Бесконечная производная гравитация
Гравитация с бесконечной производной — это теория гравитации , которая пытается устранить космологические особенности и сингулярности черной дыры путем добавления дополнительных членов к действию Эйнштейна-Гильберта , которые ослабляют гравитацию на коротких расстояниях.
История
[ редактировать ]В 1987 году Красников рассмотрел бесконечный набор членов высших производных, действующих на члены кривизны, и показал, что при разумном выборе коэффициентов пропагатор будет свободен от призраков и будет экспоненциально подавляться в ультрафиолетовом режиме. [1] Томбулис (1997) позже расширил эту работу. [2] Рассматривая эквивалентную скалярно-тензорную теорию, Бисвас, Мазумдар и Сигел (2005) рассмотрели решения FRW с отскоком. [3] В 2011 году Бисвас, Гервик, Койвисто и Мазумдар продемонстрировали, что наиболее общее действие бесконечной производной в 4 измерениях, вокруг фона постоянной кривизны, с инвариантом четности и без кручения, может быть выражено следующим образом: [4]
где являются функциями оператора Даламбера и массового масштаба , скаляр Риччи, – тензор Риччи и – тензор Вейля. [5] Чтобы избежать призраков, пропагатор (который представляет собой комбинацию s) должна быть экспонентой целой функции. Нижняя граница шкалы масс IDG была получена с использованием экспериментальных данных по силе гравитации на коротких расстояниях: [6] а также используя данные об инфляции [7] и об отклонении света вокруг Солнца. [8] Граничные члены GHY были найдены с использованием пространственно-временного разложения ADM 3+1. [9] Можно показать, что энтропия этой теории конечна в различных контекстах. [10] [11]
Влияние IDG на черные дыры и пропагатор исследовал Модесто. [12] [13] [14] Модесто далее рассмотрел перенормируемость теории: [15] [16] а также показать, что он может генерировать «сверхускоренные» прыгающие решения вместо сингулярности большого взрыва. [17] Кальканьи и Нарделли исследовали влияние IDG на уравнение диффузии. [18] IDG меняет способ образования гравитационных волн и способ их распространения в пространстве. Количество энергии, излучаемой через гравитационные волны двойными системами, уменьшается, хотя этот эффект намного меньше, чем текущая точность наблюдений. [19] Показано, что эта теория устойчива и распространяет конечное число степеней свободы. [20]
Избегание особенностей
[ редактировать ]Это действие может создать прыгающую космологию, взяв плоскую метрику FRW с масштабным коэффициентом или , тем самым избегая проблемы космологической сингулярности. [3] [21] [22] [23] Пропагатор вокруг плоского космического фона был получен в 2013 году. [24]
Это действие позволяет избежать сингулярности кривизны при небольшом возмущении плоского фона вблизи начала координат, восстанавливая при этом падение потенциала ГР на больших расстояниях. Это делается с использованием линеаризованных уравнений движения, которые являются допустимым приближением, поскольку, если возмущение достаточно мало, а масштаб массы достаточно велико, то возмущение всегда будет достаточно малым, чтобы можно было пренебречь квадратичными членами. [4] В этом контексте он также позволяет избежать сингулярности Хокинга – Пенроуза. [25] [26]
Стабильность сингулярностей черных дыр
[ редактировать ]Было показано, что в нелокальной гравитации особенности Шварцшильда устойчивы к малым возмущениям. [27] Дальнейший анализ стабильности черных дыр был проведен Мьюнгом и Паком. [28]
Уравнения движения
[ редактировать ]Уравнения движения для этого действия имеют вид [5]
где
Ссылки
[ редактировать ]- ^ Красников Н.В. (ноябрь 1987 г.). «Нелокальные калибровочные теории». Теоретическая и математическая физика . 73 (2): 1184–1190. Бибкод : 1987TMP....73.1184K . дои : 10.1007/BF01017588 . S2CID 122648433 .
- ^ Томбулис, ET (1997). «Сверхперенормируемая калибровка и теории гравитации». arXiv : hep-th/9702146 .
- ^ Перейти обратно: а б Бисвас, Тиртхабир; Мазумдар, Анупам; Сигел, Уоррен (2006). «Прыгающие вселенные в струнной гравитации». Журнал космологии и физики астрочастиц . 2006 (3): 009. arXiv : hep-th/0508194 . Бибкод : 2006JCAP...03..009B . CiteSeerX 10.1.1.266.743 . дои : 10.1088/1475-7516/2006/03/009 . S2CID 7445076 .
