Строматолит
Строматолиты ( / s t r oʊ ˈ m æ t ə ˌ l aɪ t s , s t r ə -/ stroh- MAT -ə-lytes, strə- ) [2] [3] или строматолиты (от древнегреческого στρῶμα ( strôma ) , GEN στρομα ( strṓmatos ) «слой, слой» и λιθος ( líthos ) «камень») [4] — слоистые осадочные образования ( микробиалит ), создаваемые преимущественно фотосинтезирующими микроорганизмами, такими как цианобактерии , сульфатредуцирующие бактерии и псевдомонадоты (ранее протеобактерии). Эти микроорганизмы производят клеевые соединения, которые цементируют песок и другие каменистые материалы, образуя минеральные « микробные маты ». В свою очередь, эти маты накапливаются слой за слоем, постепенно разрастаясь с течением времени. [5] [6]
Этот процесс приводит к характерной слоистости строматолитов, особенности, которую трудно интерпретировать с точки зрения ее временного и экологического значения. [7] [8] Описаны различные стили слоистости строматолита. [9] [10] которые можно изучить с помощью микроскопических и математических методов. [10] Строматолит может вырасти до метра и более. [11] [12] Окаменелые строматолиты содержат важные записи о древнейшей жизни. В голоцене живые формы встречаются редко.
Морфология
[ редактировать ]Строматолиты — это слоистые биохимические аккреционные структуры, образующиеся на мелководье путем захвата, связывания и цементации осадочных зерен в биопленки (в частности, микробные маты) под действием определенных микробных форм жизни, особенно цианобактерий . [12] Они имеют разнообразные формы и структуры или морфологии, включая коническую, стратиформную, куполовидную, столбчатую, [13] и типы ветвления. [14] Строматолиты широко встречаются в летописи окаменелостей докембрия, но сегодня они редки. [15] Очень немногие архейские строматолиты содержат окаменелые микробы, но окаменелые микробы иногда встречаются в изобилии в протерозойских строматолитах. [16]
Хотя особенности некоторых строматолитов свидетельствуют о биологической активности, другие обладают особенностями, которые больше соответствуют абиотическим (небиологическим) осадкам. [17] Поиск надежных способов различения биологически образованных и абиотических строматолитов является активной областью геологических исследований. [18] [19] В одной локальной или геологической толще может существовать множественная морфология строматолитов, что связано с конкретными условиями, возникающими в разных регионах и на разных глубинах воды. [20]
Большинство строматолитов имеют спонгиостроматную текстуру, не имеют распознаваемой микроструктуры или клеточных остатков. Меньшая часть представляет собой поростроматы с узнаваемой микроструктурой; они в основном неизвестны из докембрия, но сохраняются на протяжении палеозоя и мезозоя . С эоцена поростроматные строматолиты известны только из пресноводных условий. [21]
Формирование
[ редактировать ]Промежуточная фотография формирования современного микробного мата в лабораторных условиях дает некоторые важные сведения о поведении цианобактерий в строматолитах. Бидданда и др. (2015) обнаружили, что цианобактерии, подвергшиеся воздействию локализованных лучей света, двигались к свету или выражали фототаксис и увеличивали свой фотосинтетический выход, что необходимо для выживания. [22] В новом эксперименте ученые спроецировали логотип школы на чашку Петри, содержащую организмы, которые срослись под освещенной областью, образуя логотип в бактериях. [22] Авторы предполагают, что такая подвижность позволяет цианобактериям искать источники света для поддержания колонии. [22]
И в светлых, и в темных условиях цианобактерии образуют скопления, которые затем расширяются наружу, при этом отдельные члены остаются связанными с колонией длинными усиками. Это может быть защитным механизмом, который приносит эволюционную пользу колонии в суровых условиях, когда механические силы разрывают микробные маты. Таким образом, эти иногда сложные структуры, построенные микроорганизмами, работающими в некоторой степени в унисон, являются средством обеспечения укрытия и защиты от суровой окружающей среды.
