PSMB1
PSMB1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Идентификаторы | |||||||||||||||||||||||||||||||||||||||||||||||||||
Псевдонимы | PSMB1 , HC5, PMSB1, PSC5, субъединица протеасомы Beta 1, Proteasome 20S субъединица бета 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Внешние идентификаторы | Омим : 602017 ; MGI : 104884 ; Гомологен : 2087 ; GeneCards : PSMB1 ; OMA : PSMB1 - ортологи | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Викидид | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Протеасома субъединица бета-1 типа 1, также известная как субъединица протеасомы 20S Beta-6 (на основе систематической номенклатуры), представляет собой белок , который у людей кодируется PSMB1 геном . [ 5 ] Этот белок является одной из 17 важных субъединиц (альфа-субъединицы 1-7, конститутивные бета-субъединицы 1-7 и индуцибельные субъединицы, включая бета1i , бета2i , beta5i ), которые способствуют полной сборке протеасомного комплекса 20S. В частности, протеасомная субъединица бета-1 типа 1, наряду с другими бета-субъединицами, собираются в два гептамерных кольца и впоследствии протеолитическую камеру для деградации субстрата. Эукариотическая протеасома распознала разлагаемые белки, включая поврежденные белки для целей контроля качества белка или ключевые регуляторные компоненты белка для динамических биологических процессов. Основной функцией модифицированной протеасомы, иммунопротеасомы, является обработка пептидов MHC класса I.
Структура
[ редактировать ]Ген
[ редактировать ]Ген PSMB1 кодирует члена семейства протеасомы B, также известного как семейство T1B, то есть основная бета-субъединица 20S. Этот ген тесно связан с геном TBP (связывающий белок TATA) у человека и мыши и транскрибируется в противоположной ориентации у обоих видов. [ 6 ] Ген имеет 6 экзонов и расположена в хромосомной полосе 6Q27.
Белок
[ редактировать ]Субъединица протеиновой протеины человека бета-1 типа 1 составляет 26,5 кДа размера и состоит из 241 аминокислот. Рассчищенный теоретический ИП этого белка составляет 8,27.
Сложная сборка
[ редактировать ]Протеасома представляет собой мультикаталитический протеиназный комплекс с высоко упорядоченной основной структурой 20S. Эта структура ядра в форме ствола состоит из 4 ослабленных кольца из 28 неидентичных субъединиц: два кольца конечных сформированы 7 альфа-субъединиц, и два центральных кольца образуются по 7 бета-субъединицам. Три бета -субъединицы (Beta1, Beta2 и Beta5) содержит протеолитический активный сайт и имеет различные предпочтения субстрата. Протеасомы распределяются по всем эукариотическим клеткам при высокой концентрации и расщепляют пептиды в АТФ/убиквитин-зависимом процессе в неайзосомном пути. [ 7 ] [ 8 ]
Функция
[ редактировать ]Функции белка подтверждаются его третичной структурой и взаимодействием с ассоциирующими партнерами. В качестве одной из 28 субъединиц протеасомы 20S, белковая протеасома субъединица бета-1 типа 1 способствует образованию протеолитической среды для разложения субстрата. Доказательства кристаллических структур изолированного протеасомного комплекса 20S демонстрируют, что два кольца бета -субъединиц образуют протеолитическую камеру и поддерживают все их активные участки протеолиза в камере. [ 8 ] Одновременно кольца альфа -субъединиц образуют вход для субстратов, входящих в протеолитическую камеру. В инактивированном комплексе протеасом 20S ворота во внутреннюю протеолитическую камеру охраняются N-концевыми хвостами специфической альфа-субъединицы. Эта уникальная