Людвиг Больцманн
Людвиг Эдуард Больцман (англ. Немецкое произношение: [ˈluːtvɪç ˈbɔlt͡sman] ; 20 февраля 1844 — 5 сентября 1906) — австрийский физик и философ . Его величайшими достижениями были разработка статистической механики и статистическое объяснение второго закона термодинамики . В 1877 году он дал современное определение энтропии . , где Ω — количество микросостояний, энергия которых равна энергии системы, интерпретируемая как мера статистического беспорядка системы. [2] Макс Планк назвал константу k B Больцмана постоянной . [3]
Статистическая механика — один из столпов современной физики . Он описывает, как макроскопические наблюдения (такие как температура и давление ) связаны с микроскопическими параметрами, которые колеблются вокруг среднего значения. Он связывает термодинамические величины (такие как теплоемкость ) с микроскопическим поведением, тогда как в классической термодинамике единственным доступным вариантом было бы измерение и табулирование таких величин для различных материалов. [4]
Биография [ править ]
Детство и образование [ править ]
Больцман родился в Эрдберге, пригороде Вены, в католической семье. Его отец, Людвиг Георг Больцман, был налоговым чиновником. Его дедушка, переехавший в Вену из Берлина, был производителем часов, а мать Больцмана, Катарина Пауэрнфайнд, была родом из Зальцбурга . Больцман обучался на дому до десяти лет. [5] а затем учился в средней школе в Линце , Верхняя Австрия . Когда Больцману было 15 лет, умер его отец. [6]
Начиная с 1863 года Больцман изучал математику и физику в Венском университете . Он получил докторскую степень в 1866 году и venia Legendi в 1869 году. Больцман тесно сотрудничал с Йозефом Стефаном , директором Института физики. Именно Стефан познакомил Больцмана с работами Максвелла . [6]
Академическая карьера [ править ]
В 1869 году в возрасте 25 лет, благодаря рекомендательному письму, написанному Йозефом Стефаном , [7] Больцман был назначен профессором математической физики в Университете Граца в провинции Штирия . В 1869 году он провел несколько месяцев в Гейдельберге, работая с Робертом Бунзеном и Лео Кенигсбергером , а в 1871 году — с Густавом Кирхгофом и Германом фон Гельмгольцем в Берлине. В 1873 году Больцман поступил на работу в Венский университет в качестве профессора математики и оставался там до 1876 года.
В 1872 году, задолго до того, как женщин начали принимать в австрийские университеты, он познакомился с Генриеттой фон Айгентлер, начинающей учительницей математики и физики из Граца. Ей было отказано в разрешении неофициально прослушивать лекции. Больцманн поддержал ее решение об апелляции, которая оказалась успешной. 17 июля 1876 года Людвиг Больцман женился на Генриетте; у них было три дочери: Генриетта (1880 г.), Ида (1884 г.) и Эльза (1891 г.); и сын Артур Людвиг (1881 г.). [8] Больцман вернулся в Грац , чтобы занять кафедру экспериментальной физики. Среди его учеников в Граце были Сванте Аррениус и Вальтер Нернст . [9] [10] Он провел в Граце 14 счастливых лет и именно там разработал свою статистическую концепцию природы.
Больцман был назначен заведующим кафедрой теоретической физики Мюнхенского университета в Баварии , Германия, в 1890 году.
В 1894 году Больцман сменил своего учителя Йозефа Стефана на посту профессора теоретической физики Венского университета.
и смерть Последние годы
В последние годы своей жизни Больцман приложил немало усилий, защищая свои теории. [11] Он не ладил с некоторыми своими коллегами в Вене, в частности с Эрнстом Маха , который стал профессором философии и истории наук в 1895 году. В том же году Георг Хельм и Вильгельм Оствальд представили свою позицию по энергетике на встрече в Любеке . Они считали энергию, а не материю, главным компонентом Вселенной. Позиция Больцмана получила признание среди других физиков, поддержавших его атомные теории в дебатах. [12] В 1900 году Больцман поступил в Лейпцигский университет по приглашению Вильгельма Оствальда . Оствальд предложил Больцману профессорскую кафедру физики, которая стала вакантной после смерти Густава Генриха Видемана . После того как Мах вышел в отставку по состоянию здоровья, Больцман в 1902 году вернулся в Вену. [11] В 1903 году Больцман вместе с Густавом фон Эшерихом и Эмилем Мюллером основал Австрийское математическое общество . Среди его учеников были Карл Пршибрам , Пауль Эренфест и Лиза Мейтнер . [11]
В Вене Больцман преподавал физику, а также читал лекции по философии. Лекции Больцмана по натурфилософии пользовались большой популярностью и пользовались значительным вниманием. Его первая лекция имела огромный успех. Несмотря на то, что для него был выбран самый большой лекционный зал, люди стояли до конца лестницы. Ввиду большого успеха философских лекций Больцмана император пригласил его на прием. [ когда? ] во дворце. [13]