Лишайниковые строматолиты представляют собой предполагаемый механизм образования некоторых видов слоистых структур горных пород, которые образуются над водой, где порода встречается с воздухом, путем многократной колонизации породы эндолитными лишайниками . [23] [24]
Ископаемая запись
[ редактировать ]Некоторые архейские горные образования демонстрируют макроскопическое сходство с современными микробными структурами, что позволяет сделать вывод, что эти структуры представляют собой свидетельства древней жизни, а именно строматолиты. Однако другие считают, что эти закономерности являются результатом отложения природного материала или какого-либо другого абиогенного механизма. Ученые приводят доводы в пользу биологического происхождения строматолитов из-за присутствия в тонких слоях строматолитов скоплений органических глобул, нанокристаллов арагонита (обе особенности современных строматолитов), [18] и других микроструктур в более старых строматолитах, аналогичных микроструктурам в более молодых строматолитах, которые имеют явные признаки биологического происхождения. [25] [26]
Строматолиты являются основным компонентом летописи окаменелостей первых форм жизни на Земле. [27] Они достигли своего пика около 1,25 миллиарда лет назад (Ga). [25] и впоследствии сократились в численности и разнообразии, [28] так что к началу кембрия они упали до 20% от своего пика. Наиболее широко поддерживаемое объяснение состоит в том, что строители строматолитов стали жертвами пасущихся животных ( кембрийская революция субстрата ); эта теория предполагает, что достаточно сложные организмы были распространены около 1 млрд лет назад. [29] [30] [31] Другая гипотеза состоит в том, что простейшие , такие как фораминиферы за упадок были ответственны , способствуя образованию тромболитов , а не строматолитов, посредством микроскопической биотурбации . [32]
Протерозойские микрофоссилии строматолита (сохранившиеся в результате перминерализации в кремнеземе) включают цианобактерии и, возможно, некоторые формы эукариотных хлорофитов (то есть зеленые водоросли ). Одним из родов строматолитов, очень распространенных в геологических летописях, является Collenia .
Связь между численностью травоядных и строматолитов хорошо документирована в более молодого ордовика эволюционной радиации ; Численность строматолитов также увеличилась после массового вымирания в позднем ордовике и пермско-триасового вымирания, уничтожившего морских животных, и вернулась к более ранним уровням по мере восстановления морских животных. [33] Колебания численности и разнообразия многоклеточных животных , возможно, были не единственным фактором сокращения численности строматолитов. Причиной изменений могли быть такие факторы, как химия окружающей среды. [34] [15]
Хотя прокариотические цианобактерии размножаются бесполым путем путем деления клеток, они сыграли важную роль в подготовке среды для эволюционного развития более сложных эукариотических организмов. [27] Считается, что они в значительной степени ответственны за увеличение количества кислорода в атмосфере первобытной Земли посредством продолжающегося фотосинтеза (см. « Великое событие оксигенации» ). Для создания пищи они используют воду, углекислый газ и солнечный свет. Слой полисахаридов часто образуется поверх матов цианобактериальных клеток. [35] В современных микробных матах мусор из окружающей среды обитания может задерживаться внутри слоя полисахарида, который может быть сцементирован карбонатом кальция, образуя тонкие пластинки известняка . Эти пластинки со временем могут срастаться, в результате чего образуется полосатый рисунок, характерный для строматолитов. Купольная морфология биологических строматолитов является результатом вертикального роста, необходимого для непрерывного проникновения солнечного света в организмы для фотосинтеза. Слоистые сферические структуры роста, называемые онколитами, похожи на строматолиты и также известны из летописи окаменелостей. Тромболиты представляют собой плохо слоистые или неслоистые сгустковые структуры, образованные цианобактериями, распространенные в летописи окаменелостей и в современных отложениях. [18] Есть свидетельства того, что тромболиты формируются предпочтительнее строматолитов, когда фораминиферы являются частью биологического сообщества. [36]
