Jump to content

Степенной закон

(Перенаправлено из Законов о власти )
Пример степенного графика, демонстрирующего рейтинг популярности. Справа — длинный хвост , а слева — те немногие, которые доминируют (также известное как правило 80–20 ).

В статистике степенной закон — это функциональная связь между двумя величинами, при которой относительное изменение одной величины приводит к относительному изменению другой величины, пропорциональному степени изменения, независимо от первоначального размера этих величин: одна величина изменяется. как сила другого. Например, если рассматривать площадь квадрата через длину его стороны, то если длину увеличить вдвое, площадь умножится в четыре раза. [1] Скорость изменения, проявляющаяся в этих отношениях, называется мультипликативной.

Эмпирические примеры

[ редактировать ]

Распределение широкого спектра физических, биологических и антропогенных явлений примерно подчиняется степенному закону в широком диапазоне величин: к ним относятся размеры кратеров на Луне и солнечных вспышек , [2] размеры облаков, [3] характер питания различных видов, [4] размеры паттернов активности нейрональных популяций, [5] частоты слов частоты фамилий , видовое богатство клад в большинстве языков , организмов, [6] размеры отключений электроэнергии , извержений вулканов, [7] человеческие суждения об интенсивности стимула [8] [9] и многие другие величины. [10] Эмпирические распределения могут соответствовать степенному закону только для ограниченного диапазона значений, поскольку чисто степенной закон допускает сколь угодно большие или малые значения. Акустическое затухание подчиняется частотно-степенному закону в широких полосах частот для многих сложных сред. Аллометрические законы масштабирования для отношений между биологическими переменными являются одними из наиболее известных степенных функций в природе.

Характеристики

[ редактировать ]

Масштабная инвариантность

[ редактировать ]

Одним из свойств степенных законов является их масштабная инвариантность . Учитывая отношение , масштабирование аргумента постоянным коэффициентом вызывает только пропорциональное масштабирование самой функции. То есть,

где означает прямую пропорциональность . То есть масштабирование по константе просто умножает исходное степенное соотношение на константу . Таким образом, из этого следует, что все степенные законы с определенным показателем масштабирования эквивалентны с точностью до постоянных коэффициентов, поскольку каждый из них представляет собой просто масштабированную версию остальных. Именно такое поведение и приводит к линейной зависимости, когда логарифмируются оба значения. и , а прямую линию на логарифмическом графике часто называют сигнатурой степенного закона. В случае реальных данных такая прямолинейность является необходимым, но не достаточным условием для того, чтобы данные подчинялись степенному закону. Фактически, существует множество способов генерировать конечные объемы данных, которые имитируют это поведение сигнатуры, но в своем асимптотическом пределе не являются истинными степенными законами. [ нужна ссылка ] Таким образом, точная подборка и проверка степенных моделей является активной областью исследований в статистике; см. ниже.

Отсутствие четко определенного среднего значения

[ редактировать ]

Степенной закон имеет четко определенное среднее значение по только если , и он имеет конечную дисперсию только в том случае, если ; Большинство выявленных степенных законов в природе имеют такие показатели, что среднее значение четко определено, а дисперсия - нет, что означает, что они способны к поведению черного лебедя . [2] Это можно увидеть в следующем мысленном эксперименте: [11] представьте себе комнату с друзьями и оцените средний ежемесячный доход в комнате. А теперь представьте самый богатый человек в мире , что в комнату входит с ежемесячным доходом около 1 миллиарда долларов США. Что происходит со средним доходом в комнате? Доход распределяется по степенному закону, известному как распределение Парето (например, собственный капитал американцев распределяется по степенному закону с показателем степени 2).

С одной стороны, это делает некорректным применение традиционной статистики, основанной на дисперсии и стандартном отклонении (например, регрессионного анализа ). [12] С другой стороны, это также позволяет проводить экономически эффективные вмешательства. [11] Например, учитывая, что выхлопные газы автомобилей распределяются между автомобилями по степенному закону (очень немногие автомобили вносят наибольший вклад в загрязнение окружающей среды), было бы достаточно убрать эти очень немногие автомобили с дороги, чтобы существенно снизить общее количество выхлопных газов. [13]

Однако медиана существует: для степенного закона x к , с показателем , принимает значение 2 1/( к – 1) x min , где x min — минимальное значение, для которого выполняется степенной закон. [2]

Универсальность

[ редактировать ]

Эквивалентность степенных законов с определенным показателем масштабирования может иметь более глубокое происхождение в динамических процессах, которые порождают степенные отношения. В физике, например, фазовые переходы в термодинамических системах связаны с возникновением степенных распределений некоторых величин, показатели степени которых называются критическими показателями системы. различные системы с одинаковыми критическими показателями, то есть которые демонстрируют идентичное масштабируемое поведение по мере приближения к критичности, можно показать, что С помощью теории ренормгруппы имеют одну и ту же фундаментальную динамику. Например, поведение воды и CO 2 при температуре кипения попадает в один и тот же класс универсальности, поскольку они имеют одинаковые критические показатели. [ нужна ссылка ] [ нужны разъяснения ] Фактически почти все материальные фазовые переходы описываются небольшим набором классов универсальности. Подобные наблюдения были сделаны, хотя и не столь подробно, для различных самоорганизующихся критических систем, где критическая точка системы является аттрактором . Формально такое разделение динамики называется универсальностью , и говорят, что системы с одинаковыми критическими показателями принадлежат к одному и тому же классу универсальности .