В 1905 году он прочитал приглашенный курс лекций на летней сессии Калифорнийского университета в Беркли , который описал в популярном эссе « Путешествие немецкого профессора в Эльдорадо» . [14]
В мае 1906 года ухудшение психического состояния Больцмана, описанное в письме декана как «серьезная форма неврастении » , вынудило его уйти в отставку, и его симптомы указывают на то, что сегодня он испытал бы то, что сегодня было бы диагностировано как биполярное расстройство . [11] [15] Четыре месяца спустя он покончил жизнь самоубийством, 5 сентября 1906 года, повесившись во время отпуска с женой и дочерью в Дуино , недалеко от Триеста (тогда Австрия). [16] [17] [18] [15] Похоронен в венском Zentralfriedhof . На его надгробии высечена формула энтропии Больцмана : . [11]
Философия [ править ]
Больцмана, Кинетическая теория газов казалось, предполагала реальность атомов и молекул , но почти все немецкие философы и многие ученые, такие как Эрнст Мах и физико-химик Вильгельм Оствальд, не верили в их существование. [19] Больцман познакомился с молекулярной теорией благодаря статье атомиста Джеймса Клерка Максвелла, озаглавленной «Иллюстрации динамической теории газов», в которой описывалась зависимость температуры от скорости молекул, тем самым вводя статистику в физику. Это вдохновило Больцмана принять атомизм и расширить теорию. [20]
Больцман написал такие философские трактаты, как «К вопросу об объективном существовании процессов в неживой природе» (1897). Он был реалистом. [21] В своей работе «К тезисам Шопенгауэра» Больцман называет свою философию « материализмом » и говорит далее: «Идеализм утверждает, что существует только Я, различные идеи, и стремится объяснить материю с их помощью. Материализм исходит из существования материю и стремится объяснить ощущения от нее». [22]
Физика [ править ]
Наиболее важные научные вклады Больцмана были связаны с кинетической теорией газов, основанной на Втором законе термодинамики . Это было важно, поскольку ньютоновская механика не делала различий между прошлым и будущим движением , а изобретение Рудольфом Клаузиусом энтропии для описания второго закона было основано на дезагрегации или дисперсии на молекулярном уровне, так что будущее было однонаправленным. Больцману было двадцать пять лет, когда он наткнулся на работу Джеймса Клерка Максвелла по кинетической теории газов, в которой предполагалось, что температура возникает в результате столкновения молекул. Максвелл использовал статистику для создания кривой распределения молекулярной кинетической энергии, на основе которой Больцман уточнил и развил идеи кинетической теории и энтропии, основанные на статистической теории атома, создав распределение Максвелла-Больцмана как описание скоростей молекул в газе. [23] Именно Больцман вывел первое уравнение для моделирования динамической эволюции распределения вероятностей, созданного им Максвеллом. [24] Ключевое открытие Больцмана заключалось в том, что дисперсия возникает из-за статистической вероятности увеличения молекулярных «состояний». Больцман пошел дальше Максвелла, применив свое уравнение распределения не только к газам, но также к жидкостям и твердым телам. Больцман также расширил свою теорию в своей статье 1877 года за пределы Карно, Рудольфа Клаузиуса , Джеймса Клерка Максвелла и лорда Кельвина, продемонстрировав, что энтропии способствуют тепло, пространственное разделение и излучение. [25] Статистика Максвелла – Больцмана и распределение Больцмана остаются центральными в основах классической статистической механики. Они также применимы к другим явлениям , которые не требуют квантовой статистики и позволяют понять значение температуры .
Он предпринял несколько попыток объяснить второй закон термодинамики, причем попытки охватывали многие области. Он опробовал Гельмгольца . модель моноцикла [26] [27] чисто ансамблевый подход, такой как Гиббс, чисто механический подход, такой как эргодическая теория, комбинаторный аргумент, Stoßzahlansatz и т. д. [28]
Большинство химиков , начиная с открытий Джона Дальтона в 1808 году, Джеймса Клерка Максвелла в Шотландии и Джозайи Уилларда Гиббса в Соединенных Штатах, разделяли веру Больцмана в атомы и молекулы , но большая часть физического истеблишмента разделяла эту веру лишь десятилетия спустя. У Больцмана был давний спор с редактором выдающегося немецкого физического журнала того времени, который не позволял Больцману называть атомы и молекулы чем-либо иным, чем удобными теоретическими конструкциями. Всего через пару лет после смерти Больцмана Перрена исследования коллоидных суспензий (1908–1909), основанные на теоретических исследованиях Эйнштейна 1905 года, подтвердили значения постоянной Авогадро и постоянной Больцмана , убедив мир в том, что крошечные частицы действительно существуют .
