Солитон
В математике и физике солитон — это нелинейный, самоусиливающийся, локализованный волновой пакет , который очень стабилен , поскольку сохраняет свою форму при свободном распространении с постоянной скоростью и восстанавливает ее даже после столкновений с другими такими же локализованными волновыми пакетами. Его замечательную стабильность можно объяснить сбалансированным подавлением нелинейных и дисперсионных эффектов в среде. (Эффекты дисперсии являются свойством некоторых систем, в которых скорость волны зависит от ее частоты.) Впоследствии было обнаружено, что солитоны обеспечивают устойчивые решения широкого класса слабонелинейных дисперсионных уравнений в частных производных, описывающих физические системы.
Явление солитона было впервые описано в 1834 году Джоном Скоттом Расселом (1808–1882), который наблюдал уединенную волну в канале Юнион в Шотландии. Он воспроизвел это явление в волновом резервуаре и назвал его « Волной перевода ». Термин «солитон» был придуман Забуски и Краскалом для описания локализованных, сильно устойчивых распространяющихся решений уравнения Кортевега-де Фриза , которое моделирует волны того типа, который видел Рассел. Название должно было характеризовать одиночную природу волн, с суффиксом «on», напоминающим об использовании таких частиц, как электроны , барионы или адроны , что отражало их наблюдаемое поведение , подобное частицам . [1]
Определение [ править ]
Трудно найти единое согласованное определение солитона. Дразин и Джонсон (1989 , стр. 15) приписывают солитонам три свойства:
- Они имеют постоянную форму;
- Они локализованы внутри региона;
- Они могут взаимодействовать с другими солитонами и выходить из столкновения без изменений, за исключением фазового сдвига .
Существуют более формальные определения, но они требуют серьезных математических вычислений. Более того, некоторые ученые используют термин солитон для явлений, которые не совсем обладают этими тремя свойствами (например, « световые пули » нелинейной оптики часто называют солитонами, несмотря на потерю энергии при взаимодействии). [2]
Объяснение [ править ]
Дисперсия и нелинейность могут взаимодействовать, создавая постоянные и локализованные формы волн . Рассмотрим импульс света, распространяющийся в стекле. Этот импульс можно рассматривать как состоящий из света нескольких разных частот. Поскольку стекло обладает дисперсией, эти разные частоты распространяются с разной скоростью, и поэтому форма импульса меняется со временем. Однако имеет место и нелинейный эффект Керра ; показатель преломления материала на данной частоте зависит от амплитуды или силы света. Если импульс имеет правильную форму, эффект Керра точно компенсирует эффект дисперсии, и форма импульса не меняется со временем. Таким образом, импульс представляет собой солитон. см. в разделе «Солитон (оптика)» Более подробное описание .
Многие точно решаемые модели имеют солитонные решения, включая уравнение Кортевега–де Фриза , нелинейное уравнение Шредингера , связанное нелинейное уравнение Шрёдингера и уравнение синус-Гордона . Солитонные решения обычно получаются с помощью обратного преобразования рассеяния и обязаны своей устойчивостью интегрируемости уравнений поля. Математическая теория этих уравнений представляет собой широкую и очень активную область математических исследований.
Некоторые типы приливных волн , волновое явление нескольких рек, включая реку Северн , являются «волнистыми»: за волновым фронтом следует цепочка солитонов. Другие солитоны возникают как подводные внутренние волны , инициированные топографией морского дна и распространяющиеся по океаническому пикноклину . Также существуют атмосферные солитоны, такие как облако ипомеи в заливе Карпентария , где солитоны давления, перемещающиеся в слое температурной инверсии, создают огромные линейные рулонные облака . Недавняя и не получившая широкого распространения солитонная модель в нейробиологии предлагает объяснить проводимость сигнала внутри нейронов как солитоны давления.
Топологический солитон , также называемый топологическим дефектом, — это любое решение системы уравнений в частных производных , устойчивое к распаду до «тривиального решения». Устойчивость солитона обусловлена топологическими ограничениями, а не интегрируемостью уравнений поля. Ограничения возникают почти всегда, потому что дифференциальные уравнения должны подчиняться набору граничных условий , а граница имеет нетривиальную гомотопическую группу , сохраняемую дифференциальными уравнениями. Таким образом, решения дифференциальных уравнений можно разделить на гомотопические классы .
Никакое непрерывное преобразование не переводит решение из одного гомотопического класса в другой. Решения действительно различны и сохраняют свою целостность даже перед лицом чрезвычайно мощных сил. Примеры топологических солитонов включают винтовую дислокацию в кристаллической решетке , струну Дирака и магнитный монополь в электромагнетизме , Скирмион и модель Весса-Зумино-Виттена в квантовой теории поля , магнитный скирмион в физике конденсированного состояния, космические струны и Доменные границы в космологии .