Степенные функции

[ редактировать ]

Научный интерес к степенно-правовым отношениям частично проистекает из той легкости, с которой некоторые общие классы механизмов порождают их. [14] Демонстрация степенной зависимости в некоторых данных может указывать на определенные виды механизмов, которые могут лежать в основе рассматриваемого природного явления, и может указывать на глубокую связь с другими, казалось бы, несвязанными системами; [15] см. также универсальность выше. Повсеместное распространение степенных отношений в физике частично обусловлено размерными ограничениями , тогда как в сложных системах степенные законы часто считаются признаками иерархии или конкретных случайных процессов . Несколько ярких примеров степенных законов — это закон распределения доходов Парето , структурное самоподобие фракталов и законы масштабирования в биологических системах . Исследования происхождения степенно-законных отношений, а также усилия по наблюдению и подтверждению их в реальном мире являются активной темой исследований во многих областях науки, включая физику , информатику , лингвистику , геофизику , нейробиологию , систематику , социологию , экономика и многое другое.

Однако большая часть недавнего интереса к степенным законам связана с изучением вероятностных распределений : распределения самых разных величин, по-видимому, следуют степенной форме, по крайней мере, в их верхней части (крупные события). Поведение этих крупных событий связывает эти величины с изучением теории больших отклонений (также называемой теорией экстремальных значений ), которая учитывает частоту чрезвычайно редких событий, таких как крахи фондового рынка и крупные стихийные бедствия . В первую очередь при изучении статистических распределений используется название «степенной закон».

В эмпирическом контексте приближение к степенному закону часто включает в себя термин отклонения , что может представлять неопределенность в наблюдаемых значениях (возможно, ошибки измерения или выборки) или обеспечивать простой способ отклонения наблюдений от степенной функции (возможно, по стохастическим причинам):

распределение, представляющее собой усеченную степенную функцию : Математически строгий степенной закон не может быть распределением вероятностей, но возможно для где показатель степени (Греческая буква альфа , не путать с масштабным коэффициентом использованное выше) больше 1 (иначе хвост имеет бесконечную площадь), минимальное значение в противном случае распределение будет иметь бесконечную площадь, когда x приближается к 0, а константа C является коэффициентом масштабирования, гарантирующим, что общая площадь равна 1, как того требует распределение вероятностей. Чаще используют асимптотический степенной закон, который верен только в пределе; см . ниже по степенным распределениям вероятностей подробности . Обычно показатель степени попадает в диапазон , хотя и не всегда. [10]

В физике (например, песчаные лавины), биологии (например, вымирание видов и масса тела) и социальных науках (например, размеры городов и доходы) выявлено более сотни степенных распределений. [16] Среди них:

Искусственный интеллект

[ редактировать ]

Астрономия

[ редактировать ]

Биология

[ редактировать ]

Климатология

[ редактировать ]
  • Размеры областей и периметров облаков, вид из космоса [3]
  • Размер душевых ячеек [21]
  • Рассеяние энергии в циклонах [22]
  • Диаметры пылевых вихрей на Земле и Марсе [23]

Общая наука

[ редактировать ]

Экономика

[ редактировать ]

Математика

[ редактировать ]

Политология

[ редактировать ]

Психология

[ редактировать ]

Варианты

[ редактировать ]

Нарушенный степенной закон

[ редактировать ]
Некоторые модели начальной функции масс используют нарушенный степенной закон; вот Крупа (2001) в красном.

Нарушенный степенной закон — это кусочная функция , состоящая из двух или более степенных законов, объединенных с порогом. Например, с двумя степенными законами: [46]

для
.

Плавно нарушенный степенной закон

[ редактировать ]

Части нарушенного степенного закона можно плавно соединить вместе, чтобы построить гладко нарушенный степенной закон.

Существуют различные возможные способы объединения степенных законов. Одним из примеров является следующее: [47] где .


Когда функция отображается в виде логарифмического графика с горизонтальной осью и вертикальная ось , сюжет состоит из линейные сегменты с уклонами , разделенные на , плавно сращенные вместе. Размер определяет резкость сращивания между сегментами .

Степенной закон с экспоненциальным обрезанием

[ редактировать ]

Степенной закон с экспоненциальным сокращением — это просто степенной закон, умноженный на показательную функцию: [10]

Закон изогнутой степени

[ редактировать ]
[48]

Степенные распределения вероятностей

[ редактировать ]

В более широком смысле степенное распределение вероятностей — это распределение, функция плотности которого (или функция массы в дискретном случае) имеет вид для больших значений , [49]

где , и медленно меняющаяся функция , то есть любая функция, удовлетворяющая условию для любого положительного фактора . Это свойство следует непосредственно из требования, чтобы быть асимптотически масштабно-инвариантным; таким образом, форма контролирует только форму и конечную протяженность нижнего хвоста. Например, если — постоянная функция, то мы имеем степенной закон, справедливый для всех значений . Во многих случаях удобно принять нижнюю оценку из чего действует закон. Объединив эти два случая, и где является непрерывной переменной, степенной закон имеет вид распределения Парето

где предварительный фактор для нормировочная константа . Теперь мы можем рассмотреть некоторые свойства этого распределения. Например, его моменты определяются выражением

который хорошо определен только для . То есть все моменты расходятся: когда , среднее и все моменты высшего порядка бесконечны; когда , среднее значение существует, но дисперсия и моменты более высокого порядка бесконечны и т. д. Для выборок конечного размера, взятых из такого распределения, такое поведение означает, что оценки центрального момента (например, среднего значения и дисперсии) для расходящихся моментов никогда не сойдутся. – по мере накопления большего количества данных они продолжают расти. Эти степенные распределения вероятностей также называются распределениями типа Парето, распределениями с хвостами Парето или распределениями с регулярно меняющимися хвостами.

