~~~~~~~~~~~~~~~~~~~~ Arc.Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~ 
Номер скриншота №:
✰ C6D63ADF2B2E29C56BCDE6F5046E6288__1688411040 ✰
Заголовок документа оригинал.:
✰ Separated sets - Wikipedia ✰
Заголовок документа перевод.:
✰ Отдельные наборы — Википедия ✰
Снимок документа находящегося по адресу (URL):
✰ https://en.wikipedia.org/wiki/Separated_sets ✰
Адрес хранения снимка оригинал (URL):
✰ https://arc.ask3.ru/arc/aa/c6/88/c6d63adf2b2e29c56bcde6f5046e6288.html ✰
Адрес хранения снимка перевод (URL):
✰ https://arc.ask3.ru/arc/aa/c6/88/c6d63adf2b2e29c56bcde6f5046e6288__translat.html ✰
Дата и время сохранения документа:
✰ 11.06.2024 05:23:20 (GMT+3, MSK) ✰
Дата и время изменения документа (по данным источника):
✰ 3 July 2023, at 22:04 (UTC). ✰ 

~~~~~~~~~~~~~~~~~~~~~~ Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~~ 
Сервисы Ask3.ru: 
 Архив документов (Снимки документов, в формате HTML, PDF, PNG - подписанные ЭЦП, доказывающие существование документа в момент подписи. Перевод сохраненных документов на русский язык.)https://arc.ask3.ruОтветы на вопросы (Сервис ответов на вопросы, в основном, научной направленности)https://ask3.ru/answer2questionТоварный сопоставитель (Сервис сравнения и выбора товаров) ✰✰
✰ https://ask3.ru/product2collationПартнерыhttps://comrades.ask3.ru


Совет. Чтобы искать на странице, нажмите Ctrl+F или ⌘-F (для MacOS) и введите запрос в поле поиска.
Arc.Ask3.ru: далее начало оригинального документа

Отдельные наборы — Википедия Jump to content

Отдельные наборы

Из Википедии, бесплатной энциклопедии
Аксиомы разделения
в топологических пространствах
Колмогорова Классификация
Т 0  (Kolmogorov)
Т 1  (Фреше)
TТ2  (Хаусдорф)
T 2 ½ (Урысон)
полностью Т 2  (полностью Хаусдорф)
TТ3  (обычный Хаусдорф)
T (Тихонов)
Т 4  (обычный Хаусдорф)
TТ5  (совершенно нормально
Хаусдорф)
TТ6  (совершенно нормально
Хаусдорф)

В топологии и смежных разделах математики разделенные множества это пары подмножеств данного топологического пространства , которые связаны друг с другом определенным образом: грубо говоря, не перекрываясь и не соприкасаясь. Понятие о том, когда два множества разделены или нет, важно как для понятия связных пространств (и их связных компонентов), так и для аксиом разделения топологических пространств.

Разделенные множества не следует путать с разделенными пространствами (определенными ниже), которые в некоторой степени родственны, но различны. Сепарабельные пространства — это снова совершенно другая топологическая концепция.

Определения [ править ]

Существуют различные способы объединения двух подмножеств и топологического пространства можно считать разделенными. Самый простой способ разделения двух множеств — это если они не пересекаются , то есть если их пересечение является пустым множеством . Это свойство не имеет ничего общего с топологией как таковой, а лишь с теорией множеств . Каждое из приведенных ниже свойств является более строгим, чем непересекаемость, и включает в себя некоторую топологическую информацию. Свойства представлены в порядке возрастания специфичности, каждое из которых является более сильным понятием, чем предыдущее.

Более ограничительное свойство состоит в том, что и являются разделены в другого если каждый из них не пересекается с замыканием :

Это свойство известно как условие разделения Хаусдорфа-Ленна . [1] Поскольку каждое множество содержится в своем замыкании, два разделенных множества автоматически должны быть непересекающимися. Сами замыкания не обязательно должны быть отделены друг от друга; например, интервалы и разделены реальной линией хотя точка 1 принадлежит обоим их замыканиям. Более общий пример: в любом метрическом пространстве два открытых шара и разделены всякий раз, когда Свойство быть разделенным также можно выразить через производное множество (обозначенное штрихом): и разделяются, когда они не пересекаются и каждый из них не пересекается с производным набором другого, то есть (Как и в случае с первым вариантом определения, производные множества и не обязательно должны быть отделены друг от друга.)

