Jump to content

Компьютерное моделирование

48-часовое компьютерное моделирование тайфуна Мавар с использованием модели погодных исследований и прогнозирования.
Процесс построения компьютерной модели и взаимодействие эксперимента, моделирования и теории.

Компьютерное моделирование — это процесс математического моделирования , выполняемый на компьютере и предназначенный для прогнозирования поведения или результатов реальной или физической системы. Надежность некоторых математических моделей можно определить путем сравнения их результатов с реальными результатами, которые они стремятся предсказать. Компьютерное моделирование стало полезным инструментом математического моделирования многих природных систем в физике ( вычислительной физике ), астрофизике , климатологии , химии , биологии и производстве , а также человеческих систем в экономике , психологии , социальных науках , здравоохранении и инженерии . Моделирование системы представляет собой запуск модели системы. Его можно использовать для изучения и получения нового понимания новых технологий , а также для оценки производительности систем, слишком сложных для аналитических решений . [1]

Компьютерное моделирование реализуется путем запуска компьютерных программ , которые могут быть как небольшими, работающими почти мгновенно на небольших устройствах, так и крупномасштабными программами, которые работают часами или днями на сетевых группах компьютеров. Масштаб событий, моделируемых с помощью компьютерного моделирования, намного превосходит все возможное (или, возможно, даже вообразимое) с использованием традиционного математического моделирования на бумаге и карандаше. В 1997 году моделирование сражения в пустыне, в котором одна сила вторгалась в другую, включало моделирование 66 239 танков, грузовиков и других транспортных средств на моделируемой местности вокруг Кувейта с использованием нескольких суперкомпьютеров в рамках Министерства обороны США . Программы модернизации высокопроизводительных компьютеров [2] Другие примеры включают модель деформации материала на 1 миллиард атомов; [3] модель сложной органеллы всех живых организмов, продуцирующей белок, рибосомы , состоящей из 2,64 миллиона атомов , в 2005 году; [4] полное моделирование жизненного цикла Mycoplasmagentium в 2012 г.; и проект Blue Brain в EPFL (Швейцария), начатый в мае 2005 года с целью создания первой компьютерной симуляции всего человеческого мозга, вплоть до молекулярного уровня. [5]

Из-за вычислительных затрат на моделирование для выполнения выводов, компьютерные эксперименты используются таких как количественная оценка неопределенности, . [6]

Моделирование против модели

[ редактировать ]

Модель состоит из уравнений, используемых для описания поведения системы. Напротив, компьютерное моделирование — это фактический запуск программы, которая выполняет алгоритмы, решающие эти уравнения, часто приближенным образом. Таким образом, моделирование — это процесс запуска модели. Таким образом, никто не будет «строить симуляцию»; вместо этого можно было бы «построить модель (или симулятор)», а затем либо «запустить модель», либо, что то же самое, «запустить симуляцию».

Компьютерное моделирование развивалось одновременно с быстрым развитием компьютеров после их первого крупномасштабного внедрения во время Манхэттенского проекта во время Второй мировой войны для моделирования процесса ядерного взрыва . Это была симуляция 12 твердых сфер с использованием алгоритма Монте-Карло . Компьютерное моделирование часто используется в качестве дополнения или замены систем моделирования, для которых простые аналитические решения в замкнутой форме невозможны. Существует множество типов компьютерного моделирования; их общей чертой является попытка создать выборку репрезентативных сценариев для модели, в которой полный перебор всех возможных состояний модели был бы запредельным или невозможным. [7]

Подготовка данных

[ редактировать ]

Требования к внешним данным для симуляций и моделей сильно различаются. Для некоторых входными данными могут быть всего несколько чисел (например, моделирование формы волны переменного тока в проводе), тогда как другим могут потребоваться терабайты информации (например, модели погоды и климата).