Район каньона реки Зебра платформы Кубис в глубоко расчлененных горах Зарис на юго-западе Намибии представляет собой хорошо выявленный пример тромболит-строматолит-метазойных рифов, которые развивались в протерозойский период. более высоких скоростей течений и большего притока наносов. [37]
Современное явление
[ редактировать ]Соленые места
[ редактировать ]Современные строматолиты в основном встречаются в гиперсоленых озерах и морских лагунах, где высокий уровень солености препятствует выпасу животных. [38] [39] Одним из таких мест, где можно наблюдать превосходные современные экземпляры, является морской природный заповедник Хамелин Пул в заливе Шарк в Западной Австралии . В 2010 году пятый тип хлорофилла , а именно хлорофилл f , был обнаружен Мин Ченом в строматолитах в заливе Шарк. [40] Halococcus hamelinensis , галофильный архей , встречается в живых строматолитах залива Шарк , где он подвергается экстремальным условиям УФ- излучения, солености и высыхания . [41] H. hamelinesis обладает генами, которые кодируют ферменты, используемые для восстановления повреждений ДНК, вызванных УФ-излучением , посредством процессов эксцизионного восстановления нуклеотидов и фотореактивации . [41]
Другие места включают национальный заповедник Пампа-дель-Тамаругаль в Чили; Лагоа Салгада , Риу-Гранди-ду-Норти , Бразилия, где современные строматолиты наблюдаются как в виде биогермов (купольного типа), так и пластов; и в Пуна-де-Атакама в Андах. [42]
Внутренние строматолиты можно найти в соленых водах бассейна Куатро-Сьенегас , уникальной экосистемы мексиканской пустыни. Озеро Алчичика в Пуэбле , Мексика, имеет две различные морфологические генерации строматолитов: столбчато-куполообразные структуры, богатые арагонитом Мексика. , образующиеся вблизи береговой линии и датируемые 1100 лет назад (год назад), и губчато-цветную капусту, подобные тромболитическим структурам, которые доминируют в озере Алчичика в Пуэбле, озеро сверху вниз, в основном состоит из гидромагнезита , хунтита , кальцита и датируется 2800 лн. [43] Единственная открытая морская среда, где, как известно, процветают современные строматолиты, — это острова Эксума- Кейс на Багамах. [44] [45]
Пресноводные места
[ редактировать ]Лагуна-де-Бакалар в Мексике на юге полуострова Юкатан имеет обширное образование живых гигантских микробиалитов (то есть строматолитов или тромболитов). Слой микробиалита имеет длину более 10 км (6,2 мили) с вертикальным подъемом на некоторых участках на несколько метров. Это могут быть самые крупные живые пресноводные микробиалиты или любой другой организм на Земле. [46]
Участок рифообразующих строматолитов (в основном рода Scytonema ) длиной 1,5 км встречается в заливе Четумаль в Белизе , к югу от устья Рио -Хондо и мексиканской границы. [47] Крупные микробиалитовые башни высотой до 40 м были обнаружены в самом большом содовом озере на Земле — озере Ван на востоке Турции. Они состоят из арагонита и растут в результате осаждения кальцита из подозерных карстовых вод. [48] Пресноводные строматолиты встречаются в озере Салда на юге Турции. Воды богаты магнием , а строматолитовые структуры состоят из гидромагнезита . [49]
Два экземпляра пресноводных строматолитов обнаружены в Канаде, на озерах Павильон и Келли в Британской Колумбии . В озере Павильон находятся крупнейшие из известных пресноводных строматолитов, и НАСА провело там ксенобиологические исследования. [50] под названием « Проект исследования озера Павильон ». Цель проекта — лучше понять, в каких условиях может существовать жизнь на других планетах. [51] [52]
Микробиалиты были обнаружены в открытом пруду заброшенной асбестовой шахты недалеко от Клинтон-Крик , Юкон .Канада. [53] Эти микробиалиты чрезвычайно молоды и, предположительно, начали формироваться вскоре после закрытия рудника в 1978 году. Сочетание низкой скорости седиментации, высокой скорости кальцификации и низкой скорости роста микробов, по-видимому, приводит к образованию этих микробиалитов. Микробиалиты на историческом руднике демонстрируют, что антропогенно созданная среда может способствовать образованию микробного карбоната. Это имеет значение для создания искусственной среды для создания современных микробиалитов, включая строматолиты.
