Натуральные единицы
В физике , единиц естественные системы представляют собой системы измерения для которых выбранные физические константы были установлены равными 1 посредством обезразмеривания физических единиц . Например, скорость света c может быть установлена равной 1, а затем ее можно опустить, приравнивая массу и энергию напрямую E = m, а не используя c в качестве коэффициента преобразования в типичном эквивалентности массы и энергии уравнении E = mc. 2 . Чисто естественная система единиц имеет свернутые все измерения, так что физические константы полностью определяют систему единиц, а соответствующие физические законы не содержат констант преобразования.
Хотя системы естественных единиц упрощают форму каждого уравнения, по-прежнему необходимо отслеживать несвернутые измерения каждой величины или выражения, чтобы повторно вставлять физические константы (такие измерения однозначно определяют полную формулу). Анализ размерностей в свернутой системе неинформативен, поскольку большинство величин имеют одинаковые размерности.
Системы натуральных единиц
[ редактировать ]Сводная таблица
[ редактировать ]Количество | Планк | Стоуни | Атомный | Частицы и атомная физика | Сильный | Шрёдингер |
---|---|---|---|---|---|---|
Определение констант | , , , | , , , | , , , | , , , | , , | , , , |
Скорость света | ||||||
Приведенная постоянная Планка | ||||||
Элементарный заряд | — | — | ||||
Диэлектрическая проницаемость вакуума | — | — | ||||
Гравитационная постоянная |
где:
- α — константа тонкой структуры ( α = e 2 / 4 пе 0 ħc ≈ 0,007297)
- η е = Gm е 2 / ħc ≈ 1,7518 × 10 −45
- η p = Gm p 2 / ħc ≈ 5,9061 × 10 −39
- Тире (—) указывает, где системы недостаточно для выражения количества.
Стони юниты
[ редактировать ]Количество | Выражение | Прибл. значение показателя |
---|---|---|
Длина | 1.380 × 10 −36 м [1] | |
Масса | 1.859 × 10 −9 кг [1] | |
Время | 4.605 × 10 −45 с [1] | |
Электрический заряд | 1.602 × 10 −19 С |
Система единиц Стоуни использует следующие определяющие константы:
- в , г , к е , е ,
где c — скорость света , G — гравитационная постоянная , k e — постоянная Кулона , а e — элементарный заряд .
Джорджа Джонстона Стоуни Система единиц предшествовала системе единиц Планка на 30 лет. Он представил эту идею в лекции под названием «О физических единицах природы», прочитанной Британской ассоциации в 1874 году. [2] Единицы Стони не учитывали постоянную Планка , которая была открыта только после предложения Стони.
Планковские единицы
[ редактировать ]Количество | Выражение | Прибл. значение показателя |
---|---|---|
Длина | 1.616 × 10 −35 m[3] | |
Масса | 2.176 × 10 −8 kg[4] | |
Время | 5.391 × 10 −44 s[5] | |
Температура | 1.417 × 10 32 K[6] |
В системе единиц Планка используются следующие определяющие константы:
- с , час , г , к В ,
где c — скорость света , ħ — приведенная постоянная Планка , G — гравитационная постоянная , а k B — постоянная Больцмана .
Планковские единицы образуют систему естественных единиц, которая не определяется свойствами какого-либо прототипа, физического объекта или даже элементарной частицы . Они относятся лишь к базовой структуре законов физики: c и G являются частью структуры пространства-времени в общей теории относительности , а ħ лежит в основе квантовой механики . Это делает единицы Планка особенно удобными и распространенными в теориях квантовой гравитации , включая теорию струн . [ нужна ссылка ]
Планк рассматривал только единицы, основанные на универсальных константах G , h , c и k B, чтобы получить естественные единицы длины , времени , массы и температуры , но не электромагнитные единицы. [7] Теперь понятно, что в системе единиц Планка используется приведенная постоянная Планка ħ вместо постоянной Планка h . [8]
единицы Шрёдингера
[ редактировать ]Количество | Выражение | Прибл. значение показателя |
---|---|---|
Длина | 2.593 × 10 −32 м | |
Масса | 1.859 × 10 −9 кг | |
Время | 1.185 × 10 −38 с | |
Электрический заряд | 1.602 × 10 −19 C[9] |
Система единиц Шредингера (названная в честь австрийского физика Эрвина Шредингера ) редко упоминается в литературе. Его определяющие константы: [10] [11]
- е , ħ , г , к е .
Геометризированные единицы
[ редактировать ]Определение констант:
- с , Г.
Геометризированная система единиц, [12] : 36 В общей теории относительности основные физические единицы выбираются так, что скорость c и равны гравитационная G постоянная света единице.