Источники входных данных также сильно различаются:

  • Датчики и другие физические устройства, подключенные к модели;
  • Поверхности управления, используемые для того или иного управления ходом моделирования;
  • Текущие или исторические данные, вводимые вручную;
  • Ценности, извлеченные как побочный продукт других процессов;
  • Значения, выводимые для этой цели другими симуляциями, моделями или процессами.

Наконец, время доступности данных варьируется:

  • «инвариантные» данные часто встраиваются в код модели либо потому, что значение действительно инвариантно (например, значение π), либо потому, что проектировщики считают значение инвариантным для всех представляющих интерес случаев;
  • данные могут быть введены в моделирование при его запуске, например, путем чтения одного или нескольких файлов или путем чтения данных из препроцессора ;
  • данные могут быть предоставлены во время моделирования, например, с помощью сенсорной сети.

Из-за такого разнообразия, а также из-за того, что различные системы моделирования имеют много общих элементов, существует большое количество специализированных языков моделирования . Самым известным из них может быть Simula . Сейчас есть много других.

Системы, принимающие данные из внешних источников, должны очень внимательно следить за тем, что они получают. Хотя компьютерам легко считывать значения из текстовых или двоичных файлов, гораздо сложнее узнать, какова точность ( по сравнению с измерения разрешением и прецизионностью ) этих значений. Часто они выражаются как «полосы погрешностей», минимальное и максимальное отклонение от диапазона значений, в пределах которого (ожидается) находится истинное значение. Поскольку цифровая компьютерная математика несовершенна, ошибки округления и усечения умножают эту ошибку, поэтому полезно выполнить «анализ ошибок». [8] чтобы подтвердить, что значения, выводимые симуляцией, по-прежнему будут точны.

Модели, используемые для компьютерного моделирования, можно классифицировать по нескольким независимым парам признаков, в том числе:

Другой способ категоризации моделей — взглянуть на лежащие в их основе структуры данных. Для пошагового моделирования существует два основных класса:

Для стационарного моделирования уравнения определяют взаимосвязи между элементами моделируемой системы и пытаются найти состояние, в котором система находится в равновесии. Такие модели часто используются при моделировании физических систем как более простой вариант моделирования перед попыткой динамического моделирования.

Визуализация

[ редактировать ]

Раньше выходные данные компьютерного моделирования иногда представлялись в виде таблицы или матрицы, показывающей, как на данные влияли многочисленные изменения параметров моделирования . Использование матричного формата было связано с традиционным использованием понятия матрицы в математических моделях . Однако психологи и другие специалисты отметили, что люди могут быстро воспринимать тенденции, просматривая графики или даже движущиеся изображения или движущиеся изображения, созданные на основе данных и отображаемые с помощью компьютерной анимации (CGI). Хотя наблюдатели не обязательно могли зачитывать числа или цитировать математические формулы, наблюдая за движущейся погодной картой, они могли бы предсказать события (и «увидеть, что дождь приближается») гораздо быстрее, чем путем сканирования таблиц координат дождевых облаков . Столь интенсивное графическое отображение, выходящее за пределы мира чисел и формул, иногда также приводило к выводу, в котором отсутствовала координатная сетка или отсутствовали временные метки, как будто слишком далеко отклоняясь от отображения числовых данных. Сегодня, Модели прогнозирования погоды имеют тенденцию балансировать вид движущихся дождевых/снежных облаков с картой, которая использует числовые координаты и числовые временные метки событий.

Точно так же компьютерное моделирование компьютерной томографии с помощью компьютерной графики может моделировать, как опухоль может уменьшаться или изменяться в течение длительного периода лечения, представляя ход времени как вращающийся вид видимой человеческой головы по мере изменения опухоли.

Разрабатываются и другие приложения компьютерного моделирования CGI. [ на момент? ] для графического отображения больших объемов данных в движении по мере того, как изменения происходят во время моделирования.

Компьютерное моделирование процесса осмоса

Общие примеры типов компьютерного моделирования в науке, основанные на базовом математическом описании:

Конкретные примеры компьютерного моделирования включают:

Известные, а иногда и спорные, компьютерные симуляции, используемые в науке, включают: Донеллы Медоуз » «Мир , использованный в « Пределах роста» , Джеймса Лавлока «Маргаритный мир» Томаса Рэя и «Тьерра» .