Очень редкий тип строматолита, не обитающего в озере, обитает в крапивной пещере в пещерах Дженолан , Новый Южный Уэльс , Австралия. [54] Цианобактерии живут на поверхности известняка и поддерживаются богатой кальцием капающей водой, что позволяет им расти по направлению к двум открытым концам пещеры, обеспечивающим свет. [55]
Строматолиты, состоящие из кальцита, были обнаружены как в Голубом озере спящего вулкана Маунт-Гамбье , так и по крайней мере в восьми озерах -сенотах , включая Литтл-Блю-Лейк на нижнем юго-востоке Южной Австралии . [56]
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ Дуда, Япония; Ван Кранендонк, MJ; Тиль, В.; Ионеску, Д.; Штраус, Х.; Шефер, Н.; Рейтнер, Дж. (2016). «Редкий взгляд на палеоархейскую жизнь: геобиология исключительно сохранившейся фации микробного мата из формации бассейна Стрелли 3,4 млрд лет назад, Западная Австралия» . ПЛОС Один . 11 (1): e0147629. Бибкод : 2016PLoSO..1147629D . дои : 10.1371/journal.pone.0147629 . ПМК 4726515 . ПМИД 26807732 .
- ^ «строматолит» . Словарь Merriam-Webster.com . Проверено 21 января 2016 г.
- ^ «строматолит» . Lexico Британский словарь английского языка . Издательство Оксфордского университета . Архивировано из оригинала 17 июня 2020 года.
- ^ στρῶμα , λίθος . Лидделл, Генри Джордж ; Скотт, Роберт ; Греко-английский лексикон в проекте «Персей» .
- ^ Победительница Шери (15 ноября 2013 г.). «Что обрекло строматолиты?» . Океанографический институт Вудс-Хоул .
- ^ «Двухтонная окаменелость строматолита возрастом 500 миллионов лет обнаружена в Вирджинии, США» 8 июля 2008 г.
- ^ Сон Джу, Ли; Браун, Кэтлин М.; Голубич, Степко (2000), Райдинг, Роберт Э.; Аврамик, Стэнли М. (ред.), «О слоении строматолита» , Микробные отложения , Берлин, Гейдельберг: Springer Berlin Heidelberg, стр. 16–24, номер документа : 10.1007/978-3-662-04036-2_3 , ISBN 978-3-642-08275-7 , получено 9 февраля 2024 г.
- ^ Аренас, Конча; Джонс, Брайан (октябрь 2017 г.). Холлис, Кэти (ред.). «Временное и экологическое значение микробного ламинирования: данные недавних речных строматолитов в реке Пьедра, Испания» . Седиментология . 64 (6): 1597–1629. дои : 10.1111/сед.12365 . ISSN 0037-0746 .
- ^ Монти, CLV (1976), «Глава 5.1. Происхождение и развитие криптолгальных тканей» , «Развития в седиментологии» , том. 20, Elsevier, стр. 193–249, doi : 10.1016/s0070-4571(08)71137-3 , ISBN. 978-0-444-41376-5 , получено 9 февраля 2024 г.
- ^ Jump up to: а б Суарес-Гонсалес, Пабло; Кихада, И. Эмма; Бенито, М. Изабель; Мас, Рамон; Меринеро, Рауль; Райдинг, Роберт (март 2014 г.). «Происхождение и значение слоистости в строматолитах нижнего мела и предложения по количественному подходу» . Осадочная геология . 300 : 11–27. дои : 10.1016/j.sedgeo.2013.11.003 .
- ^ «Строматолиты» . Университет Индианы в Блумингтоне . Архивировано из оригинала 19 марта 2018 года . Проверено 14 мая 2018 г.
{{cite web}}
: CS1 maint: bot: исходный статус URL неизвестен ( ссылка ) - ^ Jump up to: а б Верховая езда, Р. (2007). «Термин строматолит: к существенному определению» . Летайя . 32 (4): 321–30. дои : 10.1111/j.1502-3931.1999.tb00550.x . Архивировано из оригинала 2 мая 2015 года.
- ^ Чжу, Дунъя; Лю, Цюанью; Ван, Цзинбинь; Дин, Цянь; Хэ, Чжилян (июль 2021 г.). «Данные о стабильных изотопах углерода и кислорода строматолитов позднего эдиакарского периода из гиперсоленой среды Таримского бассейна (северо-запад Китая) и их резервуарный потенциал». Фации . 67 (3): 25. дои : 10.1007/s10347-021-00633-0 . S2CID 235638690 .
- ^ Планавский, Ной; Грей, Кэтлин (16 августа 2007 г.). «Разветвление строматолитов в неопротерозое Центрального супербассейна, Австралия: исследование осадочного и микробного контроля морфологии строматолитов». Геобиология . 6 (1): 070816220552001––. дои : 10.1111/j.1472-4669.2007.00116.x . ПМИД 18380884 . S2CID 5495943 .