Атомные единицы
[ редактировать ]Количество | Выражение | Значение показателя |
---|---|---|
Длина | 5.292 × 10 −11 м [13] | |
Масса | 9.109 × 10 −31 кг [14] | |
Время | 2.419 × 10 −17 с [15] | |
Электрический заряд | 1.602 × 10 −19 С [16] |
Система атомных единиц [17] использует следующие определяющие константы: [18] : 349 [19]
- м е , е , ħ , 4 пе 0 .
Атомные единицы были впервые предложены Дугласом Хартри и предназначены для упрощения атомной и молекулярной физики и химии, особенно атома водорода . [18] : 349 Например, в атомных единицах, в модели атома водорода Бора, электрон в основном состоянии имеет орбитальный радиус, орбитальную скорость и так далее с особенно простыми числовыми значениями.
Естественные единицы (физика элементарных частиц и атомная физика)
[ редактировать ]Количество | Выражение | Значение показателя |
---|---|---|
Длина | 3.862 × 10 −13 м [20] | |
Масса | 9.109 × 10 −31 кг [21] | |
Время | 1.288 × 10 −21 с [22] | |
Электрический заряд | 5.291 × 10 −19 С |
Эта естественная система единиц, используемая только в области физики элементарных частиц и атомной физики, использует следующие определяющие константы: [23] : 509
- c , м е , час , ε 0 ,
где c — скорость света , m e — масса электрона , ħ — приведенная постоянная Планка , а ε 0 — диэлектрическая проницаемость вакуума .
Вакуумная диэлектрическая проницаемость ε 0 неявно используется в качестве константы обезразмеривания , как это видно из выражения физиков для постоянной тонкой структуры , записанного α = e 2 /(4 п ) , [24] [25] которое можно сравнить с соответствующим выражением в системе SI: α = e 2 /(4 pe 0 ħc ) . [26] : 128
Сильные юниты
[ редактировать ]Количество | Выражение | Значение показателя |
---|---|---|
Длина | 2.103 × 10 −16 м | |
Масса | 1.673 × 10 −27 кг | |
Время | 7.015 × 10 −25 с |
Определение констант:
- в , м п , ч .
Здесь m p — масса покоя протона . Сильные единицы «удобны для работы в области КХД и ядерной физики, где квантовая механика и теория относительности вездесущи, а протон является объектом центрального интереса». [27]
В этой системе единиц скорость света изменяется обратно пропорционально постоянной тонкой структуры, поэтому в последние годы появился некоторый интерес к нишевой гипотезе изменения фундаментальных констант во времени . [28]
См. также
[ редактировать ]Примечания и ссылки
[ редактировать ]- ^ Перейти обратно: а б с Барроу, Джон Д. (1983), «Естественные единицы до Планка» , Ежеквартальный журнал Королевского астрономического общества , 24 : 24–26.
- ^ Рэй, Т.П. (1981). «Основные единицы Стоуни». Ирландский астрономический журнал . 15 : 152. Бибкод : 1981IrAJ...15..152R .
- ^ «Значение CODATA 2022: планковская длина» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Май 2024 года . Проверено 18 мая 2024 г.
- ^ «Значение CODATA 2022: планковская масса» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Май 2024 года . Проверено 18 мая 2024 г.
- ^ «Значение CODATA 2022: Планковское время» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Май 2024 года . Проверено 18 мая 2024 г.
- ^ «Значение CODATA 2022: Планковская температура» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Май 2024 года . Проверено 18 мая 2024 г.
- ^ Однако, если предположить, что в то время использовалось гауссовское определение электрического заряда и, следовательно, оно не рассматривалось как независимая величина, 4 πε 0 неявно присутствовало бы в списке определяющих констант, что давало бы единицу заряда √ 4 πε 0 ħc .
- ^ Томилин, К.А., 1999, « Естественные системы единиц: к столетнему юбилею системы Планка. Архивировано 12 декабря 2020 г. в Wayback Machine », 287–296.
- ^ «Значение CODATA 2022: элементарный заряд» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Май 2024 года . Проверено 18 мая 2024 г.
- ^ Стонер, Юрген; Шарлатан, Мартин (2011). «Условные обозначения, символы, величины, единицы и константы для молекулярной спектроскопии высокого разрешения». Справочник по спектроскопии высокого разрешения (PDF) . п. 304. дои : 10.1002/9780470749593.hrs005 . ISBN 9780470749593 . Проверено 19 марта 2023 г.
- ^ Дафф, Майкл Джеймс (11 июля 2004 г.). «Комментарий к изменению фундаментальных констант во времени». п. 3. arXiv : hep-th/0208093 .