В социальных науках компьютерное моделирование является неотъемлемым компонентом пяти аспектов анализа, поддерживаемых методологией просачивания данных. [12] который также включает качественные и количественные методы, обзоры литературы (в том числе научной) и интервью с экспертами и представляет собой расширение триангуляции данных. Конечно, как и любой другой научный метод, репликация является важной частью компьютерного моделирования. [13]

В практическом контексте

[ редактировать ]

Компьютерное моделирование используется в самых разных практических контекстах, таких как:

Надежность и доверие людей к компьютерному моделированию зависят от достоверности имитационной модели , поэтому проверка и проверка имеют решающее значение при разработке компьютерного моделирования. Еще одним важным аспектом компьютерного моделирования является воспроизводимость результатов. Это означает, что имитационная модель не должна давать разные ответы для каждого выполнения. Хотя это может показаться очевидным, на это следует обратить особое внимание. [ редакция ] в стохастических симуляциях , где случайные числа на самом деле должны быть полуслучайными числами. Исключением из правила воспроизводимости являются моделирование с участием человека, такое как моделирование полета и компьютерные игры . Здесь человек является частью симуляции и, таким образом, влияет на результат таким образом, что его трудно, а то и невозможно, точно воспроизвести.

Производители транспортных средств используют компьютерное моделирование для проверки функций безопасности в новых конструкциях. Создав копию автомобиля в среде физического моделирования, они могут сэкономить сотни тысяч долларов, которые в противном случае потребовались бы для создания и тестирования уникального прототипа. Инженеры могут пошагово моделировать миллисекунды, чтобы определить точные нагрузки, оказываемые на каждую секцию прототипа. [15]

Компьютерная графика может использоваться для отображения результатов компьютерного моделирования. Анимацию можно использовать для просмотра симуляции в реальном времени, например, в обучающих симуляциях . В некоторых случаях анимация также может быть полезна в режимах быстрее, чем в реальном времени, или даже медленнее, чем в реальном времени. Например, анимация, работающая быстрее, чем в реальном времени, может быть полезна для визуализации формирования очередей при моделировании эвакуации людей из здания. Кроме того, результаты моделирования часто агрегируются в статические изображения с использованием различных способов научной визуализации .

При отладке моделирование выполнения тестируемой программы (вместо ее собственного выполнения) может обнаружить гораздо больше ошибок, чем может обнаружить само оборудование, и в то же время регистрировать полезную отладочную информацию, такую ​​как трассировка инструкций, изменения памяти и подсчет команд. Этот метод также может обнаруживать переполнение буфера и подобные «труднообнаружимые» ошибки, а также предоставлять информацию о производительности и настройки данные .

Подводные камни

[ редактировать ]

Хотя это иногда игнорируется в компьютерном моделировании, это очень важно. [ редакция ] провести анализ чувствительности , чтобы убедиться в правильности понимания точности результатов. Например, вероятностный анализ рисков факторов, определяющих успех программы разведки нефтяных месторождений, включает объединение выборок из различных статистических распределений с использованием метода Монте-Карло . Если, например, один из ключевых параметров (например, соотношение нефтеносных пластов) известен только до одной значащей цифры, то результат моделирования может быть не более точным, чем одна значащая цифра, хотя и может ( ошибочно) представить как состоящую из четырех значащих цифр.