конструкция структуры предотвращает случайное встречу между протеолитическими активными сайтами и белковым субстратом, что делает разложение белка хорошо регулируемым процессом. [ 9 ] [ 10 ] Протеасомный комплекс 20S сам по себе обычно функционально неактивен. Протеолитическая способность частицы ядра 20S (CP) может быть активирована, когда CP ассоциируется с одной или двумя регуляторными частицами (RP) на одной или обеих сторонах альфа -колец. Эти регуляторные частицы включают в себя протеасомные комплексы 19S, комплекс протеасом 11S и т. Д. После ассоциации CP-RP подтверждение определенных альфа-субъединиц изменится и, следовательно, вызовет открытие подложки входных затворов. Помимо RPS, протеасомы 20S также могут быть эффективно активированы другими легкими химическими обработками, такими как воздействие низких уровней додецилсульфата натрия (SDS) или NP-14. [ 10 ] [ 11 ]
Клиническое значение
[ редактировать ]Протеасома и ее субъединицы имеют клиническое значение, по крайней мере, по двум причинам: (1) нарушенная сложная сборка или дисфункциональная протеасома может быть связана с основной патофизиологией специфических заболеваний, и (2) они могут использоваться в качестве мишеней лекарств для терапевтических вмешательства. Совсем недавно было предпринято больше усилий, чтобы рассмотреть протеасому для разработки новых диагностических маркеров и стратегий. Улучшение и всестороннее понимание патофизиологии протеасомы должно привести к клиническим применениям в будущем.
Протеасомы образуют ключевой компонент для системы убиквитин -протеасом (UPS) [ 12 ] и соответствующий контроль качества клеточного белка (PQC). белка Убиквитинирование и последующий протеолиз и деградация протеасомой являются важными механизмами в регуляции клеточного цикла , роста и дифференцировки клеток , транскрипции генов, трансдукции сигнала и апоптоза . [ 13 ] Впоследствии скомпрометированный комплекс протеасомного комплекса и функция приводит к снижению протеолитической активности и накоплению поврежденных или неправильно свернутых видов белков. Такое накопление белка может способствовать патогенезу и фенотипическим характеристикам при нейродегенеративных заболеваниях, [ 14 ] [ 15 ] сердечно -сосудистые заболевания, [ 16 ] [ 17 ] [ 18 ] воспалительные реакции и аутоиммунные заболевания, [ 19 ] и системные реакции повреждения ДНК, приводящие к злокачественным новообразованиям . [ 20 ]
Несколько экспериментальных и клинических исследований показали, что аберрации и дерегуляции UPS способствуют патогенезу нескольких нейродегенеративных и миодегенеративных расстройств, включая болезнь Альцгеймера , [ 21 ] Болезнь Паркинсона [ 22 ] И болезнь Пика , [ 23 ] Амиотрофический боковой склероз (БАС), [ 8 ] Болезнь Хантингтона , [ 22 ] Creutzfeldt -Jakob болезнь , [ 24 ] и заболевания моторных нейронов, заболевания полиглутамина (полик), мышечная дистрофия [ 25 ] и несколько редких форм нейродегенеративных заболеваний, связанных с деменцией . [ 26 ] В рамках системы убиквитин -протеасом (UPS), протеасома поддерживает гомеостаз сердечного белка и, следовательно, играет значительную роль в ишемическом повреждении сердца, [ 27 ] желудочковая гипертрофия [ 28 ] и сердечная недостаточность . [ 29 ] Кроме того, накапливаются доказательства того, что UPS играет важную роль в злокачественной трансформации. Протеолиз UPS играет важную роль в реакциях раковых клеток на стимулирующие сигналы, которые имеют решающее значение для развития рака. Соответственно, экспрессия генов путем деградации