме, поскольку суммирование предполагает бесконечное число элементарных операций. Однако суммируя геометрическую прогрессию, это выражение можно выразить в замкнутом виде: [2]

теория Дифференциальная Галуа

Интеграл выражения в замкнутой форме сам по себе может выражаться как выражение в замкнутой форме, а может и не выражаться. Это исследование называется дифференциальной теорией Галуа по аналогии с алгебраической теорией Галуа.

Основная теорема дифференциальной теории Галуа принадлежит Жозефу Лиувиллю в 1830-х и 1840-х годах и поэтому называется теоремой Лиувилля .

Стандартный пример элементарной функции, первообразная которой не имеет выражения в замкнутой форме:

единственной первообразной которой является ( с точностью до мультипликативной константы) функция ошибок :

Математическое моделирование и компьютерное моделирование [ править ]

Уравнения или системы, слишком сложные для решения в замкнутой форме или аналитических решений, часто можно анализировать с помощью математического моделирования и компьютерного моделирования (пример из физики см. [3] ).

Номер закрытой формы [ править ]

Было предложено три подполя комплексных чисел C как кодирование понятия «числа замкнутой формы»; в порядке возрастания общности это числа Лиувилля (не путать с числами Лиувилля в смысле рационального приближения), числа EL и элементарные числа . Числа Лиувилля , обозначаемые L , образуют наименьшее алгебраически замкнутое подполе C, замкнутое относительно возведения в степень и логарифма (формально, пересечение всех таких подполей) — то есть числа, которые включают явное возведение в степень и логарифмы, но допускают явные и неявные полиномы (корни полиномы); это определено в ( Ритт 1948 , стр. 60). Первоначально L называлось элементарными числами , но теперь этот термин используется более широко для обозначения чисел, определенных явно или неявно в терминах алгебраических операций, экспонент и логарифмов. Более узкое определение, предложенное в ( Chow 1999 , стр. 441–442), обозначенное E и называемое числами EL , представляет собой наименьшее подполе C, замкнутое относительно возведения в степень и логарифма - оно не обязательно должно быть алгебраически замкнутым и соответствует явные алгебраические, экспоненциальные и логарифмические операции. «EL» означает как «экспоненциально-логарифмический», так и сокращение от «элементарный».

Является ли число числом замкнутой формы, зависит от того, является ли оно трансцендентным . Формально числа Лиувилля и элементарные числа содержат алгебраические числа и включают некоторые, но не все, трансцендентные числа. Напротив, числа EL не содержат все алгебраические числа, но включают некоторые трансцендентные числа. Числа в замкнутой форме можно изучать с помощью трансцендентной теории чисел , в которой основным результатом является теорема Гельфонда-Шнайдера , а основным открытым вопросом является гипотеза Шануэля .

Численные вычисления [ править ]

Для целей числовых вычислений использование замкнутой формы вообще не обязательно, поскольку можно эффективно вычислить многие пределы и интегралы. Некоторые уравнения не имеют решения в замкнутой форме, например, те, которые представляют задачу трех тел или модель Ходжкина – Хаксли . Поэтому будущие состояния этих систем необходимо рассчитывать численно.

Преобразование из числовых форм [ править ]

Существует программное обеспечение, которое пытается найти выражения в замкнутой форме для числовых значений, включая RIES. [4] идентифицировать в Maple [5] и СимПи , [6] Инвертор Плуффа, [7] и Обратный символьный калькулятор . [8]

См. также [ править ]

Ссылки [ править ]

  1. ^ Также допускаются гиперболические функции , обратные тригонометрические функции и обратные гиперболические функции , поскольку их можно выразить через предыдущие.
  2. ^ Холтон, Глин. «Численное решение, решение в закрытой форме» . Riskglossary.com . Архивировано из оригинала 4 февраля 2012 года . Проверено 31 декабря 2012 г.
  3. ^ Барсан, Виктор (2018). «Решения Зиверта трансцендентных уравнений, обобщенные функции Ламберта и физические приложения» . Открытая физика . 16 . Де Грюйтер: 232–242. дои : 10.1515/phys-2018-0034 . Архивировано из оригинала 3 ноября 2023 г.
  4. ^ Мунафо, Роберт. «РИС - Найдите алгебраические уравнения по их решению» . МРОБ . Проверено 30 апреля 2012 г.
  5. ^ "идентифицировать" . Онлайн-справка Maple . Мэйплсофт . Проверено 30 апреля 2012 г.
  6. ^ «Идентификация номера» . Документация SymPy . Архивировано из оригинала 6 июля 2018 г. Проверено 1 декабря 2016 г.
  7. ^ «Инвертор Плуффа» . Архивировано из оригинала 19 апреля 2012 года . Проверено 30 апреля 2012 г.
  8. ^ «Обратный символьный калькулятор» . Архивировано из оригинала 29 марта 2012 года . Проверено 30 апреля 2012 г.

Дальнейшее чтение [ править ]

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: a1d4597e5e42f20503f2e4737b70aa3d__1713063600
URL1:https://arc.ask3.ru/arc/aa/a1/3d/a1d4597e5e42f20503f2e4737b70aa3d.html
Заголовок, (Title) документа по адресу, URL1:
Closed-form expression - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)