Jump to content

Техниколор (физика)

(Перенаправлено с Techniquark )

Теории разноцветного цвета — это физические модели, выходящие за рамки Стандартной модели , которые рассматривают нарушение электрослабой калибровочной симметрии — механизм, посредством которого W- и Z-бозоны приобретают массу. Ранние теории техноцвета были смоделированы на основе квантовой хромодинамики (КХД), «цветовой» теории сильного ядерного взаимодействия , которая и вдохновила их название.

Вместо введения элементарных бозонов Хиггса для объяснения наблюдаемых явлений были введены цветные модели для динамического генерирования масс W- и Z-бозонов посредством новых калибровочных взаимодействий . Хотя эти взаимодействия асимптотически свободны при очень высоких энергиях, они должны стать сильными и ограничивающими (и, следовательно, ненаблюдаемыми) при более низких энергиях, что было исследовано экспериментально. Этот динамический подход является естественным и позволяет избежать проблем квантовой тривиальности и проблемы иерархии Стандартной модели.

Однако после открытия бозона Хиггса в ЦЕРН БАК в 2012 году, оригинальные модели в значительной степени исключены. Тем не менее, остается вероятность того, что бозон Хиггса представляет собой составное состояние. [1]

Чтобы создать массы кварков и лептонов , цветные или составные модели Хиггса должны быть «расширены» дополнительными калибровочными взаимодействиями. В частности, при моделировании КХД расширенный технический цвет столкнулся с проблемой экспериментальных ограничений на нейтральный ток, изменяющий аромат , и прецизионные электрослабые измерения . Конкретные расширения динамики частиц для техноцвета. или составные бозоны Хиггса неизвестны.

Многие цветные исследования сосредоточены на изучении сильно взаимодействующих калибровочных теорий, отличных от КХД, чтобы избежать некоторых из этих проблем. Особенно активным каркасом является «ходячий» техноцвет, который демонстрирует почти конформное поведение, вызванное инфракрасной фиксированной точкой с силой чуть выше той, которая необходима для спонтанного нарушения киральной симметрии . Может ли блуждание произойти и привести к согласию с прецизионными электрослабыми измерениями, изучается посредством непертурбативного моделирования на решетке . [2]

Эксперименты на Большом адронном коллайдере открыли механизм, ответственный за нарушение электрослабой симметрии, — бозон Хиггса с массой около 125 ГэВ/ с. 2 ; [3] [4] [5] такая частица в целом не предсказывается цветными моделями. Однако,Бозон Хиггса может быть составным состоянием, например состоящим из топ- и антитоп-кварков.как в теории Бардина-Хилла-Линднера. [6] Композитные модели Хиггса обычно решаются с помощью инфракрасной фиксированной точки топ-кварка .и может потребоваться новая динамика при чрезвычайно высоких энергиях, таких как topcolor .

Введение

[ редактировать ]

Механизм нарушения электрослабой калибровочной симметрии в Стандартной модели взаимодействий элементарных частиц остается неизвестным. Нарушение должно быть спонтанным , а это означает, что основная теория точно демонстрирует симметрию (поля калибровочных бозонов безмассовы в уравнениях движения), а решения (основное состояние и возбужденные состояния) — нет. В частности, физические W и Z калибровочные бозоны становятся массивными. Это явление, при котором W- и Z- бозоны также приобретают дополнительное состояние поляризации, называется «механизмом Хиггса». Несмотря на точное согласие электрослабой теории с экспериментом при доступных на данный момент энергиях, необходимые ингредиенты нарушения симметрии остаются скрытыми, и их еще предстоит обнаружить при более высоких энергиях.

Простейший механизм нарушения электрослабой симметрии вводит одно комплексное поле и предсказывает существование бозона Хиггса . Обычно бозон Хиггса является «неестественным» в том смысле, что квантово-механические флуктуации производят поправки к его массе, которые поднимают его до таких высоких значений, что он не может играть ту роль, ради которой был введен. Если Стандартная модель не дает сбоев при энергиях менее нескольких ТэВ, массу Хиггса можно сохранить малой только за счет тонкой настройки параметров.

Technicolor позволяет избежать этой проблемы, выдвигая гипотезу о новом калибровочном взаимодействии, связанном с новыми безмассовыми фермионами. Это взаимодействие является асимптотически свободным при очень высоких энергиях и становится сильным и ограничивающим при уменьшении энергии до электрослабого масштаба 246 ГэВ. Эти сильные силы спонтанно нарушают киральную симметрию безмассовых фермионов, некоторые из которых слабо калибруются как часть Стандартной модели. Это динамическая версия механизма Хиггса. Таким образом, электрослабая калибровочная симметрия нарушается, создавая массы для W- и Z-бозонов.