Модификация, не удовлетворяющая приведенной выше общей форме, с экспоненциальным обрезанием, [10] является

В этом распределении член экспоненциального затухания в конечном итоге подавляет степенное поведение при очень больших значениях . Этот дистрибутив не масштабируется [ нужны дальнейшие объяснения ] и, таким образом, не является асимптотически степенным законом; однако он приблизительно масштабируется в конечной области до отсечки. Чистая форма, приведенная выше, является подмножеством этого семейства, с . Это распределение является распространенной альтернативой асимптотическому степенному распределению, поскольку оно естественным образом учитывает эффекты конечного размера.

Распределения Твиди представляют собой семейство статистических моделей, характеризующихся замыканием при аддитивной и репродуктивной свертке, а также при масштабном преобразовании. Следовательно, все эти модели выражают степенную связь между дисперсией и средним значением. Эти модели играют фундаментальную роль в качестве фокусов математической сходимости, аналогичную той роли, которую нормальное распределение играет в качестве фокуса в центральной предельной теореме . Этот эффект конвергенции объясняет, почему степенной закон отклонения от среднего так широко проявляется в природных процессах, например, в законе Тейлора в экологии и при масштабировании флуктуаций. [50] по физике. Можно также показать, что этот закон отклонения от средней степени, продемонстрированный методом расширения интервалов , подразумевает наличие шума 1/ f и что шум 1/ f может возникнуть как следствие этого эффекта конвергенции Твиди. [51]

Графические методы идентификации

[ редактировать ]

Хотя были предложены более сложные и надежные методы, наиболее часто используемыми графическими методами определения степенных распределений вероятностей с использованием случайных выборок являются квантиль-квантильные графики Парето (или графики Парето Q – Q ), [ нужна ссылка ] графики среднего остаточного срока службы [52] [53] и логарифмические графики . Другой, более надежный графический метод использует наборы остаточных квантильных функций. [54] (Имейте в виду, что степенные распределения также называются распределениями типа Парето.) Здесь предполагается, что случайная выборка получена из распределения вероятностей, и что мы хотим знать, подчиняется ли хвост распределения степенному закону. (другими словами, мы хотим знать, имеет ли распределение «хвост Парето»). Здесь случайная выборка называется «данными».

Графики Парето Q–Q сравнивают квантили логарифмически преобразованных данных с соответствующими квантилями экспоненциального распределения со средним значением 1 (или с квантилями стандартного распределения Парето), отображая первое в сравнении со вторым. Если результирующая диаграмма рассеяния предполагает, что нанесенные точки «асимптотически сходятся» к прямой линии, то следует заподозрить степенное распределение. Ограничением графиков Парето Q–Q является то, что они плохо ведут себя, когда хвостовой индекс (также называемый индексом Парето) близок к 0, поскольку графики Q–Q Парето не предназначены для выявления распределений с медленно меняющимися хвостами. [54]

С другой стороны, в своей версии для определения степенного распределения вероятностей график среднего остаточного срока службы состоит из сначала логарифмического преобразования данных, а затем построения среднего значения тех логарифмически преобразованных данных, которые выше i - го порядка. статистика по сравнению со статистикой i -го порядка для i = 1,..., n , где n — размер случайной выборки. Если результирующая диаграмма рассеяния предполагает, что нанесенные точки имеют тенденцию «стабилизироваться» вокруг горизонтальной прямой линии, то следует заподозрить степенное распределение. Поскольку график среднего остаточного срока службы очень чувствителен к выбросам (он не является устойчивым), он обычно дает графики, которые трудно интерпретировать; по этой причине такие сюжеты обычно называют сюжетами ужасов Хилла. [55]

Прямая линия на логарифмическом графике необходима, но недостаточна для доказательства существования степенного закона, наклон прямой соответствует показателю степенного закона.

Логарифмические графики — это альтернативный способ графического исследования хвоста распределения с использованием случайной выборки. Однако следует проявлять осторожность, поскольку логарифмический график необходим, но недостаточен для доказательства степенной зависимости, поскольку многие нестепенные распределения будут выглядеть как прямые линии на логарифмическом графике. [10] [56] Этот метод состоит в построении графика логарифма оценки вероятности того, что определенное число распределения произойдет, в сравнении с логарифмом этого конкретного числа. Обычно эта оценка представляет собой долю раз, когда число встречается в наборе данных. Если точки на графике имеют тенденцию «сходиться» к прямой линии для больших чисел по оси x, то исследователь приходит к выводу, что распределение имеет степенной хвост. Опубликованы примеры применения этих типов сюжетов. [57] Недостатком этих графиков является то, что для получения надежных результатов им требуются огромные объемы данных. Кроме того, они подходят только для дискретных (или сгруппированных) данных.

Предложен другой графический метод идентификации степенных распределений вероятностей с использованием случайных выборок. [54] Эта методология заключается в построении графика выборки с логарифмическим преобразованием . Первоначально предложенная как инструмент для изучения существования моментов и функции генерации момента с использованием случайных выборок, методология пакета основана на функциях остаточного квантиля (RQF), также называемых функциями остаточного процентиля. [58] [59] [60] [61] [62] [63] [64] которые обеспечивают полную характеристику поведения хвоста многих известных распределений вероятностей, включая степенные распределения, распределения с другими типами тяжелых хвостов и даже распределения без тяжелых хвостов. Пакетные графики лишены упомянутых выше недостатков графиков Парето Q–Q, графиков среднего остаточного ресурса и логарифмических графиков (устойчивы к выбросам, позволяют визуально идентифицировать степенные законы при малых значениях и не требуют сбора большого количества данных). [ нужна ссылка ] Кроме того, с помощью групповых диаграмм можно идентифицировать другие типы поведения хвоста.