История [ править ]
В 1834 году Джон Скотт Рассел описывает свою волну переводов . [номер 1] Открытие описано здесь собственными словами Скотта Рассела: [номер 2]
Я наблюдал за движением лодки, которую пара лошадей быстро тащила по узкому каналу, когда лодка внезапно остановилась, а не масса воды в канале, которую она привела в движение; она скопилась вокруг носа судна в состоянии сильного волнения, затем внезапно оставив его позади, покатилась вперед с огромной скоростью, приняв форму большого одинокого возвышения, округлой, гладкой и четко очерченной кучи воды, которая продолжала его ход по руслу, по-видимому, без изменения формы и уменьшения скорости. Я последовал за ним верхом на лошади и обогнал его, все еще катившегося со скоростью восемь или девять миль в час, сохранив свою первоначальную фигуру длиной около тридцати футов и высотой от фута до полутора. Высота его постепенно уменьшалась, и после погони в одну или две мили я потерял его в извилистом канале. Так в августе 1834 года произошла моя первая случайная встреча с тем необычным и прекрасным явлением, которое я назвал Волной Передачи. [3]
Скотт Рассел потратил некоторое время на практические и теоретические исследования этих волн. Он построил волновые резервуары у себя дома и заметил некоторые ключевые свойства:
- Волны стабильны и могут распространяться на очень большие расстояния (обычные волны имеют тенденцию либо сглаживаться, либо становиться круче и опрокидываться).
- Скорость зависит от размера волны, а ее ширина от глубины воды.
- В отличие от обычных волн, они никогда не сливаются, поэтому маленькая волна догоняется большой, а не объединяются две.
- Если волна слишком велика для глубины воды, она разделяется на две части: одну большую и одну маленькую.
Экспериментальная работа Скотта Рассела, казалось, противоречила Исаака Ньютона и Даниэля Бернулли теориям гидродинамики . Джордж Бидделл Эйри и Джордж Габриэль Стоукс с трудом приняли экспериментальные наблюдения Скотта Рассела, поскольку их нельзя было объяснить существующими теориями волн на воде. О дополнительных наблюдениях сообщил Анри Базен в 1862 году после экспериментов, проведенных в Бургундском канале во Франции. [4] Их современники потратили некоторое время, пытаясь расширить теорию, но это продолжалось до 1870-х годов, прежде чем Жозеф Буссинеск [5] и лорд Рэлей опубликовал теоретическое лечение и решения. [номер 3] В 1895 году Дидерик Кортевег и Густав де Врис представили то, что сейчас известно как уравнение Кортевега-де Фриза для уединенных волн и периодических кноидальных волн . , включая решения [6] [номер 4]
В 1965 году Норман Забуски из Bell Labs и Мартин Крускал из Принстонского университета впервые продемонстрировали поведение солитонов в средах, подчиняющихся уравнению Кортевега – де Фриза (уравнение КдФ), в ходе вычислительного исследования с использованием подхода конечных разностей . Они также показали, как такое поведение объясняет загадочные ранние работы Ферми, Пасты, Улама и Цингоу . [1]
В 1967 году Гарднер, Грин, Краскал и Миура открыли обратное преобразование рассеяния, позволяющее аналитически решить уравнение КдВ. [8] Работа Питера Лакса о парах Лакса и уравнении Лакса с тех пор распространила это на решение многих связанных систем, генерирующих солитоны.
