Изделие из колец

Из Википедии, бесплатной энциклопедии

В математике произведение колец или прямое произведение колец — это кольцо , образованное декартовым произведением базовых множеств нескольких колец (возможно, бесконечности), снабженных покомпонентными операциями . Это прямой продукт в категории колец .

Поскольку прямые произведения определены с точностью до изоморфизма , в разговорной речи говорят , что кольцо является произведением некоторых колец, если оно изоморфно прямому произведению этих колец. Например, китайская теорема об остатках может быть сформулирована так: если m и n взаимно простые целые числа , факторкольцо является продуктом и

Примеры [ править ]

Важным примером является Z / n Z , кольцо целых чисел по модулю n . Если n записано в виде произведения степеней простых чисел (см. Основную теорему арифметики ),

где pi различные простые числа , то Z / n Z естественным образом изоморфно произведению

Это следует из китайской теоремы об остатках .

Свойства [ править ]

Если R = Π i I R i — произведение колец, то для каждого i из I существует сюръективный гомоморфизм колец p i : R R i , который проецирует произведение на i-ю координату. Произведение R вместе с проекциями pi обладает следующим универсальным свойством :

если S — любое кольцо и f i : S R i — гомоморфизм колец для каждого в I , то существует ровно один гомоморфизм колец f : S R такой, что i f = fi для p каждого i в I. i

Это показывает, что произведение колец является примером произведения в смысле теории категорий .

Когда I конечно, основная аддитивная группа Π i I R i совпадает с прямой суммой аддитивных групп R i . При этом некоторые авторы называют R «прямой суммой колец R i » и пишут i I R i , но это неверно с точки зрения теории категорий , так как оно обычно не является копроизведением в категории колец (с единицей): например, когда два или более из R i нетривиальны . , отображение включения R i R не может отобразить 1 в 1 и, следовательно, не является гомоморфизмом колец

(Конечное копроизведение в категории коммутативных тензорное алгебр над коммутативным кольцом — это произведение алгебр . Копроизведение в категории алгебр — свободное произведение алгебр .)

Прямые произведения коммутативны и ассоциативны с точностью до естественного изоморфизма, а это означает, что не имеет значения, в каком порядке формировать прямой продукт.

Если A i идеал R i i для каждого из I , то A = Π i I A i — идеал R . Если I конечно, то верно обратное , т. е. каждый идеал в R имеет этот вид. Однако если I бесконечно, а кольца R i нетривиальны, то обратное неверно: набор элементов со всеми, кроме конечного числа, ненулевыми координатами образует идеал, который не является прямым произведением идеалов кольца R i . Идеал A является простым идеалом в R, кроме одного, все Ai , Ri , а оставшийся Ai равны является простым идеалом в Ri если . Однако обратное неверно, когда I бесконечно. Например, прямая сумма R A i образует идеал, не содержащийся ни в одном таком , но аксиома выбора дает, что он содержится в некотором максимальном идеале , который тем более является простым числом.

Элемент x в R является единицей тогда и только тогда, когда его компоненты являются единицами, т. е. тогда и только тогда, когда ) единицей является pi (x в R i для каждого i в I. все Группа единиц R является произведением групп единиц R i .

Произведение двух или более нетривиальных колец всегда имеет ненулевые делители нуля : если x — элемент произведения, все координаты которого равны нулю, кроме p i ( x ), а y — элемент произведения со всеми нулевыми координатами, кроме p j ( y ), где i j , тогда xy = 0 в кольце произведений.

Ссылки [ править ]

  • Херштейн, И.Н. (2005) [1968], Некоммутативные кольца (5-е изд.), Cambridge University Press , ISBN  978-0-88385-039-8
  • Ланг, Серж (2002), Алгебра , Тексты для выпускников по математике , том. 211 (пересмотренное третье изд.), Нью-Йорк: Springer-Verlag, стр. 211 (пересмотренное третье издание). 91, ISBN  978-0-387-95385-4 , МР   1878556 , Збл   0984.00001