- ^ Jump up to: а б Питерс, Шанан Э.; Хассон, Джон М.; Уилкотс, Джулия (июнь 2017 г.). «Взлет и падение строматолитов на мелководье» (PDF) . Геология . 45 (6): 487–490. Бибкод : 2017Geo....45..487P . дои : 10.1130/G38931.1 .
- ^ Лепот, Кевин (октябрь 2020 г.). «Признаки ранней микробной жизни архейского периода (от 4 до 2,5 млрд лет назад)» . Обзоры наук о Земле . 209 : 103296. Бибкод : 2020ESRv..20903296L . doi : 10.1016/j.earscirev.2020.103296 . hdl : 20.500.12210/62415 . S2CID 225413847 .
- ^ Гротцингер, Джон П.; Ротман, Дэниел Х. (3 октября 1996 г.). «Абиотическая модель морфогенеза строматолитов». Природа . 383 (6599): 423–425. Бибкод : 1996Natur.383..423G . дои : 10.1038/383423a0 . S2CID 4325802 .
- ^ Jump up to: а б с Лепот, Кевин; Карим Бензерара; Гордон Э. Браун; Паскаль Филиппо (2008). «Микробное влияние на образование строматолитов возрастом 2,7 миллиарда лет». Природа Геонауки . 1 (2): 118–21. Бибкод : 2008NatGe...1..118L . дои : 10.1038/ngeo107 .
- ^ Перри, Э.; Такер, Мэн; Моусон, М. (25 сентября 2013 г.). «Биотические и абиотические процессы в формировании и диагенезе пермских доломитовых строматолитов (группа Цехштейн, Северо-Восточная Англия)» . Журнал осадочных исследований . 83 (10): 896–914. Бибкод : 2013JSedR..83..896P . дои : 10.2110/jsr.2013.65 . Проверено 8 января 2022 г.
- ^ Мейлиджсон, Аарон; Бялик, Ор М.; Бенджамини, Хаим (декабрь 2015 г.). «Строматолитовые биотические системы в среднем триасе Израиля - продукт стресса на эпиконтинентальной окраине». Палеогеография, Палеоклиматология, Палеоэкология . 440 : 696–711. Бибкод : 2015PPP...440..696M . дои : 10.1016/j.palaeo.2015.09.030 .
- ^ Монти, CL (1981). Монти, Клод (ред.). «Спонгиостромат против поростроматных строматолитов и онколитов» . Фанерозойские строматолиты . Берлин, Гейдельберг: Springer: 1–4. дои : 10.1007/978-3-642-67913-1_1 . ISBN 978-3-642-67913-1 .
- ^ Jump up to: а б с Бидданда, Бопайя А.; Макмиллан, Адам С.; Лонг, Стивен А.; Снайдер, Майкл Дж.; Вайнке, Энтони Д. (1 января 2015 г.). «В поисках солнечного света: быстрая фототаксическая подвижность нитчатых цианобактерий, образующих мат, оптимизирует фотосинтез и усиливает захоронение углерода в подводных воронках озера Гурон» . Границы микробиологии . 6 : 930. дои : 10.3389/fmicb.2015.00930 . ПМЦ 4561352 . ПМИД 26441867 .
- ^ Лишайниковые строматолиты: критерий субаэрального воздействия и механизм формирования пластинчатых калькретов (каличе), Колин Ф. Клаппа, Журнал осадочной петрологии , Том. 49 (1979) № 2. (июнь), страницы 387–400, [1] Архивировано 28 октября 2014 г. в Wayback Machine.
- ^ Палеоботаника: Биология и эволюция ископаемых растений, Эдит Л. Тейлор, Томас Н. Тейлор, Майкл Крингс, страница [2]. Архивировано 28 октября 2014 г. в Wayback Machine.
- ^ Jump up to: а б Оллвуд, Эбигейл; Гротцингер; Нолл; Берч; Андерсон; Коулман; Каник (2009). «Контроль развития и разнообразия раннеархейских строматолитов» . Труды Национальной академии наук . 106 (24): 9548–9555. Бибкод : 2009PNAS..106.9548A . дои : 10.1073/pnas.0903323106 . ПМК 2700989 . ПМИД 19515817 .
