Раздвоенный
Семья бифруста | |
---|---|
![]() Пример: шестиугольный бифрустум. | |
Лица | 2 n -угольника 2 n трапеции |
Края | 5 н |
Вершины | 33н |
Группа симметрии | D nh , [ n ,2], (* n 22) |
Площадь поверхности | |
Объем | |
Двойной многогранник | Вытянутые бипирамиды |
Характеристики | выпуклый |
В геометрии n - угольный бифрустум — это многогранник, состоящий из трех параллельных плоскостей n -угольников , причем средняя плоскость наибольшая и обычно верхняя и нижняя конгруэнтны.
Его можно построить как две конгруэнтные усеченные пирамиды, объединенные в плоскости симметрии, а также как бипирамиду с двумя усеченными полярными вершинами. [1]
Они являются двойниками семейства вытянутых бипирамид .
Формулы
[ редактировать ]Для правильного n -угольного бифрустума со сторонами экваториального многоугольника a , сторонами оснований боковой поверхности A l , b и полувысотой (половиной расстояния между плоскостями оснований) h площадь общая площадь A и объем V равны : [2] и [3] Обратите внимание, что объем V в два раза больше объема фрусты .
Формы
[ редактировать ]Три бифруста двойственны трем телам Джонсона , J 14-16 . В общем, n -угольный бифруст имеет 2 n трапеций, 2 n- угольника и двойственен вытянутым дипирамидам .
Треугольный бифрустум | Квадратный бифрустум | Пятиугольный бифрустум |
---|---|---|
![]() | ![]() | ![]() |
6 трапеций, 2 треугольника. Двойная или вытянутая треугольная бипирамида , J 14 | 8 трапеций, 2 квадрата. Двойная или вытянутая квадратная бипирамида , J 15 | 10 трапеций, 2 пятиугольника. Двойная или вытянутая пятиугольная бипирамида , J 16. |
Ссылки
[ редактировать ]- ^ «Восьмиугольный бифрустум» . и т. д.usf.edu . Проверено 16 июня 2022 г.
- ^ «Бифрустум регулярный – Калькулятор» . RECHNERonline (на немецком языке) . Проверено 30 июня 2022 г.
- ^ «пирамидальный усеченный мир математического мира» .