факторов транскрипции , таких как p53 , c-Jun , c-fos , nf-κB , c-myc , hif-1α, matα2, stat3 , белки, регулируемые стеролом, и андрогенные рецепторы все являются контролируется UPS и, таким образом, участвует в развитии различных злокачественных новообразований. [ 30 ] Более того, UPS регулирует деградацию продуктов гена -супрессора опухоли, таких как аденоматозная полипоза Coli (APC) при колоректальном раке, ретинобластома (RB). и супрессор опухоли фон Хиппель-Линдау (VHL), а также ряд протоонкогенов ( RAF , MYC , MYB , REL , SRC , MOS , ABL ). UPS также участвует в регуляции воспалительных реакций. Эта активность обычно объясняется роли протеасомов в активации NF-κB, которая дополнительно регулирует экспрессию PRO-воспалительных цитокинов, таких как TNF-α , IL-β, IL-8 , молекулы адгезии ( ICAM-1 , VCAM-1 , P-Selectin ) и простагландины и оксид азота (нет). [ 19 ] Кроме того, UPS также играет роль в воспалительных реакциях в качестве регуляторов пролиферации лейкоцитов, главным образом посредством протеолиза циклов и деградации ингибиторов CDK . [ 31 ] Наконец, пациенты с аутоиммунным заболеванием с СКВ , синдромом Шегрена и ревматоидным артритом (РА) преимущественно демонстрируют циркулирующие протеасомы, которые могут применяться в качестве клинических биомаркеров. [ 32 ]
Протеасома субъединица бета-1 типа 1 (также известная как субъединица протеасомы 20S Beta-6) является белком, кодируемым геном PSMB1 у людей и является субъектом исследований в нескольких клинических условиях. Например, мутированная форма PSMB1 демонстрировала повышенную ядерную транслокацию, что привело к активации транскрипции в адипоцитах, относящихся к сахарному диабету . [ 33 ] В целом, белок PSMB1 был описан в нескольких формах злокачественных новообразований [ 34 ] [ 35 ] [ 36 ] такие как фолликулярная лимфома [ 35 ] с важной механистической ролью в онкогенезе . [ 37 ]
Ссылки
[ редактировать ]- ^ Jump up to: а беременный в ENSG00000281184 GRCH38: Ensembl Release 89: ENSG00000008018, ENSG00000281184 - ENSEMBL , май 2017
- ^ Jump up to: а беременный в GRCM38: Ensembl Release 89: Ensmusg00000014769 - Ensembl , май 2017 г.
- ^ «Человеческая PubMed ссылка:» . Национальный центр информации о биотехнологии, Национальная медицина США .
- ^ «Мышь Pubmed ссылка:» . Национальный центр информации о биотехнологии, Национальная медицина США .
- ^ Тамура Т., Ли Д.Х., Осака Ф., Фудзивара Т., Шин С., Чунг Ч., Танака К., Ичихара А (май 1991). «Молекулярное клонирование и анализ последовательности кДНК для пяти основных субъединиц человеческих протеасомов (мультикаталитические протеиназные комплексы)». Biochimica et Biophysica Acta (BBA) - структура и экспрессия гена . 1089 (1): 95–102. doi : 10.1016/0167-4781 (91) 90090-9 . PMID 2025653 .
- ^ «Ген Entrez: PSMB1 Протеасома (Prosome, Macropain) субъединица, бета -тип, 1» .
- ^ Кукс О., Танака К., Голдберг А.Л. (1996). «Структура и функции протеасомов 20 и 26S». Ежегодный обзор биохимии . 65 : 801–47. doi : 10.1146/annurev.bi.65.070196.004101 . PMID 8811196 .
- ^ Jump up to: а беременный в Томко Р.Дж., Хохстрассер М. (2013). «Молекулярная архитектура и сборка эукариотической протеасомы» . Ежегодный обзор биохимии . 82 : 415–45. doi : 10.1146/annurev-biochem-060410-150257 . PMC 3827779 . PMID 23495936 .
- ^ Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (Apr 1997). «Структура протеасомы 20S от дрожжей в 2,4 резолюции». Природа . 386 (6624): 463–71. Bibcode : 1997natur.386..463g . doi : 10.1038/386463A0 . PMID 9087403 . S2CID 4261663 .