- ^ Колыбель жизни: открытие самых ранних окаменелостей Земли . Принстон, Нью-Джерси: Издательство Принстонского университета. 1999. стр. 87–89 . ISBN 978-0-691-08864-8 .
- ^ Jump up to: а б Гарвуд, Рассел Дж. (2012). «Закономерности палеонтологии: первые 3 миллиарда лет эволюции» . Палеонтология онлайн . 2 (11): 1–14. Архивировано из оригинала 26 июня 2015 года . Проверено 25 июня 2015 г.
- ^ Макменамин, MAS (1982). «Докембрийские конические строматолиты из Калифорнии и Соноры». Бюллетень Палеонтологического общества Южной Калифорнии . 14 (9 и 10): 103–105.
- ^ Макнамара, KJ (20 декабря 1996 г.). «Датирование происхождения животных» . Наука . 274 (5295): 1993–1997. Бибкод : 1996Sci...274.1993M . дои : 10.1126/science.274.5295.1993f .
- ^ Авраамик, С.М. (19 ноября 1971 г.). «Разнообразие столбчатых строматолитов докембрия: отражение внешнего вида многоклеточных животных». Наука . 174 (4011): 825–827. Бибкод : 1971Sci...174..825A . дои : 10.1126/science.174.4011.825 . ПМИД 17759393 . S2CID 2302113 .
- ^ Бенгтсон, С. (2002). «Происхождение и ранняя эволюция хищничества» (PDF) . В Ковалевском, М.; Келли, PH (ред.). Ископаемая летопись хищничества . Документы Палеонтологического общества . Том. 8. Палеонтологическое общество. стр. 289–317 . Проверено 29 декабря 2014 г.
- ^ Бернхард, Дж. М.; Эджкомб, вице-президент; Вишер, ПТ; Макинтайр-Врессниг, А.; Вызов, RE; Буксейн, ML; Луи, Л.; Еглински, М. (28 мая 2013 г.). «Изучение влияния фораминифер на микроткани микробиалитов в Хайборн-Кей, Багамы» . Труды Национальной академии наук . 110 (24): 9830–9834. Бибкод : 2013PNAS..110.9830B . дои : 10.1073/pnas.1221721110 . ПМЦ 3683713 . ПМИД 23716649 .
- ^ Шиэн, премьер-министр; Харрис, Монтана (2004). «Возрождение микробиалита после вымирания в позднем ордовике». Природа . 430 (6995): 75–78. Бибкод : 2004Natur.430...75S . дои : 10.1038/nature02654 . ПМИД 15229600 . S2CID 4423149 .
- ^ Райдинг, Р. (март 2006 г.). «Обилие микробных карбонатов по сравнению с колебаниями разнообразия многоклеточных животных в течение геологического времени» (PDF) . Осадочная геология . 185 (3–4): 229–38. Бибкод : 2006SedG..185..229R . дои : 10.1016/j.sedgeo.2005.12.015 . Архивировано (PDF) из оригинала 26 апреля 2012 г. Проверено 9 декабря 2011 г.
- ^ Кавагути, Томохиро; Дечо, Алан В. (январь 2000 г.). «Биохимическая характеристика цианобактериальных внеклеточных полимеров (ЭПС) из современных морских строматолитов (Багамские острова)». Препаративная биохимия и биотехнология . 30 (4): 321–330. дои : 10.1080/10826060008544971 . ПМИД 11065277 . S2CID 37979265 .
- ^ Нувер, Рэйчел (30 мая 2013 г.). «Что случилось со строматолитами, самыми древними видимыми формами жизни на Земле?» . Смитсоновский журнал . Смитсоновский институт . Проверено 18 апреля 2020 г.
- ^ Адамс, EW; Гротцингер, JP; Уоттерс, Вашингтон; Шредер, С.; Маккормик, Д.С.; Аль-Сияби, ХА (2005). «Цифровая характеристика распределения тромболит-строматолитовых рифов в системе карбонатных пандусов (конечный протерозой, группа Нама, Намибия)» (PDF) . Бюллетень AAPG . 89 (10): 1293–1318. дои : 10.1306/06160505005 . Архивировано (PDF) из оригинала 7 марта 2016 года . Проверено 9 декабря 2011 г.
