~~~~~~~~~~~~~~~~~~~~ Arc.Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~ 
Номер скриншота №:
✰ 6DA3E27668C53DE299A68FA68CAF4654__1719359100 ✰
Заголовок документа оригинал.:
✰ Inverse scattering transform - Wikipedia ✰
Заголовок документа перевод.:
✰ Inverse scattering transform - Wikipedia ✰
Снимок документа находящегося по адресу (URL):
✰ https://en.wikipedia.org/wiki/Inverse_scattering_method ✰
Адрес хранения снимка оригинал (URL):
✰ https://arc.ask3.ru/arc/aa/6d/54/6da3e27668c53de299a68fa68caf4654.html ✰
Адрес хранения снимка перевод (URL):
✰ https://arc.ask3.ru/arc/aa/6d/54/6da3e27668c53de299a68fa68caf4654__translat.html ✰
Дата и время сохранения документа:
✰ 07.07.2024 11:55:06 (GMT+3, MSK) ✰
Дата и время изменения документа (по данным источника):
✰ 26 June 2024, at 02:45 (UTC). ✰ 

~~~~~~~~~~~~~~~~~~~~~~ Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~~ 
Сервисы Ask3.ru: 
 Архив документов (Снимки документов, в формате HTML, PDF, PNG - подписанные ЭЦП, доказывающие существование документа в момент подписи. Перевод сохраненных документов на русский язык.)https://arc.ask3.ruОтветы на вопросы (Сервис ответов на вопросы, в основном, научной направленности)https://ask3.ru/answer2questionТоварный сопоставитель (Сервис сравнения и выбора товаров) ✰✰
✰ https://ask3.ru/product2collationПартнерыhttps://comrades.ask3.ru


Совет. Чтобы искать на странице, нажмите Ctrl+F или ⌘-F (для MacOS) и введите запрос в поле поиска.
Arc.Ask3.ru: далее начало оригинального документа

Inverse scattering transform - Wikipedia Jump to content

Inverse scattering transform

From Wikipedia, the free encyclopedia
(Redirected from Inverse scattering method)
The 3-step algorithm: transform the initial solution to initial scattering data, evolve initial scattering data, transform evolved scattering data to evolved solution

In mathematics, the inverse scattering transform is a method that solves the initial value problem for a nonlinear partial differential equation using mathematical methods related to wave scattering.[1]: 4960  The direct scattering transform describes how a function scatters waves or generates bound-states.[2]: 39–43  The inverse scattering transform uses wave scattering data to construct the function responsible for wave scattering.[2]: 66–67  The direct and inverse scattering transforms are analogous to the direct and inverse Fourier transforms which are used to solve linear partial differential equations.[2]: 66–67 

Using a pair of differential operators, a 3-step algorithm may solve nonlinear differential equations; the initial solution is transformed to scattering data (direct scattering transform), the scattering data evolves forward in time (time evolution), and the scattering data reconstructs the solution forward in time (inverse scattering transform).[2]: 66–67 

This algorithm simplifies solving a nonlinear partial differential equation to solving 2 linear ordinary differential equations and an ordinary integral equation, a method ultimately leading to analytic solutions for many otherwise difficult to solve nonlinear partial differential equations.[2]: 72 

The inverse scattering problem is equivalent to a Riemann–Hilbert factorization problem, at least in the case of equations of one space dimension.[3] This formulation can be generalized to differential operators of order greater than two and also to periodic problems.[4] In higher space dimensions one has instead a "nonlocal" Riemann–Hilbert factorization problem (with convolution instead of multiplication) or a d-bar problem.

History[edit]

The inverse scattering transform arose from studying solitary waves. J.S. Russell described a "wave of translation" or "solitary wave" occurring in shallow water.[5] First J.V. Boussinesq and later D. Korteweg and G. deVries discovered the Korteweg-deVries (KdV) equation, a nonlinear partial differential equation describing these waves.[5] Later, N. Zabusky and M. Kruskal, using numerical methods for investigating the Fermi–Pasta–Ulam–Tsingou problem, found that solitary waves had the elastic properties of colliding particles; the waves' initial and ultimate amplitudes and velocities remained unchanged after wave collisions.[5] These particle-like waves are called solitons and arise in nonlinear equations because of a weak balance between dispersive and nonlinear effects.[5]

Gardner, Greene, Kruskal and Miura introduced the inverse scattering transform for solving the Korteweg–de Vries equation.[6] Lax, Ablowitz, Kaup, Newell, and Segur generalized this approach which led to solving other nonlinear equations including the nonlinear Schrödinger equation, sine-Gordon equation, modified Korteweg–De Vries equation, Kadomtsev–Petviashvili equation, the Ishimori equation, Toda lattice equation, and the Dym equation.[5][7][8] This approach has also been applied to different types of nonlinear equations including differential-difference, partial difference, multidimensional equations and fractional integrable nonlinear systems.[5]