Форма и скорость солитонов по определению не изменяются при столкновении с другими солитонами. [9] Итак, уединенные волны на поверхности воды являются почти -солитонами, но не совсем – после взаимодействия двух (сталкивающихся или догоняющих) уединенных волн они немного изменились по амплитуде и остался колебательный остаток. [10]
Солитоны также изучаются в квантовой механике, благодаря тому, что они могли бы обеспечить ее новую основу посредством де Бройля незавершенной программы , известной как «Теория двойного решения» или «Нелинейная волновая механика». Эта теория, разработанная де Бройлем в 1927 году и возрожденная в 1950-х годах, является естественным продолжением его идей, разработанных между 1923 и 1926 годами, которые распространили корпускулярно-волновой дуализм, введенный Альбертом Эйнштейном для квантов света , на все частицы материи. . В 2019 году было продемонстрировано наблюдение ускоряющегося солитона поверхностной гравитационной волны воды с использованием внешнего гидродинамического линейного потенциала. Этот эксперимент также продемонстрировал возможность возбуждать и измерять фазы баллистических солитонов. [11]
В оптоволокне [ править ]
Было проведено много экспериментов с использованием солитонов в приложениях волоконной оптики. Солитоны в волоконно-оптической системе описываются уравнениями Манакова .Присущая солитонам стабильность делает возможной передачу на большие расстояния без использования ретрансляторов , а также потенциально может удвоить пропускную способность передачи. [12]
Год | Открытие |
---|---|
1973 | Акира Хасегава из AT&T Bell Labs был первым, кто предположил, что солитоны могут существовать в оптических волокнах благодаря балансу между автофазовой модуляцией и аномальной дисперсией . [13] Также в 1973 году Робин Буллоу сделал первое математическое сообщение о существовании оптических солитонов. Он также предложил идею системы передачи на основе солитонов для повышения производительности оптических телекоммуникаций . |
1987 | Эмплит и др. (1987) – из университетов Брюсселя и Лиможа – сделал первое экспериментальное наблюдение распространения темного солитона в оптическом волокне. |
1988 | Линн Ф. Молленауэр и его команда передавали солитонные импульсы на расстояние более 4000 километров, используя явление, называемое эффектом Рамана , названным в честь сэра К.В. Рамана, который впервые описал его в 1920-х годах, чтобы обеспечить оптическое усиление в волокне. |
1991 | Исследовательская группа Bell Labs безошибочно передала солитоны со скоростью 2,5 гигабит в секунду на расстояние более 14 000 километров, используя эрбиевые оптоволоконные усилители (сращенные сегменты оптического волокна, содержащие редкоземельный элемент эрбий). Лазеры накачки, соединенные с оптическими усилителями, активируют эрбий, который заряжает световые импульсы. |
1998 | Тьерри Жорж и его команда в France Telecom научно-исследовательском центре , объединив оптические солитоны разных длин волн ( мультиплексирование с разделением по длине волны ), продемонстрировали составную передачу данных со скоростью 1 терабит в секунду (1 000 000 000 000 единиц информации в секунду), не путать с Терабит- Ethernet. Однако приведенные выше впечатляющие эксперименты не привели к реальному коммерческому развертыванию солитонных систем ни в наземных, ни в подводных системах, главным образом из-за джиттера Гордона-Хауса (GH) . Джиттер GH требует сложных и дорогостоящих компенсационных решений, которые в конечном итоге делают передачу солитонов с плотным мультиплексированием по длине волны (DWDM) в полевых условиях непривлекательной по сравнению с традиционной парадигмой без возврата к нулю/возврата к нулю. Кроме того, вероятное будущее принятие более спектрально эффективных форматов с фазовой манипуляцией/QAM делает передачу солитонов еще менее жизнеспособной из-за эффекта Гордона-Молленауэра. Следовательно, солитон оптоволоконной передачи на большие расстояния остался лабораторным диковинкой. |
2000 | Стивен Кандифф предсказал существование векторного солитона в резонаторе двулучепреломляющего волокна с пассивной синхронизацией мод через полупроводниковое насыщающееся поглощающее зеркало (SESAM). Состояние поляризации такого векторного солитона могло быть как вращающимся, так и заблокированным в зависимости от параметров резонатора. [14] |
2008 | Д.Ю. Тан и др. наблюдал новую форму векторного солитона более высокого порядка с точки зрения экспериментов и численного моделирования. Его группа исследовала различные типы векторных солитонов и состояние поляризации векторных солитонов. [15] |
В биологии [ править ]
В белках могут возникать солитоны. [16] и ДНК. [17] Солитоны связаны с низкочастотным коллективным движением в белках и ДНК . [18]
Недавно разработанная модель в нейробиологии предполагает, что сигналы в форме волн плотности передаются внутри нейронов в форме солитонов. [19] [20] [21] Солитоны можно описать как перенос энергии практически без потерь в биомолекулярных цепочках или решетках, как волнообразное распространение связанных конформационных и электронных возмущений. [22]
В физике материалов [ править ]