- ^ Миснер, Чарльз В.; Торн, Кип С.; Уиллер, Джон Арчибальд (2008). Гравитация (27-е печатное изд.). Нью-Йорк, штат Нью-Йорк: Фриман. ISBN 978-0-7167-0344-0 .
- ^ «Значение CODATA 2018: атомная единица длины» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 декабря 2023 г.
- ^ «Значение CODATA 2018: атомная единица массы» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 декабря 2023 г.
- ^ «Значение CODATA 2018: атомная единица времени» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 декабря 2023 г.
- ^ «Значение CODATA 2018: атомная единица заряда» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 декабря 2023 г.
- ^ Шулл, Х.; Холл, Г.Г. (1959). «Атомные единицы». Природа . 184 (4698): 1559. Бибкод : 1959Natur.184.1559S . дои : 10.1038/1841559a0 . S2CID 23692353 .
- ^ Перейти обратно: а б Левин, Ира Н. (1991). Квантовая химия . Серия Pearson по продвинутой химии (4-е изд.). Энглвуд Клиффс, Нью-Джерси: Prentice-Hall International. ISBN 978-0-205-12770-2 .
- ^ МакВини, Р. (май 1973 г.). «Естественные единицы в атомной и молекулярной физике» . Природа . 243 (5404): 196–198. Бибкод : 1973Natur.243..196M . дои : 10.1038/243196a0 . ISSN 0028-0836 . S2CID 4164851 .
- ^ «Значение CODATA 2018: натуральная единица длины» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 мая 2020 г.
- ^ «Значение CODATA 2018: естественная единица массы» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 мая 2020 г.
- ^ «Значение CODATA 2018: естественная единица времени» . Справочник NIST по константам, единицам измерения и неопределенности . НИСТ . Проверено 31 мая 2020 г.
- ^ Гидри, Майк (1991). «Приложение А: Натуральные единицы». Теории калибровочного поля . Вайнхайм, Германия: Wiley-VCH Verlag. стр. 509–514. дои : 10.1002/9783527617357.app1 .
- ^ Фрэнк Вильчек (2005), «Об абсолютных единицах, I: Выбор» (PDF) , Physics Today , 58 (10): 12, Бибкод : 2005PhT....58j..12W , doi : 10.1063/1.2138392 , заархивировано из оригинал (PDF) 13 июня 2020 г. , получено 31 мая 2020 г.
- ^ Фрэнк Вильчек (2006), «Об абсолютных единицах, II: Проблемы и ответы» (PDF) , Physics Today , 59 (1): 10, Бибкод : 2006PhT....59a..10W , doi : 10.1063/1.2180151 , в архиве из оригинала (PDF) от 12 августа 2017 г. , получено 31 мая 2020 г.
- ^ Международная система единиц (PDF) (9-е изд.), Международное бюро мер и весов, декабрь 2022 г., ISBN 978-92-822-2272-0
- ^ Вильчек, Франк (2007). «Фундаментальные константы». arXiv : 0708.4361 [ геп-ф ]. . Дальше см .
- ^ Дэвис, Тамара Мари (12 февраля 2004 г.). «Фундаментальные аспекты расширения Вселенной и космических горизонтов». п. 103. arXiv : astro-ph/0402278 .
В этом наборе единиц скорость света изменяется обратно пропорционально постоянной тонкой структуры. Отсюда мы можем заключить, что если c изменяется, но e и ℏ остаются постоянными, то скорость света в единицах Шредингера c ψ изменяется пропорционально c , но скорость света в единицах Планка c P остается прежней. Изменится ли «скорость света» или нет, зависит от нашей измерительной системы (три возможных определения «скорости света» — c , c P и c ψ ). или нет, Изменится ли c однозначно, поскольку система измерения определена.
Внешние ссылки
[ редактировать ]- Веб-сайт NIST ( Национальный институт стандартов и технологий ) — удобный источник данных об общепризнанных константах.
- К.А. Томилин: ЕСТЕСТВЕННЫЕ СИСТЕМЫ ЕДИНИЦ; К столетнему юбилею системы Планка. Архивировано 12 мая 2016 г. в Wayback Machine. Сравнительный обзор / учебное пособие по различным системам натуральных единиц, имеющим историческое использование.
- Педагогические пособия по квантовой теории поля. Щелкните ссылку, чтобы перейти к гл. 2, чтобы найти обширное и упрощенное введение в натуральные единицы.
- Естественная система единиц в общей теории относительности (PDF) , автор Алан Л. Майерс (Университет Пенсильвании). Уравнения для перевода натуральных единиц в СИ.