Description[edit]

Nonlinear partial differential equation[edit]

The independent variables are a spatial variable and a time variable . Subscripts or differential operators () indicate differentiation. The function is a solution of a nonlinear partial differential equation, , with initial condition (value) .[2]: 72 

Requirements[edit]

The differential equation's solution meets the integrability and Fadeev conditions:[2]: 40 

Integrability condition:
Fadeev condition:

Differential operator pair[edit]

The Lax differential operators, and , are linear ordinary differential operators with coefficients that may contain the function or its derivatives. The self-adjoint operator has a time derivative and generates a eigenvalue (spectral) equation with eigenfunctions and time-constant eigenvalues (spectral parameters) .[1]: 4963 [2]: 98 

and

The operator describes how the eigenfunctions evolve over time, and generates a new eigenfunction of operator from eigenfunction of .[1]: 4963 

The Lax operators combine to form a multiplicative operator, not a differential operator, of the eigenfuctions .[1]: 4963 

The Lax operators are chosen to make the multiplicative operator equal to the nonlinear differential equation.[1]: 4963 

The AKNS differential operators, developed by Ablowitz, Kaup, Newell, and Segur, are an alternative to the Lax differential operators and achieve a similar result.[1]: 4964 [9][10]

Direct scattering transform[edit]

The direct scattering transform generates initial scattering data; this may include the reflection coefficients, transmission coefficient, eigenvalue data, and normalization constants of the eigenfunction solutions for this differential equation.[2]: 39–48 

Scattering data time evolution[edit]

The equations describing how scattering data evolves over time occur as solutions to a 1st order linear ordinary differential equation with respect to time. Using varying approaches, this first order linear differential equation may arise from the linear differential operators (Lax pair, AKNS pair), a combination of the linear differential operators and the nonlinear differential equation, or through additional substitution, integration or differentiation operations. Spatially asymptotic equations () simplify solving these differential equations.[1]: 4967–4968 [2]: 68–72 [6]

Inverse scattering transform[edit]

The Marchenko equation combines the scattering data into a linear Fredholm integral equation. The solution to this integral equation leads to the solution, u(x,t), of the nonlinear differential equation.[2]: 48–57 

Example: Korteweg–De Vries equation[edit]

The nonlinear differential Korteweg–De Vries equation is [11]: 4 

Lax operators[edit]

The Lax operators are:[2]: 97–102 

and

The multiplicative operator is:

Direct scattering transform[edit]

The solutions to this differential equation

may include scattering solutions with a continuous range of eigenvalues (continuous spectrum) and bound-state solutions with discrete eigenvalues (discrete spectrum). The scattering data includes transmission coefficients , left reflection coefficient , right reflection coefficient , discrete eigenvalues , and left and right bound-state normalization (norming) constants.[1]: 4960 

Scattering data time evolution[edit]

The spatially asymptotic left and right Jost functions simplify this step.[1]: 4965–4966 

The dependency constants relate the right and left Jost functions and right and left normalization constants.[1]: 4965–4966 

The Lax differential operator generates an eigenfunction which can be expressed as a time-dependent linear combination of other eigenfunctions.[1]: 4967 

The solutions to these differential equations, determined using scattering and bound-state spatially asymptotic Jost functions, indicate a time-constant transmission coefficient , but time-dependent reflection coefficients and normalization coefficients.[1]: 4967–4968 

Inverse scattering transform[edit]

The Marchenko kernel is .[1]: 4968–4969 

The Marchenko integral equation is a linear integral equation solved for .[1]: 4968–4969 

The solution to the Marchenko equation, , generates the solution to the nonlinear partial differential equation.[1]: 4969 

Examples of integrable equations[edit]

See also[edit]

Citations[edit]

References[edit]

  • Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H. (1973). "Method for Solving the Sine-Gordon Equation". Physical Review Letters. 30 (25): 1262–1264. doi:10.1103/PhysRevLett.30.1262.

Further reading[edit]

  • Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M. (1974), "Korteweg-deVries equation and generalization. VI. Methods for exact solution.", Comm. Pure Appl. Math., 27: 97–133, doi:10.1002/cpa.3160270108, MR 0336122

External links[edit]

Arc.Ask3.Ru: конец оригинального документа.
Arc.Ask3.Ru
Номер скриншота №: 6DA3E27668C53DE299A68FA68CAF4654__1719359100
URL1:https://en.wikipedia.org/wiki/Inverse_scattering_method
Заголовок, (Title) документа по адресу, URL1:
Inverse scattering transform - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть, любые претензии не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, денежную единицу можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)