- ^ Jump up to: а беременный Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (ноябрь 2000 г.). «Закрытый канал в частицу ядра протеасомы». Природа структурная биология . 7 (11): 1062–7. doi : 10.1038/80992 . PMID 11062564 . S2CID 27481109 .
- ^ Zong C, Gomes AV, Drews O, Li X, Young GW, Berhane B, Qiao X, French SW, Bardag-Gorce F, Ping P (август 2006 г.). «Регуляция мышиных сердечных протеасомов: роль ассоциации партнеров» . Исследование циркуляции . 99 (4): 372–80. doi : 10.1161/01.res.0000237389.40000.02 . PMID 16857963 .
- ^ Kleiger G, мэр T (Jun 2014). «Опасное путешествие: экскурсия по системе убиквитин-протеасома» . Тенденции в клеточной биологии . 24 (6): 352–9. doi : 10.1016/j.tcb.2013.12.003 . PMC 4037451 . PMID 24457024 .
- ^ Голдберг А.Л., Стейн Р., Адамс Дж. (Авг 1995). «Новое понимание функции протеасомы: от Archaebacteria до разработки лекарств» . Химия и биология . 2 (8): 503–8. doi : 10.1016/1074-5521 (95) 90182-5 . PMID 9383453 .
- ^ Сулистио Я., Хиз К (январь 2015). «Система убиквитин -протеасом и дерегуляция молекулярной шаперона при болезни Альцгеймера». Молекулярная нейробиология . 53 (2): 905–31. doi : 10.1007/s12035-014-9063-4 . PMID 25561438 . S2CID 14103185 .
- ^ Ortega Z, Lucas JJ (2014). «Убиквизино -протеасомное участие в болезни Хантингтона» . Границы в молекулярной нейробиологии . 7 : 77. doi : 10.3389/fnmol.2014.00077 . PMC 4179678 . PMID 25324717 .
- ^ Сандри М, Роббинс Дж. (Jun 2014). «Протеотоксичность: недооцененная патология при болезни сердца» . Журнал молекулярной и клеточной кардиологии . 71 : 3–10. doi : 10.1016/j.yjmcc.2013.12.015 . PMC 4011959 . PMID 24380730 .
- ^ Дрюс О, Тагтмейер H (декабрь 2014 г.). «Нацеливание на систему убиквитин-протеасом при сердечных заболеваниях: основа для новых терапевтических стратегий» . Антиоксиданты и окислительно -восстановительная передача сигналов . 21 (17): 2322–43. doi : 10.1089/ars.2013.5823 . PMC 4241867 . PMID 25133688 .
- ^ Wang ZV, Hill JA (февраль 2015 г.). «Контроль качества белка и метаболизм: двунаправленный контроль в сердце» . Клеточный метаболизм . 21 (2): 215–26. doi : 10.1016/j.cmet.2015.01.016 . PMC 4317573 . PMID 25651176 .
- ^ Jump up to: а беременный Карин М., Дельхасе М (февраль 2000 г.). «I Kappa B-киназа (IKK) и NF-Kappa B: ключевые элементы провоспалительной передачи сигналов». Семинары по иммунологии . 12 (1): 85–98. doi : 10.1006/smim.2000.0210 . PMID 10723801 .
- ^ Эмолаева М.А., Даховник А., Шумахер Б. (январь 2015). «Механизмы контроля качества в клеточных и системных реакциях на повреждение ДНК» . Обзоры исследований старения . 23 (pt a): 3–11. doi : 10.1016/j.arr.2014.12.009 . PMC 4886828 . PMID 25560147 .