Построение степенных распределений

[ редактировать ]

В целом степенные распределения строятся на дважды логарифмических осях , что подчеркивает верхнюю область хвоста. Самый удобный способ сделать это — использовать (дополнительное) кумулятивное распределение (ccdf), то есть функцию выживания , ,

CDF также является степенной функцией, но с меньшим показателем масштабирования. Для данных эквивалентной формой cdf является ранг-частотный подход, при котором мы сначала сортируем наблюдаемые значения в порядке возрастания и постройте их против вектора .

Хотя может быть удобно регистрировать данные или иным образом напрямую сглаживать функцию плотности вероятности (массы), эти методы вносят неявное смещение в представление данных, и поэтому их следует избегать. [10] [65] С другой стороны, функция выживания более устойчива к таким искажениям данных (но не без них) и сохраняет линейную сигнатуру на дважды логарифмических осях. Хотя представление функции выживания предпочтительнее представления в формате PDF при подгонке степенного закона к данным с помощью линейного метода наименьших квадратов, оно не лишено математической неточности. Таким образом, при оценке показателей степенного распределения рекомендуется использовать оценку максимального правдоподобия.

Оценка показателя степени по эмпирическим данным

[ редактировать ]

Существует много способов оценки значения показателя масштабирования для степенного хвоста, однако не все из них дают объективные и последовательные ответы . Некоторые из наиболее надежных методов часто основаны на методе максимального правдоподобия . Альтернативные методы часто основаны на построении линейной регрессии либо на логарифмической вероятности, либо на логарифмической кумулятивной функции распределения, либо на логарифмических данных, но этих подходов следует избегать, поскольку все они могут привести к сильно смещенным оценкам вероятности. показатель масштабирования. [10]

Максимальная вероятность

[ редактировать ]

Для вещественных, независимых и одинаково распределенных данных мы подгоняем степенное распределение вида

к данным , где коэффициент распределения включен для обеспечения нормализации . Учитывая выбор для , логарифмическая функция правдоподобия принимает вид:

Максимум этого правдоподобия находится дифференцированием по параметру , установив результат равным нулю. После перестановки это дает уравнение оценки:

где являются точки данных . [2] [66] Эта оценка демонстрирует небольшое смещение конечного размера выборки порядка , что мало при n > 100. Далее, стандартная ошибка оценки равна . Эта оценка эквивалентна популярной [ нужна ссылка ] Оценщик Хилла из количественной теории финансов и теории экстремальных значений . [ нужна ссылка ]

Для набора из n целочисленных точек данных , опять же, где каждый , показатель максимального правдоподобия является решением трансцендентного уравнения

где неполная дзета-функция . Неопределенность в этой оценке определяется той же формулой, что и для непрерывного уравнения. Однако два уравнения для не эквивалентны, и непрерывную версию не следует применять к дискретным данным и наоборот.

Кроме того, обе эти оценки требуют выбора . Для функций с нетривиальным функция, выбор слишком маленький размер приводит к значительному смещению , а выбор слишком большого значения увеличивает неопределенность в и снижает статистическую мощность нашей модели. В общем, лучший выбор сильно зависит от конкретной формы нижнего хвоста, представленного выше.

Подробнее об этих методах и условиях, при которых их можно использовать, можно прочитать в . [10] Кроме того, в этой подробной обзорной статье представлен полезный код (Matlab, Python, R и C++) для процедур оценки и тестирования степенных распределений.

Оценка Колмогорова–Смирнова

[ редактировать ]

Другой метод оценки показателя степени, который не предполагает независимых и одинаково распределенных (iid) данных, использует минимизацию статистики Колмогорова – Смирнова , , между кумулятивными функциями распределения данных и степенным законом:

с

где и обозначают компакт-диски данных и степенной закон с показателем степени , соответственно. Поскольку этот метод не предполагает данные iid, он предоставляет альтернативный способ определения показателя степени для наборов данных, в которых нельзя игнорировать временную корреляцию. [5]

Двухточечный метод установки

[ редактировать ]

Этот критерий [67] может применяться для оценки показателя степени в случае безмасштабных распределений и обеспечивает более сходящуюся оценку, чем метод максимального правдоподобия. Он был применен для изучения вероятностных распределений отверстий трещин. В некоторых контекстах распределение вероятностей описывается не кумулятивной функцией распределения , а кумулятивной частотой свойства X , определяемой как количество элементов на метр (или единицу площади, секунду и т. д.), к которым X > x применяется , где x — переменное действительное число. В качестве примера: [ нужна ссылка ] совокупное распределение апертуры трещин X для выборки из N элементов определяется как «количество трещин на метр с апертурой больше . Использование кумулятивной частоты имеет некоторые преимущества, например, оно позволяет поместить на одну и ту же диаграмму данные, собранные из линий отбора проб разной длины и в разных масштабах (например, из обнажения породы и с помощью микроскопа).