- ^ Перейти обратно: а б Бисвас, Тиртхабир; Гервик, Эрик; Койвисто, Томи; Мазумдар, Анупам (2012). «К сингулярности и свободным от призраков теориям гравитации». Письма о физических отзывах . 108 (3): 031101. arXiv : 1110.5249 . Бибкод : 2012PhRvL.108c1101B . doi : 10.1103/PhysRevLett.108.031101 . ПМИД 22400725 . S2CID 5517893 .
- ^ Перейти обратно: а б Бисвас, Тиртхабир; Конрой, Айндриу; Кошелев Алексей С.; Мазумдар, Анупам (2013). «Обобщенная гравитация квадратичной кривизны без призраков». Классическая и квантовая гравитация . 31 (1): 015022. arXiv : 1308.2319 . Бибкод : 2014CQGra..31a5022B . дои : 10.1088/0264-9381/31/1/015022 . S2CID 119103482 .
- ^ Эдхольм, Джеймс; Кошелев Алексей С.; Мазумдар, Анупам (2016). «Поведение ньютоновского потенциала для гравитации без призраков и гравитации без сингулярностей». Физический обзор D . 94 (10): 104033. arXiv : 1604.01989 . Бибкод : 2016PhRvD..94j4033E . дои : 10.1103/PhysRevD.94.104033 . S2CID 118419505 .
- ^ Эдхольм, Джеймс (6 февраля 2017 г.). «УФ-завершение модели Старобинского, отношение тензора к скаляру и ограничения на нелокальность». Физический обзор D . 95 (4): 044004. arXiv : 1611.05062 . Бибкод : 2017PhRvD..95d4004E . doi : 10.1103/PhysRevD.95.044004 . S2CID 17258584 .
- ^ Фэн, Лей (2017). «Искривление света в теориях гравитации с бесконечной производной». Физический обзор D . 95 (8): 084015. arXiv : 1703.06535 . Бибкод : 2017PhRvD..95h4015F . doi : 10.1103/PhysRevD.95.084015 . S2CID 119456666 .
- ^ Теймури, Али; Талаганис, Спиридон; Эдхольм, Джеймс; Мазумдар, Анупам (1 августа 2016 г.). «Обобщенные граничные условия для теорий гравитации с высшими производными». Журнал физики высоких энергий . 2016 (8): 144. arXiv : 1606.01911 . Бибкод : 2016JHEP...08..144T . дои : 10.1007/JHEP08(2016)144 . S2CID 55220918 .
- ^ Мён, Юн Су (2017). «Энтропия черной дыры в гравитации с бесконечной производной». Физический обзор D . 95 (10): 106003. arXiv : 1702.00915 . Бибкод : 2017PhRvD..95j6003M . дои : 10.1103/PhysRevD.95.106003 . S2CID 119516555 .
- ^ Конрой, Айндриу; Мазумдар, Анупам; Теймури, Али (2015). «Энтропия Вальда для теорий гравитации с бесконечной производной без призраков». Письма о физических отзывах . 114 (20): 201101. arXiv : 1503.05568 . Бибкод : 2015PhRvL.114t1101C . doi : 10.1103/PhysRevLett.114.201101 . ПМИД 26047217 . S2CID 7129585 .
- ^ Модесто, Леонардо (2011). «Сверхперенормируемая квантовая гравитация». Физический обзор D . 86 (4): 044005. arXiv : 1107.2403 . Бибкод : 2012PhRvD..86d4005M . дои : 10.1103/PhysRevD.86.044005 . S2CID 119310607 .
- ^ Ли, Яо-Дун; Модесто, Леонардо; Рахвал, Леслав (2015). «Точные решения и особенности пространства-времени в нелокальной гравитации». Журнал физики высоких энергий . 2015 (12): 1–50. arXiv : 1506.08619 . Бибкод : 2015JHEP...12..173L . дои : 10.1007/JHEP12(2015)173 . S2CID 117760918 .
- ^ Бэмби, Козимо; Модесто, Леонардо; Рахвал, Леслав (2017). «Пространственно-временная полнота неособых черных дыр в конформной гравитации». Журнал космологии и физики астрочастиц . 2017 (5): 003. arXiv : 1611.00865 . Бибкод : 2017JCAP...05..003B . дои : 10.1088/1475-7516/2017/05/003 . S2CID 119321606 .
- ^ Модесто, Леонардо; Рахвал, Леслав (2014). «Сверхперенормируемая и конечная теория гравитации». Ядерная физика Б . 889 : 228–248. arXiv : 1407.8036 . Бибкод : 2014НуФБ.889..228М . дои : 10.1016/j.nuclphysb.2014.10.015 . S2CID 119146778 .
