Jump to content

E 7 Многогранник

Ортографические проекции в E 7. плоскости Кокстера

3 21

2 31

1 32

В 7-мерной геометрии существует 127 однородных многогранников с E7 симметрией . Три простейшие формы — это многогранники 3 21 , 2 31 и 1 32 , состоящие из 56, 126 и 576 вершин соответственно.

Их можно визуализировать как симметричные ортогональные проекции в плоскостях Кокстера группы E 7 Кокстера и других подгрупп.

Симметричные орфографические проекции можно построить в E7 , E6 , D6 , D5 , D4 , , A2 D3 , A6 , A5 , A4 A3 , этих 127 многогранников плоскостях Кокстера . AK симметрию 2 ( имеет k+1 симметрию , Dk имеет k-1) , а E6 и E7 имеют симметрию , 18 соответственно 12 .

Для 10 из 127 многогранников (7 одиночных колец и 3 усечений) они показаны в этих 9 плоскостях симметрии с нарисованными вершинами и ребрами, а вершины окрашены в соответствии с количеством перекрывающихся вершин в каждой проективной позиции.

# плоскости Кокстера Графики Диаграмма Кокстера
Символ Шлефли
Имена
E 7
[18]
EЕ6 А 6
[7x2]
AА5
[6]
А 4 / Д 6
[10]
Д 5
[8]
А 2 / Д 4
[6]
А3 / Д3
[4]
1
2 31 (лак)
2
Исправлено 2 31 (ролак)
3
Ректифицированный 1 32 (ролин)
4
1 32 (лин)
5
Birectified 3 21 (ошибка)
6
Исправлено 3 21 (ранг)
7
3 21 (точно)
8
Усечено 2 31 (разговор)
9
Усеченное 1 32 (тилин)
10
Усеченное 3 21 (танк)
  • ХСМ Коксетер :
    • HSM Coxeter, Правильные многогранники , 3-е издание, Дувр, Нью-Йорк, 1973 г.
  • Калейдоскопы: Избранные сочинения HSM Коксетера , под редакцией Ф. Артура Шерка, Питера Макмаллена, Энтони К. Томпсона, Азии Ивик Вайс, Wiley-Interscience Publication, 1995, ISBN   978-0-471-01003-6 Wiley::Калейдоскопы: Избранные сочинения HSM Коксетера
    • (Документ 22) HSM Коксетер, Правильные и полуправильные многогранники I , [Math. Зейт. 46 (1940) 380-407, МР 2,10]
    • (Документ 23) HSM Коксетер, Правильные и полуправильные многогранники II , [Math. Зейт. 188 (1985) 559-591]
    • (Документ 24) HSM Коксетер, Правильные и полуправильные многогранники III , [Math. Зейт. 200 (1988) 3-45]
  • Н. В. Джонсон : Теория однородных многогранников и сот , доктор философии. Диссертация, Университет Торонто, 1966 г.
  • Клитцинг, Ричард. «7D однородные многогранники (полиекса)» .
Семья н Б н И 2 (п) / Д н Е 6 / Е 7 / Е 8 / Ж 4 / Г 2 Ч н
Правильный многоугольник Треугольник Квадрат п-гон Шестиугольник Пентагон
Однородный многогранник Тетраэдр Октаэдр Куб Демикуб Додекаэдр Икосаэдр
Равномерный полихорон Пентахорон 16 ячеек Тессеракт Демитессеракт 24-ячеечный 120 ячеек 600 ячеек
Равномерный 5-многогранник 5-симплекс 5-ортоплекс 5-куб 5-демикуб
Равномерный 6-многогранник 6-симплекс 6-ортоплекс 6-куб 6-демикуб 1 22 2 21
Равномерный 7-многогранник 7-симплекс 7-ортоплекс 7-куб 7-демикуб 1 32 2 31 3 21
Равномерный 8-многогранник 8-симплекс 8-ортоплекс 8-куб 8-демикуб 1 42 2 41 4 21
Равномерный 9-многогранник 9-симплекс 9-ортоплекс 9-куб 9-демикуб
Равномерный 10-многогранник 10-симплекс 10-ортоплекс 10-куб 10-демикуб
Равномерный n - многогранник n - симплекс n - ортоплекс n - куб n - демикуб 1 лиц 2 2 лиц 1 лиц 21 n - пятиугольный многогранник
Темы: Семейства многогранников Правильный многогранник Список правильных многогранников и соединений.
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 24a8f8aa81d815b9dd96be671fbe125a__1525255980
URL1:https://arc.ask3.ru/arc/aa/24/5a/24a8f8aa81d815b9dd96be671fbe125a.html
Заголовок, (Title) документа по адресу, URL1:
E7 polytope - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)