Цитируя Планка : « Логарифмическая связь между энтропией и вероятностью была впервые установлена Л. Больцманом в его кинетической теории газов ». [29] Эта знаменитая формула для энтропии S : [30] Альтернативой является определение информационной энтропии, введенное в 1948 году Клодом Шенноном . [31] Он был предназначен для использования в теории коммуникации, но применим во всех областях. Оно сводится к выражению Больцмана, когда все вероятности равны, но, конечно, может использоваться и тогда, когда это не так. Его достоинство в том, что он дает немедленные результаты, не прибегая к факториалам или приближению Стирлинга . Однако подобные формулы встречаются еще в работах Больцмана и явно у Гиббса (см. ссылку).
где k B — постоянная Больцмана , а ln — натуральный логарифм . W (от Wahrscheinlichkeit , немецкого слова, означающего « вероятность ») — вероятность возникновения макросостояния . [32] или, точнее, количество возможных микросостояний, соответствующих макроскопическому состоянию системы – количество (ненаблюдаемых) «способов» в (наблюдаемом) термодинамическом состоянии системы, которые могут быть реализованы путем присвоения положений и импульсов различных различные молекулы. Больцмана Парадигма представляла собой идеальный газ из N одинаковых частиц, из которых N i находятся в i- м микроскопическом состоянии (диапазоне) положения и импульса. W можно посчитать по формуле для перестановок
где i распространяется на все возможные молекулярные состояния, и где обозначает факториал . «Поправка» в знаменателе учитывает неразличимые частицы в одном и том же состоянии.
Больцмана также можно было считать одним из предшественников квантовой механики благодаря его предположению в 1877 году, что энергетические уровни физической системы могут быть дискретными, хотя Больцман использовал это как математический прием, не имеющий физического смысла. [33]
Уравнение Больцмана [ править ]
Уравнение Больцмана было разработано для описания динамики идеального газа.
где ƒ представляет собой функцию распределения положения и импульса отдельной частицы в данный момент времени (см. распределение Максвелла – Больцмана ), F — сила, m — масса частицы, t — время, а v — средняя скорость частицы.
Это уравнение описывает временные и пространственные изменения распределения вероятностей положения и импульса распределения плотности облака точек в одночастичном фазовом пространстве . (См. гамильтонову механику .) Первый член в левой части представляет собой явное изменение функции распределения во времени, второй член дает пространственное изменение, а третий член описывает эффект любой силы, действующей на частицы. Правая часть уравнения представляет эффект столкновений.
В принципе, приведенное выше уравнение полностью описывает динамику ансамбля частиц газа при соответствующих граничных условиях . первого порядка Это дифференциальное уравнение имеет обманчиво простой вид, поскольку f может представлять собой произвольную одночастичную функцию распределения . Также сила , действующая на частицы, напрямую зависит от функции распределения по скоростям f . Уравнение Больцмана, как известно, трудно интегрировать . Дэвид Гильберт потратил годы, пытаясь решить эту проблему, но без особого успеха.
Форма столкновительного члена, принятая Больцманом, была приближенной. Однако для идеального газа стандартное решение Чепмена-Энскога уравнения Больцмана имеет высокую точность. Ожидается, что это приведет к неверным результатам для идеального газа только в условиях ударной волны .
Больцман в течение многих лет пытался «доказать» второй закон термодинамики, используя свое уравнение газовой динамики – свою знаменитую Н-теорему . Однако ключевым предположением, которое он сделал при формулировке термина «столкновение», был « молекулярный хаос », предположение, которое нарушает симметрию обращения времени , что необходимо для всего , что может подразумевать второй закон. Очевидный успех Больцмана исходил только из вероятностного предположения, поэтому его долгий спор с Лошмидтом и другими по поводу парадокса Лошмидта в конечном итоге закончился его неудачей.
Наконец, в 1970-х годах ЭГД Коэн и Дж. Р. Дорфман доказали, что систематическое (степенной ряд) расширение уравнения Больцмана до высоких плотностей математически невозможно. Следовательно, неравновесная статистическая механика для плотных газов и жидкостей вместо этого фокусируется на соотношениях Грина-Кубо , флуктуационной теореме и других подходах.
беспорядка закон как Второй закон термодинамики
Идея о том, что второй закон термодинамики или «закон энтропии» является законом беспорядка (или что динамически упорядоченные состояния «бесконечно маловероятны»), возникла из взглядов Больцмана на второй закон термодинамики.