Проверка степенных законов

[ редактировать ]

Хотя степенные отношения привлекательны по многим теоретическим причинам, для демонстрации того, что данные действительно подчиняются степенным отношениям, требуется нечто большее, чем просто подгонка конкретной модели к данным. [25] Это важно для понимания механизма, который приводит к такому распределению: внешне схожие распределения могут возникать по совершенно разным причинам, а разные модели дают разные прогнозы, например экстраполяцию.

Например, логнормальное распределение часто ошибочно принимают за степенное распределение: [68] набор данных, полученный из логнормального распределения, будет приблизительно линейным для больших значений (что соответствует тому, что верхний хвост логнормального распределения близок к степенному закону) [ нужны разъяснения ] , но для малых значений логарифмически нормальное значение будет значительно падать (наклоняться вниз), что соответствует малому нижнему хвосту логнормального значения (в степенном законе очень мало малых значений, а не много малых значений). [ нужна ссылка ]

Например, закон Гибрата о процессах пропорционального роста дает логнормальные распределения, хотя их логарифмические графики выглядят линейными в ограниченном диапазоне. Объяснение этого заключается в том, что, хотя логарифм логнормальной функции плотности квадратичен по log( x ) , что дает «изогнутую» форму на логарифмическом графике, если квадратичный член мал по сравнению с линейным, тогда результат может кажутся почти линейными, а логнормальное поведение видно только тогда, когда доминирует квадратичный член, что может потребовать значительно больше данных. Следовательно, логарифмический график, слегка «наклоненный» вниз, может отражать логарифмически нормальное распределение, а не степенной закон.

В целом, многие альтернативные функциональные формы могут в некоторой степени следовать степенной форме. [69] Штумпф и Портер (2012) предложили построить график эмпирической кумулятивной функции распределения в логарифмической области и заявили, что кандидат на степенной закон должен охватывать как минимум два порядка величины. [70] Кроме того, исследователям обычно приходится сталкиваться с проблемой принятия решения о том, подчиняется ли реальное распределение вероятностей степенному закону. В качестве решения этой проблемы Диас [54] предложил графическую методологию, основанную на случайных выборках, позволяющую визуально различать разные типы поведения хвоста. В этой методологии используются наборы функций остаточного квантиля, также называемые процентильными функциями остаточного срока службы, которые характеризуют множество различных типов хвостов распределения, включая как тяжелые, так и нетяжелые хвосты. Однако Штумпф и Портер (2012) заявили о необходимости как статистической, так и теоретической основы для поддержки степенного закона в основном механизме, управляющем процессом генерации данных. [70]

Один из методов проверки степенного соотношения проверяет множество ортогональных предсказаний конкретного генеративного механизма на основе данных. Простая установка степенного отношения к определенному типу данных не считается рациональным подходом. Таким образом, проверка утверждений степенного закона остается очень активной областью исследований во многих областях современной науки. [10]

См. также

[ редактировать ]

