Jump to content

Изменение наклонения орбиты

Изменение наклонения орбиты орбитальный маневр, направленный на изменение наклона вращающегося тела орбиты . Этот маневр также известен как смена орбитальной плоскости, поскольку плоскость орбиты наклоняется. Этот маневр требует изменения вектора орбитальной скорости ( дельта-v ) в узлах орбиты (т.е. в точке пересечения начальной и желаемой орбит, линия узлов орбиты определяется пересечением двух орбитальных плоскостей).

В общем, для изменения наклона может потребоваться очень большое значение дельта-v, и большинство планировщиков миссий стараются избегать их, когда это возможно, для экономии топлива. Обычно это достигается путем запуска космического корабля непосредственно с желаемым наклоном или как можно ближе к нему, чтобы свести к минимуму любое изменение наклона, необходимое в течение срока службы космического корабля. Облеты планет — наиболее эффективный способ добиться больших изменений наклона, но они эффективны только для межпланетных миссий.

Эффективность

[ редактировать ]

Самый простой способ выполнить смену плоскости — выполнить прожиг вокруг одной из двух точек пересечения начальной и конечной плоскостей. Требуемая дельта-v — это векторное изменение скорости между двумя плоскостями в этой точке.

Однако максимальная эффективность изменения наклонения достигается в апоапсисе (или апогее ), где орбитальная скорость является самым низким. В некоторых случаях может потребоваться меньшая общая дельта-v, чтобы поднять спутник на более высокую орбиту, изменить плоскость орбиты в более высоком апогее, а затем опустить спутник на исходную высоту. [1]

В наиболее эффективном примере, упомянутом выше, нацеливание на наклон в апоцентре также меняет аргумент перицентра . Однако наведение таким образом ограничивает проектировщика миссии изменением плоскости только по линии апсид . [ нужна ссылка ]

Для переходных орбит Гомана начальная и конечная орбита находятся на расстоянии 180 градусов друг от друга. Поскольку плоскость переходной орбиты должна включать центральное тело, такое как Солнце, а также начальный и конечный узлы, для достижения переходной плоскости и выхода из нее может потребоваться два изменения плоскости на 90 градусов. В таких случаях часто более эффективно использовать маневр ломаной плоскости , при котором выполняется дополнительный прожиг, так что смена плоскости происходит только на пересечении начальной и конечной орбитальных плоскостей, а не на концах. [2]

Наклонение запутано с другими элементами орбиты

[ редактировать ]

Важная тонкость выполнения изменения наклонения заключается в том, что наклонение кеплеровской орбиты определяется углом между эклиптическим севером и вектором, нормальным к плоскости орбиты (т.е. вектором углового момента ). Это означает, что наклонение всегда положительно и связано с другими элементами орбиты, прежде всего с аргументом периапсиса , который, в свою очередь, связан с долготой восходящего узла . Это может привести к появлению двух совершенно разных орбит с одинаковым наклонением.

При чистом изменении наклонения изменяется только наклонение орбиты, в то время как все остальные характеристики орбиты (радиус, форма и т. д.) остаются такими же, как и раньше. Дельта-в ( ), необходимый для изменения наклона ( ) можно рассчитать следующим образом: где:

Для более сложных маневров, которые могут включать в себя сочетание изменения наклонения и радиуса орбиты, дельта-v представляет собой разность векторов между векторами скорости начальной орбиты и желаемой орбиты в точке перехода. Эти типы комбинированных маневров являются обычным явлением, поскольку более эффективно выполнять несколько орбитальных маневров одновременно, если эти маневры необходимо выполнять в одном и том же месте.

По закону косинусов минимальная Дельта-v ( ), необходимое для любого такого комбинированного маневра, можно рассчитать с помощью следующего уравнения [3]

Здесь и – начальная и целевая скорости.

Изменение наклонения круговой орбиты

[ редактировать ]

Если обе орбиты круговые (т.е. ) и имеют тот же радиус, что и Delta-v ( ), необходимый для изменения наклона ( ) можно рассчитать с помощью: где - орбитальная скорость и имеет те же единицы измерения, что и . [1]

Другие способы изменить наклон

[ редактировать ]

Некоторые другие способы изменения наклона, которые не требуют сжигания пороха (или помогают уменьшить необходимое количество пороха), включают:

  • аэродинамическая подъемная сила (для тел в атмосфере, таких как Земля)
  • солнечные паруса

Транзиты других тел, таких как Луна, также могут быть выполнены.

Ни один из этих методов не изменит требуемую дельта-V, они являются просто альтернативными средствами достижения того же конечного результата и, в идеале, уменьшат расход топлива.

См. также

[ редактировать ]
  1. ^ Перейти обратно: а б Бреуниг, Роберт А. «Основы космического полета: орбитальная механика» . Архивировано из оригинала 4 февраля 2012 г. Проверено 16 июля 2008 г.
  2. ^ Абилейра, Фернандо. Применения маневра сломанной плоскости для траекторий Земля-Марс (PDF) (Отчет) . Проверено 13 ноября 2022 г.
  3. ^ Оуэнс, Стив; Макдональд, Малькольм (2013). «Спиральная передача Гомана с изменением наклона, выполняемая системой малой тяги» (PDF) . Достижения астронавтики . 148 :719 . Проверено 3 апреля 2020 г. .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 4dff4931a197e38f6589481350494fe8__1718247660
URL1:https://arc.ask3.ru/arc/aa/4d/e8/4dff4931a197e38f6589481350494fe8.html
Заголовок, (Title) документа по адресу, URL1:
Orbital inclination change - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)