В материалах, например сегнетоэлектриках , солитоны могут встречаться в виде доменных стенок. Сегнетоэлектрические материалы обладают спонтанной поляризацией или электрическими диполями, которые связаны с конфигурациями структуры материала. Области противоположно полярных поляризаций могут присутствовать в одном материале, поскольку структурные конфигурации, соответствующие противоположным поляризациям, одинаково благоприятны при отсутствии внешних сил. Доменные границы, или «стенки», разделяющие эти локальные структурные конфигурации, представляют собой области решеточных дислокаций . [23] Доменные границы могут распространяться как поляризации, и, таким образом, локальные структурные конфигурации могут переключаться внутри домена под действием приложенных сил, таких как электрическое смещение или механическое напряжение. Следовательно, доменные границы можно описать как солитоны, дискретные области дислокаций, которые способны скользить или распространяться и сохранять свою форму по ширине и длине. [24] [25] [26]
В недавней литературе сегнетоэлектричество наблюдалось в скрученных бислоях материалов Ван-дер-Ваала, таких как дисульфид молибдена и графен . [23] [27] [28] Муаровая , возникающая из-за относительного угла закручивания между монослоями сверхрешетка Ван-дер-Ваала, создает области с разными порядками укладки атомов внутри слоев. Эти области демонстрируют инверсионную симметрию, нарушающую структурные конфигурации, которые обеспечивают сегнетоэлектричество на границе раздела этих монослоев. Доменные границы, разделяющие эти области, состоят из частичных дислокаций , в которых решетка испытывает различные типы напряжений и, следовательно, деформаций. Было замечено, что распространение солитона или доменной стенки на умеренную длину образца (от порядка нанометра до микрометра) может быть инициировано приложенным напряжением со стороны иглы АСМ на фиксированной области. Распространение солитона переносит механические возмущения с небольшими потерями энергии по материалу, что позволяет переключать домены по принципу домино. [25]
Также было замечено, что тип дислокаций, обнаруженных на стенках, может влиять на параметры распространения, такие как направление. Например, измерения СТМ показали четыре типа деформаций различной степени сдвига, сжатия и растяжения на доменных границах в зависимости от типа локализованного порядка упаковки в скрученном двухслойном графене. Различные направления скольжения стенок достигаются за счет различных типов деформаций, обнаруженных в доменах, влияющих на направление распространения солитонной сети. [25]
Неидеальность, такая как нарушения в солитонной сети и поверхностные примеси, также может влиять на распространение солитона. Доменные границы могут встречаться в узлах и эффективно закрепляться, образуя треугольные домены, которые легко наблюдать в различных сегнетоэлектрических скрученных двухслойных системах. [23] Кроме того, замкнутые петли доменных стенок, охватывающие несколько доменов поляризации, могут препятствовать распространению солитона и, следовательно, переключению поляризаций через него. [25] Кроме того, доменные границы могут распространяться и встречаться на складках и неоднородностях поверхности внутри слоев Ван-дер-Ваала, которые могут выступать в качестве препятствий, препятствующих распространению. [25]
В магнитах [ править ]
В магнетиках также существуют различные типы солитонов и других нелинейных волн. [29] Эти магнитные солитоны являются точным решением классических нелинейных дифференциальных уравнений — магнитных уравнений, например, уравнения Ландау–Лифшица , континуальной модели Гейзенберга , уравнения Ишимори , нелинейного уравнения Шрёдингера и других.
В ядерной физике [ править ]
Атомные ядра могут проявлять солитонное поведение. [30] Здесь предсказано, что вся ядерная волновая функция будет существовать в виде солитона при определенных условиях температуры и энергии. Предполагается, что такие условия существуют в ядрах некоторых звезд, в которых ядра не реагируют, а проходят друг через друга в неизмененном виде, сохраняя свои солитонные волны при столкновении ядер.
Модель Скирма — это модель ядер, в которой каждое ядро рассматривается как топологически стабильное солитонное решение теории поля с сохраняющимся барионным числом.
Бионы [ править ]
Связанное состояние двух солитонов называется бионом . [31] [32] [33] [34] или в системах, где связанное состояние периодически колеблется, — бризер . Силы интерференционного типа между солитонами можно было бы использовать при создании бионов. [35] Однако эти силы очень чувствительны к своим относительным фазам. Альтернативно, связанное состояние солитонов может быть сформировано путем одевания атомов высоковозбужденными уровнями Ридберга. [34] Результирующий самогенерируемый потенциальный профиль [34] имеет внутреннее притягивающее мягкое ядро, поддерживающее трехмерный самолокализованный солитон, промежуточную отталкивающую оболочку (барьер), предотвращающую слияние солитонов, и внешний притягивающий слой (яму), используемый для завершения связанного состояния, в результате чего образуются гигантские стабильные солитонные молекулы. В этой схеме расстоянием и размером отдельных солитонов в молекуле можно управлять динамически с помощью лазерной регулировки.
В теории поля под бионом обычно понимают решение модели Борна-Инфельда . Название, по-видимому, было придумано Дж. В. Гиббонсом, чтобы отличить это решение от обычного солитона, понимаемого как регулярное решение дифференциального уравнения с конечной энергией (и обычно стабильное), описывающее некоторую физическую систему. [36] Слово «регулярный» означает гладкое решение, вообще не имеющее источников. Однако решение модели Борна–Инфельда все еще несет в начале координат источник в виде дельта-функции Дирака. Как следствие, в этой точке он обнаруживает сингулярность (хотя электрическое поле всюду регулярно). В некоторых физических контекстах (например, в теории струн) эта особенность может быть важной, что послужило причиной введения специального названия для этого класса солитонов.