Примечания

  1. ^ Янир Бар-Ям. «Концепции: Степенной закон» . Институт сложных систем Новой Англии . Проверено 18 августа 2015 г.
  2. ^ Jump up to: а б с д Ньюман, МЭД (2005). «Степенные законы, распределения Парето и закон Ципфа». Современная физика . 46 (5): 323–351. arXiv : cond-mat/0412004 . Бибкод : 2005ConPh..46..323N . дои : 10.1080/00107510500052444 . S2CID   202719165 .
  3. ^ Jump up to: а б ДеВитт, Томас Д.; Гарретт, Тимоти Дж.; Рис, Карли Н.; Буа, Кори; Крюгер, Стивен К.; Ферлей, Николас (05 января 2024 г.). «Климатологически инвариантная масштабная инвариантность, наблюдаемая в распределении горизонтальных размеров облаков» . Химия и физика атмосферы . 24 (1): 109–122. Бибкод : 2024ACP....24..109D . дои : 10.5194/acp-24-109-2024 . ISSN   1680-7316 .
  4. ^ Хамфрис Н.Э., Кейроз Н., Дайер Дж.Р., Паде Н.Г., Музил М.К., Шефер К.М., Фуллер Д.В., Брунншвайлер Дж.М., Дойл Т.К., Хоутон Дж.Д., Хейс Г.К., Джонс К.С., Нобл Л.Р., Уэрмут В.Дж., Саутхолл Э.Дж., Симс Д.В. (2010) . «Экологический контекст объясняет модели Леви и броуновского движения морских хищников» (PDF) . Природа . 465 (7301): 1066–1069. Бибкод : 2010Natur.465.1066H . дои : 10.1038/nature09116 . ПМИД   20531470 . S2CID   4316766 .
  5. ^ Jump up to: а б с Клаус А, Ю С, Пленц Д (2011). Зоховский М (ред.). «Статистический анализ подтверждает степенное распределение, обнаруженное в нейрональных лавинах» . ПЛОС ОДИН . 6 (5). е19779. Бибкод : 2011PLoSO...619779K . дои : 10.1371/journal.pone.0019779 . ПМК   3102672 . ПМИД   21720544 .
  6. ^ Альберт и Рейс 2011 , с. [ нужна страница ] .
  7. ^ Каннаво, Флавио; Нуннари, Джузеппе (01 марта 2016 г.). «О возможном едином законе масштабирования продолжительности извержений вулканов» . Научные отчеты . 6 : 22289. Бибкод : 2016NatSR...622289C . дои : 10.1038/srep22289 . ISSN   2045-2322 . ПМЦ   4772095 . ПМИД   26926425 .
  8. ^ Стивенс, СС (1957). «О психофизическом законе». Психологический обзор . 64 (3): 153–181. дои : 10.1037/h0046162 . ПМИД   13441853 .
  9. ^ Стаддон, JER (1978). «Теория поведенческих властных функций». Психологический обзор . 85 (4): 305–320. дои : 10.1037/0033-295x.85.4.305 . hdl : 10161/6003 .
  10. ^ Jump up to: а б с д и ж г час я Клаузет, Шализи и Ньюман, 2009 .
  11. ^ Jump up to: а б «Девятые переговоры ЭКЛАК по сложным социальным системам (CCSSCS): степенные законы» . Ютуб . 31 декабря 2013 г.
  12. ^ Талеб, Нассим Николас; Бар-Ям, Янир; Чирилло, Паскуале (20 октября 2020 г.). «Об одноточечных прогнозах для переменных с толстым хвостом» . Международный журнал прогнозирования . 38 (2): 413–422. doi : 10.1016/j.ijforecast.2020.08.008 . ISSN   0169-2070 . ПМЦ   7572356 . ПМИД   33100449 . S2CID   220919883 .
  13. ^ Малкольм Гладуэлл (13 февраля 2006 г.). «Мюррей на миллион долларов» . Архивировано из оригинала 18 марта 2015 г. Проверено 14 июня 2015 г.
  14. ^ Сорнетт 2006 .
  15. ^ Саймон 1955 .
  16. ^ Андриани, П.; МакКелви, Б. (2007). «За пределами гауссовых средних: перенаправление исследований международного бизнеса и менеджмента на экстремальные события и энергетические законы». Журнал международных бизнес-исследований . 38 (7): 1212–1230. дои : 10.1057/palgrave.jibs.8400324 . S2CID   512642 .
  17. ^ Лакуанити, Франческо ; Терцуоло, Карло; Вивиани, Паоло (1983). «Закон, касающийся кинематических и фигуральных аспектов рисования движений». Акта Психологика . 54 (1–3): 115–130. дои : 10.1016/0001-6918(83)90027-6 . ПМИД   6666647 . S2CID   5144040 .
  18. ^ Альберт, Дж.С.; Барт, HJ; Рейс, Р.Э. «Видовое богатство и кладовое разнообразие». В Albert & Reis (2011) , стр. 89–104.
  19. ^ Ю, Фрэнк Х.; Уилсон, Тимоти; Фрай, Стивен; Эдвардс, Алед; Бадер, Гэри Д.; Иссерлин, Рут (2 февраля 2011 г.). «Геном человека и открытие лекарств спустя десятилетие. Дороги (все еще) не пройдены». Природа . 470 (7333): 163–165. arXiv : 1102.0448v2 . Бибкод : 2011Natur.470..163E . дои : 10.1038/470163а . ПМИД   21307913 . S2CID   4429387 .
  20. ^ Саравиа, Леонардо А.; Дойл, Сантьяго Р.; Бонд-Ламберти, Бен (10 декабря 2018 г.). «Силовые законы и критическая фрагментация глобальных лесов» . Научные отчеты . 8 (1): 17766. Бибкод : 2018NatSR...817766S . doi : 10.1038/s41598-018-36120-w . ISSN   2045-2322 . ПМК   6288094 . ПМИД   30532065 .
  21. ^ Мачадо Л., Россов, ВБ (1993). «Структурные характеристики и радиальные свойства скоплений тропических облаков» . Ежемесячный обзор погоды . 121 (12): 3234–3260. doi : 10.1175/1520-0493(1993)121<3234:scarpo>2.0.co;2 .
  22. ^ Коррал, А., Оссо, А., Ллебот, Дж. Э. (2010). «Масштабирование рассеивания тропических циклонов». Физика природы . 6 (9): 693–696. arXiv : 0910.0054 . Бибкод : 2010NatPh...6..693C . дои : 10.1038/nphys1725 . S2CID   67754747 .
  23. ^ Лоренц Р.Д. (2009). «Степенной закон диаметров пылевых дьяволов на Земле и Марсе». Икар . 203 (2): 683–684. Бибкод : 2009Icar..203..683L . дои : 10.1016/j.icarus.2009.06.029 .