В частности, это была попытка Больцмана свести ее к стохастической функции столкновений или закону вероятности, следующему из случайных столкновений механических частиц. Следуя Максвеллу, [34] Больцман смоделировал молекулы газа как сталкивающиеся бильярдные шары в ящике, отметив, что при каждом столкновении неравновесные распределения скоростей (группы молекул, движущиеся с одинаковой скоростью и в одном направлении) будут становиться все более беспорядочными, что приведет к конечному состоянию макроскопической однородности и максимальной микроскопической однородности. беспорядок или состояние максимальной энтропии (где макроскопическая однородность соответствует уничтожению всех полевых потенциалов или градиентов). [35] Таким образом, второй закон, утверждал он, был просто результатом того факта, что в мире механически сталкивающихся частиц наиболее вероятными являются неупорядоченные состояния. Поскольку возможных неупорядоченных состояний намного больше, чем упорядоченных, система почти всегда будет находиться либо в состоянии максимального беспорядка – макросостоянии с наибольшим числом доступных микросостояний, таких как газ в ящике, находящемся в равновесии, – либо в движении к это. Динамически упорядоченное состояние, в котором молекулы движутся «с одинаковой скоростью и в одном направлении», заключил Больцман, является, таким образом, «наиболее невероятным случаем, который только можно себе представить… бесконечно невероятной конфигурацией энергии». [36]
Больцману удалось доказать, что второй закон термодинамики является лишь статистическим фактом. Постепенное разупорядочение энергии аналогично разупорядочению первоначально упорядоченной колоды карт при многократном перетасовывании, и точно так же, как карты, в конце концов, вернутся в свой первоначальный порядок, если их перетасовать гигантское количество раз, так и вся Вселенная должна когда-нибудь восстановиться. , по чистой случайности, в том штате, из которого он впервые отправился. (Этот оптимистический код идеи умирающей Вселенной становится несколько приглушенным, когда кто-то пытается оценить график времени, который, вероятно, пройдет, прежде чем это произойдет спонтанно.) [37] Тенденция к увеличению энтропии, кажется, вызывает затруднения у новичков в термодинамике, но ее легко понять с точки зрения теории вероятностей. Рассмотрим два обычных игральных кубика , обе шестерки которых лежат лицевой стороной вверх. После того, как кости встряхнуты, вероятность найти эти две шестерки лицом вверх невелика (1 из 36); таким образом, можно сказать, что случайное движение (взбалтывание) игральных костей, подобно хаотическим столкновениям молекул из-за тепловой энергии, приводит к изменению менее вероятного состояния на более вероятное. С миллионами игральных костей, как и с миллионами атомов, участвующих в термодинамических расчетах, вероятность того, что все они окажутся шестерками, становится настолько исчезающе малой, что система должна перейти в одно из наиболее вероятных состояний. [38]
Больцмана и влияние на современную Наследие науку Людвига
Вклад Людвига Больцмана в физику и философию оказал неизгладимое влияние на современную науку. Его новаторские работы в области статистической механики и термодинамики заложили основу для некоторых наиболее фундаментальных концепций физики. Например, Макс Планк при квантовании резонаторов в своей черного тела теории излучения использовал константу Больцмана для описания энтропии системы, чтобы прийти к своей формуле в 1900 году. [39] Однако работа Больцмана не всегда была с готовностью принята при его жизни, и он столкнулся с противодействием со стороны некоторых своих современников, особенно в отношении существования атомов и молекул. Тем не менее, обоснованность и важность его идей в конечном итоге были признаны, и с тех пор они стали краеугольным камнем современной физики. Здесь мы углубимся в некоторые аспекты наследия Больцмана и его влияние на различные области науки.
Атомная теория и существование атомов и молекул [ править ]
Кинетическая теория газов Больцмана была одной из первых попыток объяснить макроскопические свойства, такие как давление и температура, с точки зрения поведения отдельных атомов и молекул. Хотя многие химики уже признали существование атомов и молекул, широкому физическому сообществу потребовалось некоторое время, чтобы принять эту точку зрения. Длительный спор Больцмана с редактором известного немецкого физического журнала по поводу признания атомов и молекул подчеркивает первоначальное сопротивление этой идее.
И только после того, как эксперименты, такие как исследования коллоидных суспензий Жаном Перреном, подтвердили значения постоянной Авогадро и постоянной Больцмана, существование атомов и молекул получило более широкое признание. Кинетическая теория Больцмана сыграла решающую роль в демонстрации реальности атомов и молекул и объяснении различных явлений в газах, жидкостях и твердых телах.
Больцмана постоянная механика и Статистическая
Статистическая механика, пионером которой стал Больцман, связывает макроскопические наблюдения с микроскопическим поведением. Его статистическое объяснение второго закона термодинамики было значительным достижением, и он дал современное определение энтропии ( ), где k B — постоянная Больцмана, а Ω — число микросостояний, соответствующих данному макросостоянию.
Макс Планк позже назвал константу k B постоянной Больцмана в честь вклада Больцмана в статистическую механику. Постоянная Больцмана играет центральную роль в связи термодинамических величин с микроскопическими свойствами, и в настоящее время она является фундаментальной константой в физике, появляющейся в различных уравнениях во многих научных дисциплинах.
Больцмана и его Уравнение использование современное
Поскольку уравнение Больцмана практично при решении задач в разреженных или разбавленных газах, оно использовалось во многих различных областях техники. Он используется для расчета космического корабля в верхние слои атмосферы. входа [40] Это основа теории транспорта нейтронов и транспорта ионов в полупроводниках . [41] [42]
Влияние на квантовую механику [ править ]
Работы Больцмана в статистической механике заложили основу для понимания статистического поведения частиц в системах с большим числом степеней свободы. В своей статье 1877 года он использовал дискретные уровни энергии физических систем в качестве математического аппарата и далее показал, что то же самое можно применить и к непрерывным системам, которые можно рассматривать как предшественников развития квантовой механики. [43] Один биограф Больцмана говорит, что подход Больцмана «проложил путь Планку». [44]
Концепция квантования энергетических уровней стала фундаментальным постулатом квантовой механики, что привело к появлению новаторских теорий, таких как квантовая электродинамика и квантовая теория поля . Таким образом, ранние открытия Больцмана о квантовании энергетических уровней оказали глубокое влияние на развитие квантовой физики.