С другой стороны, когда добавляется гравитация (т.е. при рассмотрении связи модели Борна-Инфельда с общей теорией относительности), соответствующее решение называется EBIon , где «E» означает Эйнштейна.
Алькубьерре editдрайв
Эрик Ленц, физик из Геттингенского университета, предположил, что солитоны могут позволить генерировать пузыри деформации Алькубьерре в пространстве-времени без необходимости использования экзотической материи, то есть материи с отрицательной массой. [37]
См. также [ править ]
- Компактон — солитон с компактным носителем.
- Диссипативный солитон
- Волны-фрики могут быть явлением, связанным с солитоном Перегрина, включающим бризерные волны, которые обладают концентрированной локализованной энергией с нелинейными свойствами. [38]
- Инстантоны
- Нематиконы
- Нетопологический солитон в квантовой теории поля.
- Нелинейное уравнение Шрёдингера
- Осциллоны
- Формирование узора
- Пикон — солитон с недифференцируемым пиком.
- Q-ball - нетопологический солитон
- Уравнение Синус-Гордон
- Солитон (оптика)
- Солитон (топологический)
- Распределение солитонов
- Солитонная гипотеза шаровой молнии Дэвида Финкельштейна.
- Солитонная модель распространения нервного импульса
- Топологическое квантовое число
- Векторный солитон
Примечания [ править ]
- ^ «Перевод» здесь означает, что существует настоящий массовый транспорт, хотя это не та же самая вода, которая переносится с одного конца канала на другой конец этой «Волной перевода». Скорее, жидкий пакет приобретает импульс во время прохождения одиночной волны и снова останавливается после прохождения волны. Но в ходе процесса жидкий пакет сместился существенно вперед – за счет стоксова дрейфа в направлении распространения волны. Результатом является чистый массовый транспорт. Обычно для обычных волн перенос массы с одной стороны на другую незначителен.
- ^ Этот отрывок повторялся во многих статьях и книгах по теории солитонов.
- ↑ Лорд Рэлей опубликовал статью в «Философском журнале» в 1876 году, чтобы поддержать экспериментальные наблюдения Джона Скотта Рассела его математической теорией. В своей статье 1876 года лорд Рэлей упомянул имя Скотта Рассела, а также признал, что первое теоретическое исследование было сделано Джозефом Валентином Буссинеском в 1871 году. Джозеф Буссинеск упомянул имя Рассела в своей статье 1871 года. Таким образом, наблюдения Скотта Рассела о солитонах были признаны истинными некоторыми видными учеными еще при его жизни в 1808–1882 годах.
- ↑ Кортевег и де Врис вообще не упомянули имя Джона Скотта Рассела в своей статье 1895 года, но они цитировали статью Буссинеска 1871 года и статью лорда Рэлея 1876 года. Статья Кортевега и де Фриза в 1895 году не была первой теоретической трактовкой этого вопроса. Тема, но это была очень важная веха в истории развития теории солитонов.
Ссылки [ править ]
- ^ Jump up to: Перейти обратно: а б Забуски и Краскал (1965)
- ^ «Легкие пули» .
- ^ Скотт Рассел, Дж. (1845). Отчет о волнах: сделанный на собраниях Британской ассоциации в 1842–1843 годах .
- ^ Базен, Генри (1862). «Опыты с волнами и распространением вихрей». Отчеты сессий Академии наук (на французском языке). 55 : 353–357.
- ^ Буссинеск, Ж. (1871). «Теория вспучивания жидкости, называемой уединенной или поступательной волной, распространяющейся в прямоугольном канале». ЧР акад. наук. Париж . 72 .
- ^ Кортевег, диджей ; де Врис, Г. (1895). «Об изменении формы длинных волн, распространяющихся в прямоугольном канале, и о новом типе длинных стоячих волн» . Философский журнал . 39 (240): 422–443. дои : 10.1080/14786449508620739 .
- ^ Бона, JL ; Притчард, В.Г.; Скотт, ЛР (1980). «Уединенно-волновое взаимодействие». Физика жидкостей . 23 (3): 438–441. Бибкод : 1980PhFl...23..438B . дои : 10.1063/1.863011 .
- ^ Гарднер, Клиффорд С.; Грин, Джон М.; Краскал, Мартин Д.; Миура, Роберт М. (1967). «Метод решения уравнения Кортевега – де Фриза». Письма о физических отзывах . 19 (19): 1095–1097. Бибкод : 1967PhRvL..19.1095G . дои : 10.1103/PhysRevLett.19.1095 .
- ^ Ремуасне, М. (1999). Волны, называемые солитонами: концепции и эксперименты . Спрингер. п. 11 . ISBN 9783540659198 .