- ^ Модесто, Леонардо; Рахвал, Леслав (2015). «Универсально конечная гравитационная и калибровочная теории». Ядерная физика Б . 900 : 147–169. arXiv : 1503.00261 . Бибкод : 2015НуФБ.900..147М . doi : 10.1016/j.nuclphysb.2015.09.006 . S2CID 119282730 .
- ^ Кальканьи, Джанлука; Модесто, Леонардо; Николини, Пьеро (2014). «Сверхускоряющаяся прыгающая космология в асимптотически свободной нелокальной гравитации». Европейский физический журнал C . 74 (8): 2999. arXiv : 1306.5332 . Бибкод : 2014EPJC...74.2999C . doi : 10.1140/epjc/s10052-014-2999-8 . S2CID 254107755 .
- ^ Кальканьи, Джанлука; Нарделли, Джузеппе (2010). «Нелокальная гравитация и уравнение диффузии». Физический обзор D . 82 (12): 123518. arXiv : 1004.5144 . Бибкод : 2010PhRvD..82l3518C . дои : 10.1103/PhysRevD.82.123518 . S2CID 54087795 .
- ^ Эдхольм, Джеймс (28 августа 2018 г.). «Гравитационное излучение в гравитации с бесконечной производной и связь с эффективной квантовой гравитацией». Физический обзор D . 98 (4): 044049. arXiv : 1806.00845 . Бибкод : 2018PhRvD..98d4049E . дои : 10.1103/PhysRevD.98.044049 . S2CID 52837779 .
- ^ Талаганис, Спиридон; Теймури, Али (22 мая 2017 г.). «Гамильтонов анализ бесконечных производных теорий поля и гравитации». arXiv : 1701.01009 [ геп-й ].
- ^ Кошелев А.С.; Вернов С. Ю (1 сентября 2012 г.). «О подпрыгивающих решениях в нелокальной гравитации». Физика частиц и ядер . 43 (5): 666–668. arXiv : 1202.1289 . Бибкод : 2012ППН....43..666К . дои : 10.1134/S106377961205019X . S2CID 119152817 .
- ^ Кошелев А.С.; Вернов, С. Ю (2012). «О подпрыгивающих решениях в нелокальной гравитации». Физика частиц и ядер . 43 (5): 666–668. arXiv : 1202.1289 . Бибкод : 2012ППН....43..666К . дои : 10.1134/S106377961205019X . S2CID 119152817 .
- ^ Эдхольм, Джеймс (2018). «Условия расфокусировки вокруг более общих показателей в бесконечной производной гравитации». Физический обзор D . 97 (8): 084046. arXiv : 1802.09063 . Бибкод : 2018PhRvD..97h4046E . дои : 10.1103/PhysRevD.97.084046 . S2CID 119449377 .
- ^ Бисвас, Тиртхабир; Койвисто, Томи; Мазумдар, Анупам (3 февраля 2013 г.). «Нелокальные теории гравитации: распространитель плоского пространства». arXiv : 1302.0532 [ gr-qc ].
- ^ Конрой, Айндриу; Кошелев Алексей С; Мазумдар, Анупам (2017). «Дефокусировка нулевых лучей в бесконечной производной гравитации». Журнал космологии и физики астрочастиц . 2017 (1): 017. arXiv : 1605.02080 . Бибкод : 2017JCAP...01..017C . дои : 10.1088/1475-7516/2017/01/017 . S2CID 115136697 .
- ^ Эдхольм, Джеймс; Конрой, Айндриу (2017). «Ньютоновский потенциал и геодезическая полнота в бесконечной производной гравитации». Физический обзор D . 96 (4): 044012. arXiv : 1705.02382 . Бибкод : 2017PhRvD..96d4012E . дои : 10.1103/PhysRevD.96.044012 . S2CID 45816145 .
- ^ Кальканьи, Джанлука; Модесто, Леонардо (4 июля 2017 г.). «Устойчивость особенности Шварцшильда в нелокальной гравитации». Буквы по физике Б. 773 : 596–600. arXiv : 1707.01119 . Бибкод : 2017PhLB..773..596C . дои : 10.1016/j.physletb.2017.09.018 . S2CID 119020924 .
- ^ Мён, Юн Су; Пак, Ён-Джай (2018). «Проблемы устойчивости черной дыры в нелокальной гравитации» . Буквы по физике Б. 779 : 342–347. arXiv : 1711.06411 . Бибкод : 2018PhLB..779..342M . дои : 10.1016/j.physletb.2018.02.023 . S2CID 54665676 .