См. также

[ редактировать ]
  1. ^ Строгац, Стивен (2007). «Конец прозрения». В Брокмане, Джон (ред.). В чем твоя опасная идея? . ХарперКоллинз. ISBN  9780061214950 .
  2. ^ «Исследователи проводят крупнейшее военное моделирование в истории» . Лаборатория реактивного движения . Калтех . 4 декабря 1997 г. Архивировано из оригинала 22 января 2008 г.
  3. ^ «Молекулярное моделирование макроскопических явлений» . IBM Research — Альмаден . Архивировано из оригинала 22 мая 2013 г.
  4. ^ Амброзиано, Нэнси (19 октября 2005 г.). «Крупнейшая симуляция компьютерной биологии имитирует самую важную наномашину в жизни» . Лос-Аламос, Нью-Мексико: Национальная лаборатория Лос-Аламоса . Архивировано из оригинала 4 июля 2007 г.
  5. ^ Грэм-Роу, Дункан (6 июня 2005 г.). «Начинается миссия по созданию моделируемого мозга» . Новый учёный . Архивировано из оригинала 9 февраля 2015 г.
  6. ^ Сантнер, Томас Дж; Уильямс, Брайан Дж; Нотц, Уильям I (2003). Планирование и анализ компьютерных экспериментов . Спрингер Верлаг.
  7. ^ Братли, Пол; Фокс, Беннет Л.; Шраге, Линус Э. (28 июня 2011 г.). Руководство по моделированию . Springer Science & Business Media. ISBN  9781441987242 .
  8. ^ Джон Роберт Тейлор (1999). Введение в анализ ошибок: исследование неопределенностей в физических измерениях . Университетские научные книги. стр. 128–129. ISBN  978-0-935702-75-0 . Архивировано из оригинала 16 марта 2015 г.
  9. ^ Jump up to: а б Гупта, Анкур; Роулингс, Джеймс Б. (апрель 2014 г.). «Сравнение методов оценки параметров в стохастических химико-кинетических моделях: примеры из системной биологии» . Журнал Айше . 60 (4): 1253–1268. Бибкод : 2014АИЧЕ..60.1253Г . дои : 10.1002/aic.14409 . ISSN   0001-1541 . ПМЦ   4946376 . ПМИД   27429455 .
  10. ^ Атанасов А.Г.; Вальтенбергер, Б; Пферши-Венциг, ЕМ; Линдер, Т; Ваврош, К; Ухрин, П; Теммл, В; Ван, Л; Швайгер, С; Хейсс, Э.Х.; Роллингер, Дж. М.; Шустер, Д; Бреусс, Дж. М.; Бочков, В; Миховилович, доктор медицинских наук; Копп, Б; Бауэр, Р; Дирш, В.М.; Стаппнер, Х (2015). «Открытие и пополнение запасов фармакологически активных натуральных продуктов растительного происхождения: обзор» . Биотехнологии Адв . 33 (8): 1582–614. doi : 10.1016/j.biotechadv.2015.08.001 . ПМЦ   4748402 . ПМИД   26281720 .
  11. ^ Мизуками, Коичи; Сайто, Фумио; Барон, Мишель. Исследование измельчения фармацевтических продуктов с помощью компьютерного моделирования. Архивировано 21 июля 2011 г. в Wayback Machine.
  12. ^ Месли, Оливье(2015). Создание моделей в психологических исследованиях. США: Спрингерская психология: 126 страниц. ISBN   978-3-319-15752-8
  13. ^ Виленский, Ури; Рэнд, Уильям (2007). «Совпадение моделей: репликация агентной модели» . Журнал искусственных обществ и социального моделирования . 10 (4): 2.
  14. ^ Уэскотт, Боб (2013). Книга «Производительность каждого компьютера», Глава 7: Моделирование производительности компьютера . Создать пространство . ISBN  978-1482657753 .
  15. ^ Баасе, Сара. Дар огня: социальные, юридические и этические проблемы вычислительной техники и Интернета. 3. Река Аппер-Седл: Прентис-Холл, 2007. Страницы 363–364. ISBN   0-13-600848-8 .

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: fdbc019e581a0d490647d1fd25f108c5__1721366580
URL1:https://arc.ask3.ru/arc/aa/fd/c5/fdbc019e581a0d490647d1fd25f108c5.html
Заголовок, (Title) документа по адресу, URL1:
Computer simulation - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)