- ^ См., например:
• Максворти, Т. (1976). «Опыты по столкновениям уединенных волн». Журнал механики жидкости . 76 (1): 177–186. Бибкод : 1976JFM....76..177M . дои : 10.1017/S0022112076003194 . S2CID 122969046 .
• Фентон, доктор медицинских наук; Ринекер, ММ (1982). «Метод Фурье для решения нелинейных задач о волнах на воде: применение к взаимодействиям уединенных волн». Журнал механики жидкости . 118 : 411–443. Бибкод : 1982JFM...118..411F . дои : 10.1017/S0022112082001141 . S2CID 120467035 .
• Крейг, В.; Гайенн, П.; Хаммак, Дж.; Хендерсон, Д.; Сулем, К. (2006). «Взаимодействие одиночных водных волн». Физика жидкостей . 18 (57106): 057106–057106–25. Бибкод : 2006PhFl...18e7106C . дои : 10.1063/1.2205916 . - ^ Г.Г. Розенман, А. Арье, Л. Шемер (2019). «Наблюдение ускоряющихся одиночных волновых пакетов». Физ. Преподобный Е. 101 (5): 050201. doi : 10.1103/PhysRevE.101.050201 . ПМИД 32575227 . S2CID 219506298 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ «Фотоны продвигаются по двум фронтам» . EETimes.com. 24 октября 2005 года. Архивировано из оригинала 28 июля 2012 года . Проверено 15 февраля 2011 г.
- ^ Фред Тапперт (29 января 1998 г.). «Воспоминания об исследовании оптических солитонов с Акирой Хасэгавой» (PDF) .
- ^ Кандифф, Северная Каролина; Коллингс, Британская Колумбия; Ахмедиев Н.Н.; Сото-Креспо, Дж. М.; Бергман, К.; Нокс, штат Вашингтон (1999). «Наблюдение поляризационно-заблокированных векторных солитонов в оптическом волокне». Письма о физических отзывах . 82 (20): 3988. Бибкод : 1999PhRvL..82.3988C . doi : 10.1103/PhysRevLett.82.3988 . hdl : 10261/54313 .
- ^ Тан, ДЮ; Чжан, Х.; Чжао, LM; Ву, X. (2008). «Наблюдение векторных солитонов с синхронизацией поляризации высокого порядка в волоконном лазере». Письма о физических отзывах . 101 (15): 153904. arXiv : 0903.2392 . Бибкод : 2008PhRvL.101o3904T . doi : 10.1103/PhysRevLett.101.153904 . ПМИД 18999601 . S2CID 35230072 .
- ^ Давыдов, Александр С. (1991). Солитоны в молекулярных системах . Математика и ее приложения (советский сериал). Том. 61 (2-е изд.). Академическое издательство Клувер. ISBN 978-0-7923-1029-7 .
- ^ Якушевич, Людмила В. (2004). Нелинейная физика ДНК (2-е исправленное изд.). Вайли-ВЧ. ISBN 978-3-527-40417-9 .
- ^ Синкала, З. (август 2006 г.). «Транспорт солитонов/экситонов в белках». Дж. Теория. Биол . 241 (4): 919–27. Бибкод : 2006JThBi.241..919S . CiteSeerX 10.1.1.44.52 . дои : 10.1016/j.jtbi.2006.01.028 . ПМИД 16516929 .
- ^ Хеймбург, Т., Джексон, AD (12 июля 2005 г.). «О распространении солитонов в биомембранах и нервах» . Учеб. Натл. акад. наук. США . 102 (2): 9790–5. Бибкод : 2005PNAS..102.9790H . дои : 10.1073/pnas.0503823102 . ПМК 1175000 . ПМИД 15994235 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Хеймбург, Т., Джексон, А.Д. (2007). «О потенциале действия как распространяющемся импульсе плотности и роли анестетиков». Биофиз. Преподобный Летт . 2 : 57–78. arXiv : физика/0610117 . Бибкод : 2006физика..10117H . дои : 10.1142/S179304800700043X . S2CID 1295386 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Андерсен, С.С., Джексон, А.Д., Хаймбург, Т. (2009). «К термодинамической теории распространения нервных импульсов». Прог. Нейробиол . 88 (2): 104–113. doi : 10.1016/j.pneurobio.2009.03.002 . ПМИД 19482227 . S2CID 2218193 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) [ мертвая ссылка ] - ^ Хамерофф, Стюарт (1987). Абсолютные вычисления: биомолекулярное сознание и нанотехнологии . Нидерланды: Elsevier Science Publishers BV, с. 18. ISBN 0-444-70283-0 .