Новое сильное взаимодействие приводит к появлению множества новых составных короткоживущих частиц с энергиями, доступными на Большом адронном коллайдере (БАК). Эта схема естественна, поскольку в ней нет элементарных бозонов Хиггса и, следовательно, нет точной настройки параметров. Массы кварков и лептонов также нарушают электрослабую калибровочную симметрию, поэтому они тоже должны возникать спонтанно. Механизм включения этой функции известен как расширенный технический цвет. Technicolor и расширенный Technicolor сталкиваются с рядом феноменологических проблем, в частности, с проблемами нейтральных токов, изменяющих аромат , прецизионными электрослабыми тестами и массой высшего кварка . Модели Technicolor также в целом не предсказывают бозоны Хиггса с энергией 125 ГэВ/ с. 2 ; такая частица была обнаружена в ходе экспериментов на Большом адронном коллайдере в 2012 году. [3] [4] [5] Некоторые из этих проблем можно решить с помощью класса теорий, известных как «ходячий техноцвет».

Ранний техниколор

[ редактировать ]

Technicolor — это название, данное теории электрослабого нарушения симметрии новыми сильными калибровочными взаимодействиями, характерный энергетический масштаб которых Λ TC является самим слабым масштабом, Λ TC F EW ≡ 246 ГэВ . Руководящим принципом техколора является «естественность»: основные физические явления не должны требовать точной настройки параметров описывающего их лагранжиана. То, что представляет собой тонкая настройка, в некоторой степени является субъективным вопросом, но теория с элементарными скалярными частицами обычно настроена очень точно (если только она не является суперсимметричной ). Квадратичная дивергенция массы скаляра требует корректировки части , где M bare — граница теории, энергетический масштаб, на котором теория изменяется каким-то существенным образом. В стандартной электрослабой модели с М гол ~ 10 15 ГэВ (шкала масс Великого объединения), а при бозона Хиггса массе Mphysical 10 = 100–500 ГэВ масса настроена по крайней мере на часть из 25 .

Напротив, естественная теория нарушения электрослабой симметрии представляет собой асимптотически свободную калибровочную теорию с фермионами в качестве единственных полей материи. цветовая группа G TC Часто предполагается, что равна SU( N TC ). По аналогии с квантовой хромодинамикой (КХД) предполагается, что существует один или несколько дублетов безмассовых дираковских «технифермионов», векторно преобразующихся под одним и тем же комплексным представлением G TC , . Таким образом, существует киральная симметрия этих фермионов, например, SU( N f ) L ⊗ SU( N f ) R , если все они преобразуются согласно одному и тому же комплексному представлению G TC . Продолжая аналогию с КХД, бегущая калибровочная связь α TC ( μ ) вызывает спонтанное нарушение киральной симметрии, технифермионы приобретают динамическую массу, и в результате образуется ряд безмассовых голдстоуновских бозонов . Если технифермионы преобразуются под действием [SU(2) ⊗ U(1)] EW в виде левых дублетов и правых синглетов, три линейные комбинации этих голдстоуновских бозонов соединяются с тремя электрослабыми калибровочными токами.

В 1973 году Джекив и Джонсон [7] и Корнуолл и Нортон [8] изучил возможность того, что (невекторное) калибровочное взаимодействие фермионов может разорваться; т. е. достаточно силен, чтобы образовать бозон Голдстоуна, связанный с калибровочным током. Используя абелевы калибровочные модели, они показали, что, если такой голдстоуновский бозон образуется, он «съедается» механизмом Хиггса, становясь продольным компонентом теперь уже массивного калибровочного бозона. Технически функция поляризации Π ( p 2 ), появляющийся в пропагаторе калибровочного бозона,

развивает полюс в точке p 2 = 0 с остатком F 2 , квадрат константы распада бозона Голдстоуна, а калибровочный бозон приобретает массу M g F . В 1973 году Вайнштейн [9] показал, что составные бозоны Голдстоуна, составляющие фермионы которых преобразуются «стандартным» образом под действием SU(2) ⊗ U(1), порождают массы слабых бозонов

Это соотношение стандартной модели достигается с помощью элементарных бозонов Хиггса в электрослабых дублетах; экспериментально подтверждено с точностью лучше 1%. Здесь g и g — калибровочные связи SU(2) и U(1), а определяет слабый угол смешивания.

Важная идея о новом сильном калибровочном взаимодействии безмассовых фермионов на электрослабом масштабе F EW, приводящем к спонтанному нарушению его глобальной киральной симметрии, в которой подгруппа SU(2) ⊗ U(1) является слабокалиброванной, была впервые предложена в 1979 году. от Вайнберга . [10] [11] [12] Этот «технический» механизм естественен тем, что не требует точной настройки параметров.

Расширенный технический цвет

[ редактировать ]

Элементарные бозоны Хиггса выполняют еще одну важную задачу. В Стандартной модели в кварки и лептоны обязательно безмассовые, поскольку под действием SU(2) ⊗ U(1) они преобразуются левые дублеты и правые синглеты. Дублет Хиггса соединяется с этими фермионами. Когда он развивает свое вакуумное математическое ожидание, он передает это электрослабое нарушение кваркам и лептонам, сообщая им наблюдаемые массы. (В общем, фермионы с электрослабым собственным состоянием не являются массовыми собственными состояниями, поэтому этот процесс также вызывает появление матриц смешивания, наблюдаемых в слабых взаимодействиях с заряженным током.)