- ^ «Строматолит | геология» .
- ^ «Самые древние свидетельства жизни на Земле найдены в Австралии» . Экономические времена .
- ^ Чен, М. .; Шлип, М. .; Уиллоус, РД; Цай, З.-Л.; Нейлан, бакалавр; Шеер, Х. . (2010). «Красносмещенный хлорофилл». Наука . 329 (5997): 1318–1319. Бибкод : 2010Sci...329.1318C . дои : 10.1126/science.1191127 . ПМИД 20724585 . S2CID 206527174 .
- ^ Jump up to: а б Леуко С., Нейлан Б.А., Бернс Б.П., Уолтер М.Р., Ротшильд Л.Дж. Молекулярная оценка репарации повреждений ДНК, вызванных УФ-излучением, у строматолитовых галофильных архей Halococcus hamelinensis. J Photochem Photobiol B. 7 февраля 2011 г.; 102 (2): 140-5. doi: 10.1016/j.jphotobiol.2010.10.002. Epub 2010, 23 октября. PMID: 21074452.
- ^ Стрейн, Дэниел (6 декабря 2023 г.). «Глубоко в негостеприимной пустыне — окно в первую жизнь на Земле» . Университет Колорадо . Архивировано из оригинала 30 декабря 2023 года . Проверено 30 декабря 2023 г.
- ^ Казмерчак Ю.; Кемпе, С.; Кремер, Б.; Лопес-Гарсия, П.; Морейра Д. и Тавера Р. (2011). «Гидрохимия и микробиалиты щелочной кальдеры озера Альчичика, Мексика» . Фации . 57 : 543–570. дои : 10.1007/s10347-010-0255-8 .
- ^ «217-Строматолиты-Ли-Стокинг-Эксумас-Багамские острова Багамские острова» . Архивировано из оригинала 26 марта 2010 года . Проверено 8 декабря 2011 г.
- ^ Фельдманн М., Маккензи Дж.А. (апрель 1998 г.). «Строматолит-тромболитовые ассоциации в современной среде, остров Ли-Стокинг, Багамы». ПАЛЕОС . 13 (2): 201–212. Бибкод : 1998Палай..13..201F . дои : 10.2307/3515490 . JSTOR 3515490 .
- ^ Гишлер, Э.; Гибсон М. и Ошманн В. (2008). «Гигантские голоценовые пресноводные микробиалиты, Лагуна Бакалар, Кинтана-Роо, Мексика». Седиментология . 55 (5): 1293–1309. Бибкод : 2008Седим..55.1293Г . дои : 10.1111/j.1365-3091.2007.00946.x . S2CID 129828647 .
- ^ Расмуссен, штат Калифорния; Макинтайр, И.Г. и Пруферт, Л. (март 1993 г.). «Современные строматолитовые рифы, окаймляющие солоноватую береговую линию, залив Четумаль, Белиз» (PDF) . Геология . 21 (3): 199–202. Бибкод : 1993Geo....21..199R . doi : 10.1130/0091-7613(1993)021<0199:MSRFAB>2.3.CO;2 .
- ^ Кемпе, С.; Казмерчак Ю.; Ландманн, Г.; Конук, Т.; Реймер А. и Липп А. (1991). «Самые крупные известные микробиалиты обнаружены в озере Ван, Турция». Природа . 349 (6310): 605–608. Бибкод : 1991Natur.349..605K . дои : 10.1038/349605a0 . S2CID 4240438 .
- ^ Брейтуэйт, К. и Зедеф В. (ноябрь 1996 г.). «Живые гидромагнезитовые строматолиты из Турции». Осадочная геология . 106 (3–4): 309. Бибкод : 1996SedG..106..309B . дои : 10.1016/S0037-0738(96)00073-5 .
- ^ Феррис Ф.Г., Томпсон Дж.Б., Беверидж Т.Дж. (июнь 1997 г.). «Современные пресноводные микробиалиты из озера Келли, Британская Колумбия, Канада». ПАЛЕОС . 12 (3): 213–219. Бибкод : 1997Палай..12..213F . дои : 10.2307/3515423 . JSTOR 3515423 .