- ^ Checler F, Da Costa CA, Ancolio K, Chevaler N, Lopez-Perez E, Marabaud P (Jul 2000). «Роль протеазера при болезни Альцгеймера » Biochimica et Biophysica Acta (BB) - Молекулярная основа болезни 1502 (1): 133–8 Doi : 10.1016/s0925-4439 (00) 00039-9 10899438PMID
- ^ Jump up to: а беременный Chung KK, Dawson VL, Dawson TM (ноябрь 2001). «Роль убиквитин-протеасомный путь при болезни Паркинсона и других нейродегенеративных расстройствах». Тенденции в нейронауках . 24 (11 Suppl): S7–14. doi : 10.1016/s0166-2236 (00) 01998-6 . PMID 11881748 . S2CID 2211658 .
- ^ Икеда, Кенджи; Акияма, Харухико; Arai, Tetsuaki; Уэно, Хидеки; Цучия, Куниаки; Косака, Кенджи (2002). «Морфометрическая переоценка системы моторных нейронов болезни Пика и амиотрофического бокового склероза с деменцией». Acta Neuropathologica . 104 (1): 21–28. doi : 10.1007/s00401-001-0513-5 . ISSN 0001-6322 . PMID 12070660 . S2CID 22396490 .
- ^ Mankaka H, Kato T, Kurita T, Table T, Shikad Y, Keaii K, Plain T, Suzuki Y, Nihei K, Shasaki H (май 1992). Увеличение рынка в Creutzfed. Нейробиологические буквы 139 (1): 47–9. doi : 0304-3 10.1016 / PMID 1328965 . S2CID 28190967 .
- ^ Мэтьюз К.Д., Мур С.А. (январь 2003 г.). «Мышечная дистрофия Текущая неврология и неврологические отчеты . 3 (1): 78–85. doi : 10.1007/s11910-003-0042-9 . PMID 12507416 . S2CID 5780576 .
- ^ Mayer RJ (март 2003 г.). «От нейродегенерации до нейрохомеостаза: роль убиквитина». News News & Perspectives . 16 (2): 103–8. doi : 10.1358/dnp.2003.16.2.829327 . PMID 12792671 .
- ^ Calise J, Powell Sr (февраль 2013 г.). «Система протеасом убиквитин и ишемия миокарда» . Американский журнал физиологии. Сердечная и циркуляторная физиология . 304 (3): H337–49. doi : 10.1152/ajpheart.00604.2012 . PMC 3774499 . PMID 23220331 .
- ^ Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (март 2010 г.). «Дисфункция убиквитина протеасом в гипертрофических и дилатационных кардиомиопатиях человека» . Циркуляция . 121 (8): 997–1004. doi : 10.1161/circulationaha.109.904557 . PMC 2857348 . PMID 20159828 .
- ^ Пауэлл С.Р. (июль 2006 г.). «Система убиквитин-протеемного протеасома в физиологии и патологии сердца». Американский журнал физиологии. Сердечная и циркуляторная физиология . 291 (1): H1 - H19. doi : 10.1152/ajpheart.00062.2006 . PMID 16501026 . S2CID 7073263 .
- ^ Адамс Дж (апрель 2003 г.). «Потенциал ингибирования протеасом при лечении рака». Drug Discovery сегодня . 8 (7): 307–15. doi : 10.1016/s1359-6446 (03) 02647-3 . PMID 12654543 .
- ^ Бен-Мерия Y (январь 2002 г.). «Регуляторные функции убиквитинирования в иммунной системе». Природа иммунология . 3 (1): 20–6. doi : 10.1038/ni0102-20 . PMID 11753406 . S2CID 26973319 .
- ^ Эгерер К., Кукелкорн У, Рудольф П.Е., Рюкерт Дж.С., Дёрнер Т., Бурместер Г.Р., Клотцель П.М., Файст Э (октябрь 2002). «Циркулирующие протеасомы являются маркерами повреждения клеток и иммунологической активности при аутоиммунных заболеваниях». Журнал ревматологии . 29 (10): 2045–52. PMID 12375310 .