Работает [ править ]
- Связь с теорией действия на расстоянии, частными случаями электростатики, стационарного течения и индукции (на немецком языке). Том 2. Лейпциг: Иоганн Амброзиус Барт. 1893.
- Теория Ван-дер-Ваальса, газы со сложными молекулами, диссоциация газов, заключительные замечания (на немецком языке). Том 2. Лейпциг: Иоганн Амброзиус Барт. 1896.
- Теория газов с одноатомными молекулами, размеры которых исчезают к средней длине пути (на немецком языке). Том 1. Лейпциг: Иоганн Амброзиус Барт. 1896.
- Раздел основных уравнений покоя однородных изотропных тел (на немецком языке). Том 1. Лейпциг: Иоганн Амброзиус Барт. 1908.
- Лекции по теории газа (на французском языке). Париж: Готье Виллар. 1922 год.
- Тома I и II лекций по теории газа (1896–1898 гг.)
- Титульный лист к томам I и II Лекций по теории газа (1896-1898 гг.)
- Оглавление к I и II томам лекций по теории газа (1896-1898 гг.)
- Введение к I и II томам лекций по теории газов (1896-1898).
Награды и почести [ править ]
В 1885 году он стал членом Императорской Австрийской академии наук , а в 1887 году стал президентом Университета Граца . Он был избран членом Шведской королевской академии наук в 1888 году и иностранным членом Королевского общества (ForMemRS) в 1899 году . [1] множество вещей В его честь названо .
См. также [ править ]
Ссылки [ править ]
- ^ Перейти обратно: а б «Члены Королевского общества» . Лондон: Королевское общество . Архивировано из оригинала 16 марта 2015 года.
- ^ Кляйн, Мартин (1970) [1768]. «Больцман, Людвиг». В Присе, Уоррен Э. (ред.). Британская энциклопедия (твердый переплет). Том. 3 (Памятное издание к Экспо 70, изд.). Чикаго: Уильям Бентон. п. 893а. ISBN 0-85229-135-3 .
- ^ Партингтон, младший (1949), Расширенный трактат по физической химии , том. 1, Фундаментальные принципы , Свойства газов , Лондон: Longmans, Green and Co. , с. 300
- ^ Гиббс, Джозайя Уиллард (1902). Элементарные начала статистической механики . Нью-Йорк: Сыновья Чарльза Скрибнера .
- ^ Симмонс, Джон; Симмонс, Линда (2000). Научная 100 . Кенсингтон. п. 123. ИСБН 978-0-8065-3678-1 .
- ^ Перейти обратно: а б Джеймс, Иоанн (2004). Выдающиеся физики: от Галилея до Юкавы . Издательство Кембриджского университета. п. 169 . ISBN 978-0-521-01706-0 .
- ^ Южнич, Станислав (декабрь 2001 г.). «Людвиг Больцман и первый студент-физик-математик словенского происхождения» [Людвиг Больцман и первый студент-физик-математик словенского происхождения]. Кваркадабра (и словенский) (12) . Проверено 17 февраля 2012 г.
- ^ Фасоль, Герхард. «Биография Людвига Больцмана (20 февраля 1844 г. - 5 сентября 1906 г.)» . Людвиг Больцман . Проверено 20 мая 2024 г.
- ^ Ягер, Густав; Набл, Йозеф; Мейер, Стефан (апрель 1999 г.). «Три помощника Больцмана». Синтезируйте . 119 (1–2): 69–84. дои : 10.1023/А:1005239104047 . S2CID 30499879 .
Пауля Эренфеста (1880–1933), наряду с Нернст, Аррениусом и Мейтнер, следует считать одними из самых выдающихся учеников Больцмана.
- ^ «Вальтер Герман Нернст» . Архивировано из оригинала 12 июня 2008 года.
Вальтер Герман Нернст посетил лекции Людвига Больцмана.
- ^ Перейти обратно: а б с д и Черчиньяни, Карло (1998). Людвиг Больцман: Человек, который доверял атомам . Издательство Оксфордского университета. ISBN 978-0-19-850154-1
- ^ Макс Планк (1896). «Против новой энергетики» . Анналы физики . 57 (1): 72–78. Нагрудный код : 1896АнП...293...72П . дои : 10.1002/andp.18962930107 .
- ^ Уравнение Больцмана: теория и приложения , EGD Коэн, В. Тирринг, изд., Springer Science & Business Media, 2012.
