Jump to content

Авадеш Нараян Сингх

Авадхеш Нараян Сингх (Бенарес, 1901 — 10 июля 1954) — индийский математик и историк математики .

Сингх получил степень магистра в индуистском университете Банарас в своем родном городе ( Варанаси тогда назывался Банарас или Бенарес) в 1924 году, где он был учеником Ганеша Прасада . Он получил степень доктора математики в Калькуттском университете в 1929 году за диссертацию на тему « Вывод и недифференцируемые функции». Получив степень доктора наук, Сингх поступил в Университет Лакхнау , где стал доцентом в 1940 году и профессором в 1943 году. Там он открыл секцию индуистской математики и возродил почти несуществующее Математическое общество Банараса под именем Бхарата Ганита Парисад. написал историю индийской математики В 1930-х годах он вместе с Бибхутибхушаном Даттой , которая стала стандартной работой. Как математик он имел дело с недифференцируемыми функциями (примером всюду недифференцируемой функции является функция Вейерштрасса ). [1] [2]

Публикации [ править ]

Сингх опубликовал около дюжины работ, связанных с историей индийской математики, и три десятка статей, посвященных недифференцируемости функций. Он также опубликовал следующие две книги: [2]

  • «Теория и построение недифференцируемых функций», Исследования Университета Лакхнау, № I, 1935 г. [1] (по состоянию на 2 августа 2023 г.).
  • Бибхути Бхушан Датта и Авадхеш Нараян Сингх (1935). История индуистской математики: Справочник (Часть I, числовая запись и арифметика) (Первое изд.). Лахор: Мотилал Банарсидасс . Проверено 2 августа 2023 г.
  • Бибхути Бхушан Дутта и Авадхеш Нараян Сингх (1938). История индуистской математики: Справочник (Часть II, Алгебра) (Первое изд.). Лахор: Мотилал Банарси Дас . Проверено 2 августа 2023 г.

Том 3 «Истории индуистской математики» был отредактирован Крипой Шанкаром Шуклой и опубликован в нескольких статьях в Индийском журнале истории науки (от 5, 1980 г. по том 28, 1993 г.). Эти отредактированные статьи доступны в « Исследованиях по индийской математике и астрономии» (Избранные статьи Крипы Шанкара Шуклы) . [3]

Ссылки [ править ]

  1. ^ С.Д. Синвхал (1954). «Доктор Авадхеш Сингх (с библиографией и портретом)». Ганита . 5 (2): 1–7.
  2. ^ Jump up to: а б Джозеф В. Добен ; Скриба, Кристоф Дж. (2002). Написание истории математики . Биркхойзер . п. 523.
  3. ^ Адитья Колачана, К. Махеш и К. Рамасубраманиан (2019). Исследования по индийской математике и астрономии: избранные статьи Крипы Шанкара Шуклы . Нью-Дели: Книжное агентство Hindustan/Springer. стр. 188–483.
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 2dde98ad5d2b7081f2633d077d2262a3__1702217040
URL1:https://arc.ask3.ru/arc/aa/2d/a3/2dde98ad5d2b7081f2633d077d2262a3.html
Заголовок, (Title) документа по адресу, URL1:
Avadhesh Narayan Singh - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)