  24. ^ Рид, WJ; Хьюз, Б.Д. (2002). «От генных семейств и родов до доходов и размеров интернет-файлов: почему степенные законы так распространены в природе» (PDF) . Физика преп . Э. 66 (6): 067103. Бибкод : 2002PhRvE..66f7103R . дои : 10.1103/physreve.66.067103 . ПМИД   12513446 .
  25. ^ Jump up to: а б Гильберт, Мартин (2013). «Безмасштабные степенные законы как взаимодействие прогресса и распространения» . Сложность (Представлена ​​рукопись). 19 (4): 56–65. Бибкод : 2014Cmplx..19d..56H . дои : 10.1002/cplx.21485 .
  26. ^ «Законы Хортона - пример» . www.engr.colostate.edu . Проверено 30 сентября 2018 г.
  27. ^ Саттон, Дж. (1997), «Наследие Гибрата», Журнал экономической литературы XXXV, 40–59.
  28. ^ Ли, В. (ноябрь 1999 г.). «Случайные тексты демонстрируют распределение частот слов, подобное закону Ципфа». Транзакции IEEE по теории информации . 38 (6): 1842–1845. дои : 10.1109/18.165464 . ISSN   0018-9448 .
  29. ^ Кертис, Вики (20 апреля 2018 г.). Гражданская онлайн-наука и расширение академических кругов: распределенное участие в исследованиях и производстве знаний . Спрингер. ISBN  978-3-319-77664-4 .
  30. ^ Крото, Дэвид; Хойнс, Уильям (6 ноября 2013 г.). СМИ/общество: отрасли, образы и аудитории . Публикации SAGE. ISBN  978-1-4833-2355-8 .
  31. ^ Льюис Фрай Ричардсон (1950). Статистика смертельных ссор .
  32. ^ Берреби, Дэвид (31 июля 2014 г.). «Облачно, возможна война» . Журнал «Наутилус» . Проверено 22 октября 2020 г.
  33. ^ Мартин, Чарльз Х.; Махони, Майкл В. (2 октября 2018 г.). «Неявная саморегуляризация в глубоких нейронных сетях: данные теории случайных матриц и последствия для обучения». arXiv : 1810.01075 [ cs.LG ].
  34. ^ Этро, Ф.; Степанова, Е. (2018). «Силовые законы в искусстве». Физика А: Статистическая механика и ее приложения . 506 : 217–220. Бибкод : 2018PhyA..506..217E . дои : 10.1016/j.physa.2018.04.057 . hdl : 11382/522706 . S2CID   126347599 .
  35. ^ Фрике, Дэниел; Люкс, Томас (13 февраля 2015 г.). «О распространении ссылок в межбанковской сети: данные ночного денежного рынка e-MID» (PDF) . Эмпирическая экономика . 49 (4). ООО «Спрингер Сайенс энд Бизнес Медиа»: 1463–1495. дои : 10.1007/s00181-015-0919-x . ISSN   0377-7332 . S2CID   154684126 .
  36. ^ «Детальная природа совокупных колебаний» . Эконометрика . 79 (3): 733–772. 2011. дои : 10.3982/ecta8769 . ISSN   0012-9682 .
  37. ^ Нойманн, Джерри (25 июня 2015 г.). «Законы власти в венчурном бизнесе» . Реакционное колесо . Проверено 11 октября 2023 г.
  38. ^ Мюллер, Ульрих А.; Дакоронья, Мишель М.; Олсен, Ричард Б.; Пикте, Оливье В.; Шварц, Матиас; Моргенегг, Клод (1 декабря 1990 г.). «Статистическое исследование курсов иностранных валют, эмпирические доказательства закона масштабирования изменения цен и внутридневной анализ». Журнал банковского дела и финансов . 14 (6): 1189–1208. дои : 10.1016/0378-4266(90)90009-Q . ISSN   0378-4266 .
  39. ^ Люкс, Томас А.; Альфарано, Симона (2016). «Законы финансовой власти: эмпирические данные, модели и механизмы». Хаос, солитоны и фракталы . 88 : 3–18. Бибкод : 2016CSF....88....3L . дои : 10.1016/j.chaos.2016.01.020 .
  40. ^ Глаттфельдер, Дж.Б.; Дюпюи, А.; Олсен, РБ (1 апреля 2011 г.). «Закономерности в высокочастотных данных о валютных парах: открытие 12 эмпирических законов масштабирования». Количественные финансы . 11 (4): 599–614. arXiv : 0809.1040 . дои : 10.1080/14697688.2010.481632 . ISSN   1469-7688 . S2CID   154979612 .
  41. ^ Болматов Д.; Бражкин В.В.; Траченко, К. (2013). «Термодинамическое поведение сверхкритической материи». Природные коммуникации . 4 : 2331. arXiv : 1303.3153 . Бибкод : 2013NatCo...4.2331B . дои : 10.1038/ncomms3331 . ПМИД   23949085 . S2CID   205319155 .
  42. ^ Море, М.; Зебенде, Г. (2007). «Гидрофобность аминокислот и доступная площадь поверхности». Физический обзор E . 75 (1 Пт 1). 011920. Бибкод : 2007PhRvE..75a1920M . дои : 10.1103/PhysRevE.75.011920 . ПМИД   17358197 .
  43. ^ Маккей, DM (1963). «Психофизика воспринимаемой интенсивности: теоретическая основа законов Фехнера и Стивенса». Наука . 139 (3560): 1213–1216. Бибкод : 1963Sci...139.1213M . дои : 10.1126/science.139.3560.1213-a . S2CID   122501807 .
  44. ^ Стаддон, JER (1978). «Теория поведенческих властных функций» (PDF) . Психологический обзор . 85 (4): 305–320. дои : 10.1037/0033-295x.85.4.305 . hdl : 10161/6003 .
  45. ^ Джон Т. Викстед; Шана К. Карпентер. «Степеньевой закон Викельгрена и функция сбережений Эббингауза» (PDF) . Психологическая наука . Архивировано из оригинала (PDF) 8 апреля 2016 г. Проверено 31 августа 2016 г.
  46. ^ Йоханнессон, Гудлаугур; Бьернссон, Гуннлаугур; Гудмундссон, Эйнар Х. (2006). «Кривые блеска послесвечения и нарушенные степенные законы: статистическое исследование». Астрофизический журнал . 640 (1): Л5. arXiv : astro-ph/0602219 . Бибкод : 2006ApJ...640L...5J . дои : 10.1086/503294 . S2CID   16139116 .