- ^ Jump up to: Перейти обратно: а б с Уэстон, Астрид; Кастанон, Эли Г.; Енальдиев Владимир; Феррейра, Фабио; Бхаттачарджи, Шубхадип; Сюй, Шуйган; Корте-Леон, Эктор; Ву, Зефей; Кларк, Николас; Саммерфилд, Алекс; Хашимото, Теруо (апрель 2022 г.). «Межфазное сегнетоэлектричество в слегка закрученных 2D полупроводниках» . Природные нанотехнологии . 17 (4): 390–395. arXiv : 2108.06489 . Бибкод : 2022NatNa..17..390W . дои : 10.1038/s41565-022-01072-w . ISSN 1748-3395 . ПМК 9018412 . ПМИД 35210566 .
- ^ Олден, Джонатан С.; Цен, Адам В.; Хуанг, Пиншейн Ю.; Ховден, Роберт; Браун, Лола; Пак, Джиун; Мюллер, Дэвид А.; МакЮэн, Пол Л. (9 июля 2013 г.). «Деформационные солитоны и топологические дефекты в двухслойном графене» . Труды Национальной академии наук . 110 (28): 11256–11260. arXiv : 1304.7549 . Бибкод : 2013PNAS..11011256A . дои : 10.1073/pnas.1309394110 . ISSN 0027-8424 . ПМК 3710814 . ПМИД 23798395 .
- ^ Jump up to: Перейти обратно: а б с д и Чжан, Шуай; Хоу, Юань; Сун, Ма, Юань; Гао, Чжу, Мэнчжэнь; Лю, Луки; Фэн, Си-Цяо; 21). «Переключение порядка укладки в форме домино» . Nature Materials 21 ( 6): 621–626. Bibcode : 2022NatMa..21..621Z . doi : 10.1038/s41563-022-01232- 2. ISSN 1476-4660 . PMID 35449221. . S2CID 248303403 .
- ^ Цзян, Лили, Шэн; Цзинь, Чэньхао; М. Икбал Бакти, Сихан; Гао, Хун-Цзюнь; -22). «Манипуляции с солитонами доменных стенок в двух- и трехслойном графене» . Nature Nanotechnology 13 ( 3): 204–208. Bibcode : 2018NatNa..13..204J . doi : 10.1038/s41565-017-0042 -6 .ИССН 1748-3387 . ПМИД 29358639 .
- ^ Нам, Нгуен NT; Кошино, Микито (16 марта 2020 г.). «Ошибка: Релаксация решетки и модуляция энергетических зон в скрученном двухслойном графене [Phys. Rev. B 96 , 075311 (2017)]» . Физический обзор B . 101 (9): 099901. Бибкод : 2020PhRvB.101i9901N . дои : 10.1103/physrevb.101.099901 . ISSN 2469-9950 . S2CID 216407866 .
- ^ Дай, Шуян; Сян, Ян; Сроловиц, Дэвид Дж. (22 августа 2016 г.). «Витой двухслойный графен: муар с изюминкой» . Нано-буквы . 16 (9): 5923–5927. Бибкод : 2016NanoL..16.5923D . дои : 10.1021/acs.nanolett.6b02870 . ISSN 1530-6984 . ПМИД 27533089 .
- ^ Косевич А.М. ; Ганн, В.В.; Жуков А.И.; Воронов, В.П. (1998). «Движение магнитного солитона в неоднородном магнитном поле» . Журнал экспериментальной и теоретической физики . 87 (2): 401–407. Бибкод : 1998JETP...87..401K . дои : 10.1134/1.558674 . S2CID 121609608 . Архивировано из оригинала 4 мая 2018 г. Проверено 18 января 2019 г.
- ^ Ивата, Ёритака; Стивенсон, Пол (2019). «Условное восстановление симметрии обращения времени во многих ядерных системах». Новый журнал физики . 21 (4): 043010. arXiv : 1809.10461 . Бибкод : 2019NJPh...21d3010I . дои : 10.1088/1367-2630/ab0e58 . S2CID 55223766 .
- ^ Белова Т.И.; Кудрявцев, А.Е. (1997). «Солитоны и их взаимодействия в классической теории поля». Успехи физики . 40 (4): 359–386. Бибкод : 1997PhyU...40..359B . дои : 10.1070/pu1997v040n04abeh000227 . S2CID 250768449 .
- ^ Гани, Вирджиния; Кудрявцев А.Е.; Лизунова, М.А. (2014). «Кинковые взаимодействия в (1+1)-мерной модели φ^6». Физический обзор D . 89 (12): 125009. arXiv : 1402.5903 . Бибкод : 2014PhRvD..89l5009G . дои : 10.1103/PhysRevD.89.125009 . S2CID 119333950 .
- ^ Гани, Вирджиния; Ленский, В.; Лизунова, М.А. (2015). «Спектры возбуждения кинков в (1+1)-мерной модели φ^8». Журнал физики высоких энергий . 2015 (8): 147. arXiv : 1506.02313 . дои : 10.1007/JHEP08(2015)147 . ISSN 1029-8479 . S2CID 54184500 .
