Векторы-строки и столбцы
Эта статья включает список общих ссылок , но в ней отсутствуют достаточные соответствующие встроенные цитаты . ( Ноябрь 2022 г. ) |
В линейной алгебре вектор -столбец с элементы – это матрица [1] состоящий из одного столбца записи, например,
Аналогично, вектор-строка — это матрица для некоторых , состоящий из одного ряда записи,
Транспонирование ) любого вектора (обозначенное T -строки является вектором-столбцом, а транспонирование любого вектора-столбца является вектором-строкой:
Набор всех векторов-строок с n элементами в данном поле (например, действительные числа ) образует n -мерное векторное пространство ; аналогично набор всех векторов-столбцов с m элементами образует m -мерное векторное пространство.
Пространство векторов-строк с n элементами можно рассматривать как двойственное пространство к пространству векторов-столбцов с n элементами, поскольку любой линейный функционал в пространстве векторов-столбцов может быть представлен как левое умножение уникального вектора-строки.
Обозначения [ править ]
Чтобы упростить запись векторов-столбцов в строке с другим текстом, иногда они записываются как векторы-строки с примененной к ним операцией транспонирования.
или
Некоторые авторы также используют соглашение о записи векторов-столбцов и векторов-строок в виде строк, но разделяя элементы вектор-строки запятыми , а элементы вектор-столбца точками с запятой (см. альтернативное обозначение 2 в таблице ниже). [ нужна ссылка ]
Вектор-строка | Вектор-столбец | |
---|---|---|
Стандартное матричное обозначение (пробелы в массиве, без запятых, транспонированные знаки) | ||
Альтернативное обозначение 1 (запятые, переставить знаки) | ||
Альтернативное обозначение 2 (запятые и точки с запятой, без знаков транспонирования) |
Операции [ править ]
Умножение матриц включает в себя умножение каждого вектора-строки одной матрицы на каждый вектор-столбец другой матрицы.
Скалярное произведение двух векторов-столбцов a , b , рассматриваемых как элементы координатного пространства, равно матричному произведению транспонирования a с b ,
В силу симметрии скалярного произведения скалярное произведение двух векторов-столбцов a , b также равно матричному произведению транспонирования b с a ,
Матричное произведение столбца и вектора-строки дает внешнее произведение двух векторов a , b , пример более общего тензорного произведения . Матричный продукт представления вектора-столбца a и представления вектора-строки b дает компоненты их двоичного произведения:
которое является транспонированием матричного произведения представления вектора-столбца b и представления вектора-строки a ,
Матричные преобразования [ править ]
Матрица n × n размера M может представлять линейную карту линейной карты и действовать на векторы-строки и столбцы в качестве матрицы преобразования . Для вектора-строки v произведение v M является другим вектором-строкой p :
Другая размера n × n матрица Q может действовать на p ,
Тогда можно написать t = p Q = v MQ , так что матричного произведения преобразование MQ отображает v непосредственно в t . Продолжая работать с векторами-строками, матричные преобразования, дополнительно реконфигурирующие n справа от предыдущих выходных данных можно применить -пространство.
Когда вектор-столбец преобразуется в другой вектор-столбец под действием матрицы размера n × n , операция происходит слева:
что приводит к алгебраическому выражению QM v Т для составленного вывода из v Т вход. Матричные преобразования монтируются вверх слева при использовании вектора-столбца для ввода в матричное преобразование.
См. также [ править ]
- Ковариантность и контравариантность векторов
- Обозначение индекса
- Вектор единиц
- Вектор однократной записи
- Стандартный единичный вектор
- Единичный вектор
Примечания [ править ]
- ^ Артин, Майкл (1991). Алгебра . Энглвуд Клиффс, Нью-Джерси: Прентис-Холл. п. 2. ISBN 0-13-004763-5 .
Ссылки [ править ]
- Экслер, Шелдон Джей (1997), Правильно выполненная линейная алгебра (2-е изд.), Springer-Verlag, ISBN 0-387-98259-0
- Лэй, Дэвид К. (22 августа 2005 г.), Линейная алгебра и ее приложения (3-е изд.), Аддисон Уэсли, ISBN 978-0-321-28713-7
- Мейер, Карл Д. (15 февраля 2001 г.), Матричный анализ и прикладная линейная алгебра , Общество промышленной и прикладной математики (SIAM), ISBN 978-0-89871-454-8 , заархивировано из оригинала 1 марта 2001 г.
- Пул, Дэвид (2006), Линейная алгебра: современное введение (2-е изд.), Брукс/Коул, ISBN 0-534-99845-3
- Антон, Ховард (2005), Элементарная линейная алгебра (версия для приложений) (9-е изд.), Wiley International
- Леон, Стивен Дж. (2006), Линейная алгебра с приложениями (7-е изд.), Пирсон Прентис Холл