- ^ Yamauchi J, Sekiguchi M, Shirai T, Yamada M, Ishimi Y (2013). «Роль ядерной локализации PSMB1 в активации транскрипции» . Биоссака, биотехнология и биохимия . 77 (8): 1785–7. doi : 10.1271/bbb.130290 . PMID 23924720 .
- ^ Сингх В., Верма В., Панди Д., Ядав С.К., Порт Дж.П., Гепта Г (ноябрь 2014). А Журнал питания 54 (8): 1255–67. doi : 10.1007/s00394-014-083-z . PMID 254088199 . 206969475S2CID
- ^ Jump up to: а беременный Бартон М.К. (сентябрь 2013). «Прогнозирующие биомаркеры могут помочь индивидуализировать лечение пациентов с фолликулярной лимфомой» . CA: Журнал рака для клиницистов . 63 (5): 293–4. doi : 10.3322/caac.21197 . PMID 23842891 . S2CID 37162376 .
- ^ Feng L, Zhang D, Fan C, Ma C, Yang W, Meng Y, Wu W, Guan S, Jiang B, Yang M, Liu X, Guo D (11 июля 2013 г.). «ER-опосредованный стрессом апоптоз, вызванный целастролом в раковых клетках, и важная роль гликогенсинтазы киназы-3β в сигнальной сети» . Клеточная гибель и болезнь . 4 (7): E715. doi : 10.1038/cddis.2013.222 . PMC 3730400 . PMID 23846217 .
- ^ Yuan F, Ma Y, You P, Lin W, Lu H, Yu Y, Wang X, Jiang J, Yang P, Ma Q, Tao T (16 июля 2013 г.). «Новая роль протеасомной субъединицы β1 в онкогенезе» . Отчеты о биологии . 33 (4): 555–565. doi : 10.1042/bsr20130013 . PMC 3712487 . PMID 23725357 .
Дальнейшее чтение
[ редактировать ]- Кукс О., Танака К., Голдберг А.Л. (1996). «Структура и функции протеасомов 20 и 26S». Ежегодный обзор биохимии . 65 : 801–47. doi : 10.1146/annurev.bi.65.070196.004101 . PMID 8811196 .
- Goff SP (август 2003 г.). «Смерть путем дезаминирования: новая система ограничения хозяина для ВИЧ-1» . Клетка . 114 (3): 281–3. doi : 10.1016/s0092-8674 (03) 00602-0 . PMID 12914693 . S2CID 16340355 .
- Ли Л.В., Мумау К.Р., Орт К., МакГуайр М.Дж., Демартинино Г.Н., Слотер С.А. (февраль 1990 г.). «Отношения являются одними из субъединиц протеста с высокой молекулярной массой, макропейн (протеасома)» Biochimica et biophysica acta (BB) - структура белка и молекулярная ферма 1037 (2): 178–8 Doi : 10.1016/0167-4838 (90) 90165- c 2306472PMID
- Окумура К., Ногами М., Тагучи Х, Хисамацу Х, Танака К (май 1995). «Гены для субъединиц HC3 (PMSB1) Alpha-Type (PMSA2) и бета-типа (PMSB1) человеческих протеасомов с хромосом 6Q27 и 7P12-P13 с помощью гибридизации флуоресценции in situ». Геномика . 27 (2): 377–9. doi : 10.1006/geno.1995.1062 . PMID 7558012 .
- Кристенсен П., Джонсен А.Х., Уерквиц В., Танака К., Хендил К.Б. (декабрь 1994). «Субъединицы протеасомы человека из двухмерных гелей, идентифицированных с частичным секвенированием». Биохимическая и биофизическая исследовательская коммуникация . 205 (3): 1785–9. doi : 10.1006/bbrc.1994.2876 . PMID 7811265 .
- Тамура Т., Осака Ф., Кавамура Ю., Хигути Т., Ишида Н., Нотванг Х.Г., Цуруми С., Танака К., Ичихара А (ноябрь 1994). «Выделение и характеристика генов субъединиц HC5 Alpha-Type HC3 и бета-типа HC5 человеческих протеасомов». Журнал молекулярной биологии . 244 (1): 117–24. doi : 10.1006/jmbi.1994.1710 . PMID 7966316 .