Наборы и являются разделены кварталами , если есть кварталы из и из такой, что и непересекающиеся. (Иногда вы увидите требование, что и быть открытыми районами, но в конечном итоге это не имеет никакого значения.) Например, и ты мог бы взять и Заметим, что если любые два множества разделены окрестностями, то они заведомо разделены. Если и открыты и непересекающиеся, то их необходимо разделить по окрестностям; просто возьми и По этой причине разделенность часто используется с закрытыми множествами (как в обычной аксиоме разделения ).

Наборы и являются разделены закрытыми окрестностями , если есть закрытая окрестность из и закрытый район из такой, что и непересекающиеся. Наши примеры, и не разделены закрытыми кварталами. Вы можете сделать либо или замкнуты, включив в нее точку 1, но вы не можете сделать их обе замкнутыми, сохраняя при этом их непересекаемость. Заметим, что если любые два множества разделены замкнутыми окрестностями, то, конечно, они разделены окрестностями .

Наборы и являются разделенные непрерывной функцией , если существует непрерывная функция из космоса к реальной линии такой, что и , то есть члены отобразить на 0 и членов отобразить на 1. (Иногда единичный интервал используется вместо в этом определении, но это не имеет значения.) В нашем примере и не разделены функцией, поскольку нет возможности непрерывно определять в точке 1. [2] Если два множества разделены непрерывной функцией, то они также разделены замкнутыми окрестностями ; можно задать через прообраз окрестности как и где любое положительное действительное число меньше

Наборы и являются точно разделены непрерывной функцией , если существует непрерывная функция такой, что и (Опять же, вы также можете увидеть единичный интервал вместо и опять же это не имеет значения.) Обратите внимание, что если любые два множества точно разделены функцией, то они разделены функцией . С и закрыты в только закрытые множества могут быть точно разделены функцией, но то, что два множества замкнуты и разделены функцией, не означает, что они автоматически точно разделяются функцией (даже другой функцией).

Связь с аксиомами разделения пространствами разделенными и

Аксиомы разделения это различные условия, которые иногда накладываются на топологические пространства, многие из которых можно описать в терминах различных типов разделенных множеств. В качестве примера мы определим аксиому T 2 , которая представляет собой условие, налагаемое на разделенные пространства. В частности, топологическое пространство является разделенным , если для любых двух различных точек x и y одноэлементные множества { x } и { y } разделены окрестностями.

Разделенные пространства обычно называют пространствами Хаусдорфа или Т 2 пространствами .

Связь с подключенными пространствами [ править ]

Учитывая топологическое пространство X , иногда полезно рассмотреть вопрос о том, возможно ли подмножество A отделить от его дополнения . Это, конечно, верно, если A — это либо пустое множество, либо все пространство X , но могут быть и другие возможности. Топологическое пространство X связно , если это единственные две возможности. И наоборот, если непустое подмножество A отделено от своего собственного дополнения и если единственным подмножеством , A является пустое множество, то A является компонентом открытой связности X обладающим этим свойством , . (В вырожденном случае, когда X само является пустым множеством , власти расходятся во мнениях относительно того, является ли подключено и есть ли является открыто-связным компонентом самого себя.)

к топологически точкам Отношение различимым

В топологическом пространстве X две точки x и y если топологически различимы, существует открытое множество , которому одна точка принадлежит, а другая нет. Если x и y топологически различимы, то одноэлементные множества { x } и { y } должны быть непересекающимися. С другой стороны, если синглтоны { x } и { y } разделены, то точки x и y должны быть топологически различимы. Таким образом, для синглтонов топологическая различимость является промежуточным состоянием между дизъюнктностью и разделенностью.

См. также [ править ]

Цитаты [ править ]

  1. ^ Первин 1964 , с. 51
  2. ^ Манкрес, Джеймс Р. (2000). Топология (2-е изд.). Прентис Холл. п. 211. ИСБН  0-13-181629-2 .

Источники [ править ]

Arc.Ask3.Ru: конец оригинального документа.
Arc.Ask3.Ru
Номер скриншота №: C6D63ADF2B2E29C56BCDE6F5046E6288__1688411040
URL1:https://en.wikipedia.org/wiki/Separated_sets
Заголовок, (Title) документа по адресу, URL1:
Separated sets - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть, любые претензии не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, денежную единицу можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)