- ^ Больцманн, Людвиг (1 января 1992 г.). «Путешествие немецкого профессора в Эльдорадо» . Физика сегодня . 45 (1): 44–51. Бибкод : 1992PhT....45a..44B . дои : 10.1063/1.881339 . ISSN 0031-9228 .
- ^ Перейти обратно: а б Нина Баусек и Стефан Вашитль (13 февраля 2018 г.). «Трагические смерти в науке: Людвиг Больцман – ум в беспорядке» . Стопка бумаг . Проверено 26 апреля 2020 г. .
- ^ Мьюир, Хейзел, Эврика! Величайшие мыслители науки и их ключевые открытия , стр.152, ISBN 1-78087-325-5
- ^ Больцманн, Людвиг (1995). «Выводы» . В Блэкморе, Джон Т. (ред.). Людвиг Больцман: его дальнейшая жизнь и философия, 1900–1906 . Том. 2. Спрингер. стр. 206–207. ISBN 978-0-7923-3464-4 .
- ↑ После смерти Больцмана Фридрих («Фриц») Хазенёрль стал его преемником на профессорской кафедре физики в Вене.
- ^ Броновский, Джейкоб (1974). «Мир внутри мира» . Восхождение человека . Литтл Браун и Ко. с. 265. ИСБН 978-0-316-10930-7 .
- ^ Нэнси Форбс, Бэзил Махон (2019). Фарадей, Максвелл и электромагнитное поле . Глава 11. ISBN 978-1633886070 . [ нужна полная цитата ]
- ^ Черчиньяни, Карло. Людвиг Больцман: Человек, который доверял атомам . ISBN 978-0198570646 . [ нужна полная цитата ]
- ^ Черчиньяни, Карло (2008). Людвиг Больцман: человек, который доверял атомам (Ред.). Оксфорд: Оксфордский университет. Нажимать. п. 176. ИСБН 978-0-19-850154-1 .
- ^ Людвиг Больцманн, Лекции по теории газов , перевод Стивена Г. Браша, «Введение переводчика», 1968.
- ^ Пенроуз, Роджер. «Предисловие». В Черчиньяни, Карло, Людвиг Больцман: Человек, который доверял атомам , ISBN 978-0198570646 .
- ^ Больцманн, Людвиг (1877). Перевод Шарпа К.; Мачинский, Ф. «О связи между второй фундаментальной теоремой механической теории теплоты и вероятностными расчетами условий теплового равновесия». Отчеты о заседании Императорской Академии наук. Класс математических и естественных знаний . Часть II, LXXVI. 76:373–435. Вена. Перепечатано в Scientific Papers , Vol. II, переиздание 42, стр. 164–223, Барт, Лейпциг, 1909. Entropy 2015, 17, 1971–2009. дои : 10.3390/e17041971
- ^ Принсипи, Жуан (2014), де Пас, Мария; ДиСалле, Роберт (ред.), «Анри Пуанкаре: статус механических объяснений и основы статистической механики» , Пуанкаре, философ науки: проблемы и перспективы , Дордрехт: Springer Нидерланды, стр. 127–151, doi : 10.1007/ 978-94-017-8780-2_8 , hdl : 10174/13352 , ISBN 978-94-017-8780-2 , получено 28 мая 2024 г.
- ^ Кляйн, Мартин Дж. (1974), Сигер, Раймонд Дж.; Коэн, Роберт С. (ред.), «Больцман, моноциклы и механическое объяснение» , «Философские основы науки» , том. 11, Дордрехт: Springer Нидерланды, стр. 155–175, doi : 10.1007/978-94-010-2126-5_8 , ISBN 978-90-277-0376-7 , получено 28 мая 2024 г.
- ^ Уффинк, Джос (2022), Залта, Эдвард Н. (редактор), «Работа Больцмана в статистической физике» , Стэнфордская энциклопедия философии (изд. летом 2022 г.), Лаборатория метафизических исследований, Стэнфордский университет , получено 28 мая 2024 г.
- ^ Макс Планк, с. 119.
- ^ Понятие энтропии было введено Рудольфом Клаузиусом в 1865 году. Он был первым, кто сформулировал второй закон термодинамики, сказав, что «энтропия всегда увеличивается».
- ^ «Математическая теория коммуникации Клода Э. Шеннона» . cm.bell-labs.com . Архивировано из оригинала 3 мая 2007 года.
- ^ Паули, Вольфганг (1973). Статистическая механика . Кембридж: MIT Press. ISBN 978-0-262-66035-8 . , с. 21
- ^ Больцманн, Людвиг (1877). Перевод Шарпа К.; Мачинский, Ф. «О связи между второй основной теоремой механической теории теплоты и вероятностными расчетами условий теплового равновесия» . Отчеты о заседании Императорской Академии наук. Класс математических и естественных знаний . Часть II, LXXVI, 76:373-435. Вена. Перепечатано в «Научных трактатах» , том II, перепечатка 42, с. 164–223, Барт, Лейпциг, 1909. Энтропия 2015, 17, 1971–2009. дои : 10.3390/e17041971 .