- Maruyama K, Sugano S (январь 1994). «Олиго-капитализация: простой метод замены структуры крышки эукариотических мРНК олигорибонуклеотидами». Ген . 138 (1–2): 171–4. doi : 10.1016/0378-1119 (94) 90802-8 . PMID 8125298 .
- Seeger M, Ferrell K, Frank R, Dubiel W (Mar 1997). «ТАТ ВИЧ-1 ингибирует протеасому 20 с и ее регуляторную опосредованную активацию 11 с» . Журнал биологической химии . 272 (13): 8145–8. doi : 10.1074/jbc.272.13.8145 . PMID 9079628 .
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (октябрь 1997 г.). «Строительство и характеристика обогащенной полной длиной и библиотекой кДНК с 5'-эндом». Ген . 200 (1–2): 149–56. doi : 10.1016/s0378-1119 (97) 00411-3 . PMID 9373149 .
- Мани Н., Кабат Д (декабрь 1998). «Конечный ингибитор вируса иммунодефицита человека в лимфоцитах человека преодолевается вирусным протестом VIF » Журнал вирусологии 72 (12): 10251–5 Doi : 10.1128/ jvi.72.12.10251-10255.1 110608PMC 9811770PMID
- Саймон Дж. Х., Гаддис Н.К., Фушер Р.А., Малим М.Х. (декабрь 1998). «Свидетельство о недавно обнаруженном клеточном фенотипе анти-ВИЧ-1». Природная медицина . 4 (12): 1397–400. doi : 10.1038/3987 . PMID 9846577 . S2CID 25235070 .
- Elenich LA, Nandi D, Kent AE, McCluskey TS, Cruz M, Iyer MN, Woodward EC, Conn CW, Ochoa AL, Ginsburg DB, Monaco JJ (сентябрь 1999). «Полная первичная структура протеасомов мыши 20S». Иммуногенетика . 49 (10): 835–42. doi : 10.1007/s00251005050562 . PMID 10436176 . S2CID 20977116 .
- Mulder LC, Muesing MA (сентябрь 2000). «Разложение интеграции ВИЧ-1 по пути правила N-END» . Журнал биологической химии . 275 (38): 29749–53. doi : 10.1074/jbc.m004670200 . PMID 10893419 .
- Feng Y, Longo DL, Ferris DK (январь 2001 г.). «Пополоподобная киназа взаимодействует с протеасомами и регулирует их активность». Рост и дифференциация клеток . 12 (1): 29–37. PMID 11205743 .
- Sheehy AM, Gaddis NC, Choi JD, Malim MH (август 2002 г.). «Выделение гена человека, который ингибирует ВИЧ-1 инфекцию и подавляется вирусным белком VIF». Природа . 418 (6898): 646–50. Bibcode : 2002natur.418..646s . doi : 10.1038/nature00939 . PMID 12167863 . S2CID 4403228 .
- Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W (ноябрь 2002 г.). «Сайт RTP, разделенный белком TAT ВИЧ-1 и субъединицей регулятора 11S, имеет решающее значение для их влияния на функцию протеасом, включая обработку антигена». Журнал молекулярной биологии . 323 (4): 771–82. doi : 10.1016/s0022-2836 (02) 00998-1 . PMID 12419264 .
- Suzumori N, Burns KH, Yan W, Matzuk MM (январь 2003 г.). «RFPL4 взаимодействует с белками ооцитов пути деградации убиквитин-протеасом» . Труды Национальной академии наук Соединенных Штатов Америки . 100 (2): 550–5. Bibcode : 2003pnas..100..550S . doi : 10.1073/pnas.0234474100 . PMC 141033 . PMID 12525704 .