- ^ Брэди, А.; Слейтер, ГФ; Омелон, Чехия; Саутэм, Дж.; Друшель, Г.; Андерсен, А.; Хоуз, И.; Лаваль, Б.; Лим, DSS (2010). «Биосигнатуры фотосинтетических изотопов в слоистых микростроматолитовых и неслоистых конкрециях, связанных с современными пресноводными микробиалитами в Павильон-Лейк, Британская Колумбия». Химическая геология . 274 (1–2): 56–67. Бибкод : 2010ЧГео.274...56Б . doi : 10.1016/j.chemgeo.2010.03.016 .
- ^ «НАСА поможет НАСА найти жизнь на Марсе с помощью MAPPER» . НАСА . Архивировано из оригинала 30 сентября 2011 года . Проверено 10 декабря 2011 г.
- ^ Пауэр, И.М., Уилсон, С.А., Диппл, Г.М. и Саутэм, Г. (2011) Современные карбонатные микробиалиты из асбестового открытого пруда, Юкон, Канада , http://onlinelibrary.wiley.com/doi/10.1111/gbi .2011.9.issue-2/issuetoc. Архивировано 11 февраля 2012 г. в Wayback Machine Geobiology. 9: 180–195.
- ^ Резервный фонд пещер Дженолан. «Самостоятельная экскурсия в Крапивную пещеру» . Архивировано из оригинала 10 сентября 2011 года . Проверено 22 мая 2011 г.
- ^ Кокс Дж., Джеймс Дж. М., Леггетт КЕА, Осборн РАЛ (1989). «Цианобактериально отложенные образования: субаэральные строматолиты». Геомикробиологический журнал . 7 (4): 245–252. дои : 10.1080/01490458909377870 .
- ^ Тургейт, Миа Э. (1996). «Строматолиты озер-сенотов нижнего юго-востока Южной Австралии» (PDF) . Геликтит, Журнал австралийских пещерных исследований . 34 (1): 17. ISSN 0017-9973 . Архивировано (PDF) из оригинала 5 февраля 2014 года . Проверено 14 марта 2014 г.
Дальнейшее чтение
[ редактировать ]- Гротцингер, Джон П.; Эндрю Х. Нолл (1999). «Строматолиты в докембрийских карбонатах: эволюционные вехи или экологические ориентиры?». Ежегодный обзор наук о Земле и планетах . 27 : 313–58. Бибкод : 1999AREPS..27..313G . дои : 10.1146/annurev.earth.27.1.313 . ПМИД 11543060 .
- Оллвуд, Эбигейл К.; Малкольм Р. Уолтер; Бальц С. Камбер; Крейг П. Маршалл; Ян В. Берч (2006). «Строматолитовый риф раннеархейской эпохи Австралии». Природа . 441 (7094): 714–8. Бибкод : 2006Natur.441..714A . дои : 10.1038/nature04764 . ПМИД 16760969 . S2CID 4417746 .
- Аврамик, С.; Спринкл, Дж. (1999). «Протерозойские строматолиты: первая морская эволюционная биота». Историческая биология . 13 (4): 241–253. дои : 10.1080/08912969909386584 .
- Фариас, Мария Э.; Раскован, Николас; Тонеатти, Диего М.; Альбаррасин, Вирджиния Х.; Флорес, Мария Р.; Пуаре, Даниэль Густаво; Коллавино, Моника Мариана; Агилар, О. Марио; Васкес, Мартин; Полерецкий, Любош (2013). «Открытие строматолитов, развивающихся на высоте 3570 м над уровнем моря в высокогорном вулканическом озере Сокомпа, аргентинские Анды» . ПЛОС ОДИН . 8 (1): 15. Бибкод : 2013PLoSO...853497F . дои : 10.1371/journal.pone.0053497 . ISSN 1932-6203 . ПМЦ 3538587 . ПМИД 23308236 . Проверено 14 апреля 2014 г.
Внешние ссылки
[ редактировать ]- «Строматолиты – Пилбара» . Архивировано из оригинала 24 января 2012 года . Проверено 10 декабря 2011 г.
- «Исследовательские инициативы в области строматолитов Багамских островов» . Проверено 10 декабря 2011 г.
- «Институт Лагуна Бакалар» . Архивировано из оригинала 12 января 2012 года . Проверено 10 декабря 2011 г.
- Фотогалерея строматолитов , обучающий набор из Университета штата Огайо.