- ^ Максвелл, Дж. (1871). Теория тепла. Лондон: Longmans, Green & Co.
- ^ Больцманн, Л. (1974). Второй закон термодинамики. Populare Schriften, Эссе 3, обращение к официальному собранию Императорской Академии наук 29 мая 1886 г., перепечатано в книге Людвига Больцмана, Теоретическая физика и философские проблемы, С. Г. Браш (Пер.). Бостон: Рейдел. (Оригинальная работа опубликована в 1886 г.)
- ^ Больцманн, Л. (1974). Второй закон термодинамики. п. 20
- ^ « Энциклопедия Коллиера », том 19. Файф Рени, «Физика», Дэвид Парк, стр. 15
- ^ «Энциклопедия Кольера», том 22 Sylt в Уругвай, Термодинамика, Лео Питерс, стр. 275
- ^ А. Дуглас Стоун, «Эйнштейн и квант», Глава 1 «Акт отчаяния». 2015.
- ^ Нойнцерт, Х., Гропенгисер, Ф., Штрукмайер, Дж. (1991). Методы расчета уравнения Больцмана. В: Спиглер Р. (ред.) Прикладная и промышленная математика. Математика и ее приложения, том 56. Спрингер, Дордрехт. дои : 10.1007/978-94-009-1908-2_10
- ^ Передовая теория полупроводников и полупроводниковых приборов, численные методы и моделирование / Умберто Равайоли http://transport.ece.illinois.edu/ECE539S12-Lectures/Chapter2-DriftDiffusionModels.pdf
- ^ ОБЗОР РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА БОЛЬЦМАНА ДЛЯ НЕЙТРОНОВ, ФОТОНОВ И ЭЛЕКТРОНОВ В ДЕКОРТОВОЙ ГЕОМЕТРИИ, Барбара Д. до Амарал Родригес, Марко Туллио Вильена, Международная ядерно-атлантическая конференция 2009 г. - INAC 2009 Рио-де-Жанейро, RJ, Бразилия, 27 сентября – 2 октября 2009 г. АССОЦИАК ̧A ̃OBRASILEIRADEENERGIANUCLEAR-ABEN ISBN 978-85-99141-03-8
- ^ Шарп, К.; Мачинский, Ф. Перевод статьи Людвига Больцмана «О связи второй фундаментальной теоремы механической теории теплоты и вероятностных расчетов относительно условий теплового равновесия» Труды Императорской академии наук. Класс математических и естественных знаний. Отдел II, LXXVI 1877, стр. 373–435 (Wien. Ber. 1877, 76:373–435). Перепечатано в журнале Science. Трактаты, Том II, переиздание 42, с. 164–223, Барт, Лейпциг, 1909. Энтропия 2015, 17, 1971–2009. https://doi.org/10.3390/e17041971 https://www.mdpi.com/1099-4300/17/4/1971
- ^ Карло Черчиньяни, «Людвиг Больцман: человек, который доверял атомам», гл. 12.3 Излучение черного тела, 2006, ISBN 978-0198570646 .
Дальнейшее чтение [ править ]
- Роман Сексл и Джон Блэкмор (редакторы), «Людвиг Больцман - Избранные трактаты», (Полное издание Людвига Больцмана, том 8), Vieweg, Брауншвейг, 1982.
- Джон Блэкмор (редактор), «Людвиг Больцман - его дальнейшая жизнь и философия, 1900–1906, книга первая: документальная история», Kluwer, 1995. ISBN 978-0-7923-3231-2
- Джон Блэкмор, «Людвиг Больцман – Его дальнейшая жизнь и философия, 1900–1906, Книга вторая: Философ», Клювер, Дордрехт, Нидерланды, 1995. ISBN 978-0-7923-3464-4
- Джон Блэкмор (редактор), «Людвиг Больцманн - проблемный гений как философ», в Synthese, том 119, №№ 1 и 2, 1999, стр. 1–232.
- Бланделл, Стивен; Бланделл, Кэтрин М. (2006). Понятия теплофизики . Издательство Оксфордского университета. п. 29. ISBN 978-0-19-856769-1 .
- Больцман, Людвиг Больцманн - Жизнь и письма , изд., Вальтер Хёфлехнер, Akademische Druck- u. Грац, Австрия, 1994 г.
- Браш, Стивен Г. (редактор и тр.), Больцман, Лекции по теории газа , Беркли, Калифорния: U. of California Press, 1964.
- Браш, Стивен Г. (редактор), Кинетическая теория , Нью-Йорк: Pergamon Press, 1965.
- Браш, Стивен Г. (1970). «Больцман» . В Чарльзе Коулстоне Гиллиспи (ред.). Словарь научной биографии . Нью-Йорк: Скрибнер. ISBN 978-0-684-16962-0 .
- Браш, Стивен Г. (1986). Вид движения, который мы называем теплом: история кинетической теории газов . Амстердам: Северная Голландия. ISBN 978-0-7204-0370-1 .