- ^ Jump up to: Перейти обратно: а б с Хазали, Мохаммадсадек (5 августа 2021 г.). «Ридберговское шумовое одевание и его применение в создании солитонных молекул и капельных квазикристаллов» . Обзор физических исследований . 3 (3): L032033. arXiv : 2007.01039 . Бибкод : 2021PhRvR...3c2033K . doi : 10.1103/PhysRevResearch.3.L032033 . S2CID 220301701 .
- ^ Нгуен, Джейсон Х.В.; Дайк, Пол; Ло, Де; Маломед Борис А.; Хьюлет, Рэндалл Г. (2 ноября 2014 г.). «Столкновения вещественно-волновых солитонов» . Физика природы . 10 (12): 918–922. arXiv : 1407.5087 . Бибкод : 2014NatPh..10..918N . дои : 10.1038/nphys3135 . ISSN 1745-2473 . S2CID 85461409 .
- ^ Гиббонс, GW (1998). «Частицы Борна – Инфельда и p -браны Дирихле». Ядерная физика Б . 514 (3): 603–639. arXiv : hep-th/9709027 . Бибкод : 1998НуФБ.514..603Г . дои : 10.1016/S0550-3213(97)00795-5 . S2CID 119331128 .
- ^ Мир физики: астрономия и космос. Космический корабль в «варп-пузыре» может двигаться быстрее света, утверждает физик. 19 марта 2021 г. https://physicalworld.com/a/spacecraft-in-a-warp-bubble-could-travel-faster-than-light-claims-physical/ <по состоянию на 29 июня 2021 г.>
- ^ Пауэлл, Девин (20 мая 2011 г.). «Пойманные волны-убийцы» . Новости науки . Проверено 24 мая 2011 г.
Дальнейшее чтение [ править ]
- Забуски, Нью-Джерси; Краскал, доктор медицины (1965). «Взаимодействие «солитонов» в бесстолкновительной плазме и возвратность начальных состояний» . Физ. Преподобный Летт . 15 (6): 240–243. Бибкод : 1965PhRvL..15..240Z . doi : 10.1103/PhysRevLett.15.240 .
- Хасэгава, А.; Тапперт, Ф. (1973). «Передача стационарных нелинейных оптических импульсов в дисперсионных диэлектрических волокнах. I. Аномальная дисперсия». Прил. Физ. Летт . 23 (3): 142–144. Бибкод : 1973ApPhL..23..142H . дои : 10.1063/1.1654836 .
- Эмплит, П.; Хамаиде, Япония; Рейно, Ф.; Фрели, К.; Бартелеми, А. (1987). «Пикосекундные шаги и темные импульсы в нелинейных одномодовых волокнах». Оптика Комм . 62 (6): 374–379. Бибкод : 1987OptCo..62..374E . дои : 10.1016/0030-4018(87)90003-4 .
- Тао, Теренс (2009). «Почему солитоны стабильны?» (PDF) . Бык. Являюсь. Математика. Соц . 46 (1): 1–33. arXiv : 0802.2408 . дои : 10.1090/s0273-0979-08-01228-7 . МР 2457070 . S2CID 546859 .
- Дразин, П.Г. Джонсон, Р.С. (1989). Солитоны: введение (2-е изд.). Издательство Кембриджского университета. ISBN 978-0-521-33655-0 .
- Дунайский, М. (2009). Солитоны, инстантоны и твисторы . Издательство Оксфордского университета. ISBN 978-0-19-857063-9 .
- Яффе, А.; Таубес, CH (1980). Вихри и монополи . Биркгаузер. ISBN 978-0-8176-3025-6 .
- Мэнтон, Н.; Сатклифф, П. (2004). Топологические солитоны . Издательство Кембриджского университета. ISBN 978-0-521-83836-8 .
- Молленауэр, Линн Ф.; Гордон, Джеймс П. (2006). Солитоны в оптических волокнах . Эльзевир. ISBN 978-0-12-504190-4 .
- Раджараман, Р. (1982). Солитоны и инстантоны . Северная Голландия. ISBN 978-0-444-86229-7 .
- Ян, Ю. (2001). Солитоны в теории поля и нелинейном анализе . Спрингер. ISBN 978-0-387-95242-0 .
Внешние ссылки [ править ]
- Связано с Джоном Скоттом Расселом
- Джон Скотт Рассел и одиночная волна
- Биография Джона Скотта Рассела. Архивировано 22 апреля 2005 г. в Wayback Machine.
- Фотография солитона на акведуке Скотта Рассела, заархивированная 6 июля 2006 г. в Wayback Machine.
- Другой