  47. ^ Кабальеро, Итан; Гупта, Кшитидж; Риш, Ирина; Крюгер, Дэвид (24 апреля 2023 г.). «Нарушенные законы нейронного масштабирования». arXiv : 2210.14891 [ cs.LG ].
  48. ^ «Закон изогнутой степени» . Архивировано из оригинала 8 февраля 2016 г. Проверено 7 июля 2013 г.
  49. ^ Н. Х. Бингэм, К. М. Голди и Дж. Л. Тейгельс, Обычный вариант. Издательство Кембриджского университета, 1989 г.
  50. ^ Кендал, штат Вашингтон; Йоргенсен, Б (2011). «Степенной закон Тейлора и масштабирование флуктуаций, объясненные сходимостью, подобной центральному пределу». Физ. Преподобный Е. 83 (6): 066115. Бибкод : 2011PhRvE..83f6115K . дои : 10.1103/physreve.83.066115 . ПМИД   21797449 .
  51. ^ Кендал, штат Вашингтон; Йоргенсен, БР (2011). «Сходимость Твиди: математическая основа степенного закона Тейлора, шума 1/ f и мультифрактальности» (PDF) . Физ. Преподобный Е. 84 (6): 066120. Бибкод : 2011PhRvE..84f6120K . дои : 10.1103/physreve.84.066120 . ПМИД   22304168 .
  52. ^ Бейрлант, Дж., Тойгельс, Дж.Л., Винкер, П. (1996) Практический анализ экстремальных значений , Левен: Издательство Левенского университета
  53. ^ Коулз, С. (2001) Введение в статистическое моделирование экстремальных значений . Спрингер-Верлаг, Лондон.
  54. ^ Jump up to: а б с д Диас, Ф.Дж. (1999). «Идентификация поведения хвоста с помощью остаточных квантильных функций». Журнал вычислительной и графической статистики . 8 (3): 493–509. дои : 10.2307/1390871 . JSTOR   1390871 .
  55. ^ Резник, С.И. (1997). «Моделирование тяжелого хвоста и данные телетрафика» . Анналы статистики . 25 (5): 1805–1869. дои : 10.1214/aos/1069362376 .
  56. ^ «Итак, вы думаете, что у вас есть степенной закон — ну, разве это не особенное?» . bactra.org . Проверено 27 марта 2018 г.
  57. ^ Чон, Х.; Томбор, Б. Альберт; Олтвай, З.Н.; Барабаси, А.-Л. (2000). «Крупномасштабная организация метаболических сетей». Природа . 407 (6804): 651–654. arXiv : cond-mat/0010278 . Бибкод : 2000Natur.407..651J . дои : 10.1038/35036627 . ПМИД   11034217 . S2CID   4426931 .
  58. ^ Арнольд, Британская Колумбия; Брокетт, Польша (1983). «Когда функция остаточного срока службы β-го процентиля определяет распределение?». Исследование операций . 31 (2): 391–396. дои : 10.1287/opre.31.2.391 .
  59. ^ Джо, Х.; Прощан, Ф. (1984). «Процентильные функции остаточного срока службы». Исследование операций . 32 (3): 668–678. дои : 10.1287/опре.32.3.668 .
  60. ^ Джо, Х. (1985), «Характеристики распределения жизни на основе процентилей остаточной продолжительности жизни», Ann. Инст. Статист. Математика. 37, Часть А, 165–172.
  61. ^ Чорго, С.; Вихарос, Л. (1992). «Доверительные интервалы для процентилей остаточного срока службы» (PDF) . Журнал статистического планирования и выводов . 30 (3): 327–337. дои : 10.1016/0378-3758(92)90159-п . hdl : 2027.42/30190 .
  62. ^ Шмиттлейн, округ Колумбия; Моррисон, генеральный директор (1981). «Средний остаточный срок службы: теорема о характеристиках и приложение». Исследование операций . 29 (2): 392–399. дои : 10.1287/опре.29.2.392 .
  63. ^ Моррисон, генеральный директор; Шмиттлейн, округ Колумбия (1980). «Работа, забастовки и войны: вероятностные модели продолжительности». Организационное поведение и человеческая деятельность . 25 (2): 224–251. дои : 10.1016/0030-5073(80)90065-3 .
  64. ^ Герчак, Ю (1984). «Снижение количества неудач и связанные с этим проблемы в социальных науках». Исследование операций . 32 (3): 537–546. дои : 10.1287/опре.32.3.537 .
  65. ^ Бауке, Х. (2007). «Оценка параметров степенных распределений методами максимального правдоподобия». Европейский физический журнал Б. 58 (2): 167–173. arXiv : 0704.1867 . Бибкод : 2007EPJB...58..167B . дои : 10.1140/epjb/e2007-00219-y . S2CID   119602829 .
  66. ^ Холл, П. (1982). «О некоторых простых оценках показателя регулярного изменения». Журнал Королевского статистического общества, серия B. 44 (1): 37–42. дои : 10.1111/j.2517-6161.1982.tb01183.x . JSTOR   2984706 .
  67. ^ Воин, Винченцо; Витале, Стефано; Чиарсия, Сабатино; Маццоли, Стефано (9 мая 2011 г.). «Улучшенный статистический многомасштабный анализ аналогов трещиноватого коллектора» . Тектонофизика . 504 (1): 14–24. Бибкод : 2011Tectp.504...14G . дои : 10.1016/j.tecto.2011.01.003 . ISSN   0040-1951 .
  68. ^ Митценмахер 2004 .
  69. ^ Лаэррер и Сорнетт 1998 .
  70. ^ Jump up to: а б Штумпф и Портер, 2012 .

Библиография

[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 8f044808145567e0f9eba7455912a057__1719422520
URL1:https://arc.ask3.ru/arc/aa/8f/57/8f044808145567e0f9eba7455912a057.html
Заголовок, (Title) документа по адресу, URL1:
Power law - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)