- Черчиньяни, Карло (1998). Людвиг Больцман: Человек, который доверял атомам . Издательство Оксфордского университета. ISBN 978-0-19-850154-1 .
- Дарригол, Оливье (2018). Атомы, механика и вероятность: Статистически-механический труд Людвига Больцмана . Издательство Оксфордского университета . ISBN 978-0-19-881617-1 .
- Эренфест П. и Эренфест Т. (1911) «Концептуальные основы статистической концепции в механике», в Энциклопедии математических наук, включая их приложения , том IV, часть 2 (Ф. Кляйн и К. Мюллер (ред.) Лейпциг: Тойбнер, стр. 3–90. В переводе « Концептуальные основы статистического подхода в механике» . Нью-Йорк: Издательство Корнеллского университета, 1959. ISBN 0-486-49504-3
- Эверделл, Уильям Р. (1988). «Проблема преемственности и истоки модернизма: 1870–1913». История европейских идей . 9 (5): 531–552. дои : 10.1016/0191-6599(88)90001-0 .
- Эверделл, Уильям Р. (1997). Первые модерны . Чикаго: Издательство Чикагского университета. ISBN 9780226224800 .
- Гиббс, Джозайя Уиллард (1902). Элементарные принципы статистической механики, разработанные с особым упором на рациональные основы термодинамики . Нью-Йорк: Сыновья Чарльза Скрибнера.
- Джонсон, Эрик (2018). Тревога и уравнение: понимание энтропии Больцмана . Массачусетский технологический институт Пресс. ISBN 978-0-262-03861-4 .
- Кляйн, Мартин Дж. (1973). «Развитие статистических идей Больцмана». В EGD Коэн ; В. Тирринг (ред.). Уравнение Больцмана: теория и приложения . Acta physica Austriaca Suppl. 10. Вена: Спрингер. стр. 53 –106. ISBN 978-0-387-81137-6 .
- Линдли, Дэвид (2001). Атом Больцмана: великие дебаты, положившие начало революции в физике . Нью-Йорк: Свободная пресса. ISBN 978-0-684-85186-0 .
- Лотка, AJ (1922). «Вклад в энергетику эволюции» . Учеб. Натл. акад. наук. США . 8 (6): 147–51. Бибкод : 1922PNAS....8..147L . дои : 10.1073/pnas.8.6.147 . ПМЦ 1085052 . ПМИД 16576642 .
- Мейер, Стефан (1904). Festschrift, посвященный Людвигу Больцману в день его шестидесятилетия, 20 февраля 1904 г. (на немецком языке). ДА, Барт.
- Планк, Макс (1914). Теория теплового излучения . П. Блэкистон Сын и Ко. Английский перевод Мортона Масиуса 2-го изд. Верместралунга . Перепечатано Дувром (1959) и (1991). ISBN 0-486-66811-8
- Шарп, Ким (2019). Энтропия и Дао счета: краткое введение в статистическую механику и второй закон термодинамики (SpringerBriefs in Physics). Спрингер Природа. ISBN 978-3030354596
- Толман, Ричард К. (1938). Принципы статистической механики . Издательство Оксфордского университета. Перепечатано: Дувр (1979). ISBN 0-486-63896-0
Внешние ссылки [ править ]
- Уффинк, Джос (2004). «Работы Больцмана по статистической физике» . Стэнфордская энциклопедия философии . Проверено 11 июня 2007 г.
- О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. , «Людвиг Больцман» , Архив истории математики MacTutor , Университет Сент-Эндрюс
- Рут Левин Сайм , Лиза Мейтнер: Жизнь в физике. В первой главе: «Детство в Вене» рассказывает Лиза Мейтнер об обучении и карьере Больцмана.
- Эфтехари, Али, « Людвиг Больцман (1844–1906). » Обсуждает философские взгляды Больцмана с многочисленными цитатами.
- Раджасекар, С.; Атаван, Н. (7 сентября 2006 г.). «Людвиг Эдвард Больцман». arXiv : физика/0609047 .
- Людвиг Больцман в проекте «Математическая генеалогия»
- Вайсштейн, Эрик Вольфганг (ред.). «Больцман, Людвиг (1844–1906)» . Мир Науки .
- Людвиг Больцманн
- 1844 рождения
- 1906 самоубийств
- 1906 смертей
- Ученые из Вены
- Австрийские физики XIX века
- Термодинамики
- Специалисты по гидродинамике
- Похороны на Центральном кладбище Вены.
- Выпускники Венского университета
- Члены Шведской королевской академии наук
- Члены-корреспонденты Санкт-Петербургской Академии наук.
- Самоубийства в Австро-Венгрии
- Иностранные члены Королевского общества
- Иностранные сотрудники Национальной академии наук
- Физики-математики
- Физики-теоретики
- Ректоры университетов Австро-Венгрии
- Физики из Австро-Венгрии
- Австрийские философы XIX века
- Австрийские философы ХХ века
- Члены Геттингенской академии наук и гуманитарных наук