В техноцвете что-то еще должно порождать массы кварков и лептонов. Единственная естественная возможность, позволяющая избежать введения элементарных скаляров, — это увеличить G TC , чтобы позволить технифермионам связываться с кварками и лептонами. Эта связь индуцируется калибровочными бозонами расширенной группы. Таким образом, картина такова, что существует большая «расширенная многоцветная» (ETC) калибровочная группа G ETC G TC, в которой технифермионы, кварки и лептоны живут в одних и тех же представлениях . На одном или нескольких высоких масштабах Λ ETC , G ETC распадается на G TC , и кварки и лептоны возникают как TC-синглетные фермионы. Когда α TC ( μ ) становится сильным на масштабе Λ TC F EW , фермионный конденсат формы. (Конденсат представляет собой вакуумное математическое ожидание билинейного технифермиона). . Оценка здесь основана на наивном размерном анализе кваркового конденсата в КХД , который, как ожидается, будет верным на порядок величины.) Тогда переходы может происходить через динамическую массу технифермиона за счет испускания и реабсорбции бозонов ETC, массы которых M ETC g ETC Λ ETC намного больше, чем Λ TC . Кварки и лептоны приобретают массы, примерно равные

Здесь, – конденсат технифермионов, перенормированный в масштабе масс бозонов ETC,

где γ m ( µ ) — аномальная размерность технифермионного билинейного в масштабе ц . Вторая оценка в уравнении (2) зависит от предположения, что, как это происходит в КХД, α TC ( µ ) становится слабым недалеко от Λ TC , так что аномальная γ m размерность там маленький. Расширенный технический цвет был представлен в 1979 году Димопулосом и Сасскиндом. [13] и Эйхен и Лейн. [14] Для кварка с массой m q ≈ 1 ГэВ и с Λ TC ≈ 246 ГэВ можно оценить Λ ETC ≈ 15 ТэВ. Следовательно, предполагая, что , M ETC будет как минимум таким же большим.

В дополнение к предложению ETC о массах кварков и лептонов, Эйхтен и Лейн заметили, что размер представлений ETC, необходимых для генерации всех масс кварков и лептонов, предполагает, что будет более одного электрослабого дублета технифермионов. [14] Если это так, то будет больше (спонтанно нарушенных) киральных симметрий и, следовательно, больше бозонов Голдстоуна , чем съедается механизмом Хиггса. Они должны приобрести массу в силу того факта, что дополнительные киральные симметрии также явно нарушаются взаимодействиями стандартной модели и взаимодействиями ETC. Эти «псевдоголдстоуновские бозоны» называются технипионами, π T . Применение теоремы Дашена [15] дает вклад внеземных цивилизаций в их массу

Второе приближение в уравнении (4) предполагает, что . Для F EW Λ TC ≈ 246 ГэВ и Λ ETC ≈ 15 ТэВ этот вклад в M π T составляет около 50 ГэВ. Поскольку взаимодействия ETC порождают и связь технипионов с кварковыми и лептонными парами, можно ожидать, что эти связи будут хиггсовскими; т. е. примерно пропорциональна массам кварков и лептонов. Это означает, что ожидается, что технипионы будут преимущественно распадаться до максимально тяжелых состояний. и пары.

Возможно, наиболее важным ограничением концепции ETC для генерации массы кварков является то, что взаимодействия ETC, вероятно, индуцируют процессы нейтрального тока, изменяющие аромат, такие как µ → e + γ , K L → µ + e и взаимодействия, которые вызывают и смешивание. [14] Причина в том, что алгебра токов внеземных цивилизаций, участвующих в поколение подразумевает и Токи внеземных цивилизаций, которые, если их записать в терминах собственных состояний массы фермионов, не имеют причин сохранять аромат. Самое сильное ограничение связано с требованием, чтобы взаимодействие внеземных цивилизаций было посредником. вклад смешивания меньший, чем в Стандартной модели. Это означает, что эффективная Λ ETC превышает 1000 ТэВ. Фактическое значение Λ ETC может быть несколько уменьшено, если присутствуют коэффициенты угла смешивания, подобные CKM. Если эти взаимодействия нарушают CP, что вполне возможно, ограничением ε -параметра является то, что эффективное Λ ETC > 10 4 ТэВ. Такие огромные масштабы масс ETC подразумевают крошечные массы кварков и лептонов, а вклад ETC в M π T составляет не более нескольких ГэВ, что противоречит LEP поискам π T на Z 0 . [ нужны разъяснения ]

Расширенный техниколор — очень амбициозное предложение, требующее, чтобы массы кварков и лептонов, а также углы смешивания возникали в результате экспериментально доступных взаимодействий. Если бы существовала успешная модель, она не только предсказала бы массы и смешивание кварков и лептонов (и технипионов), но и объяснила бы, почему существует три семейства каждого: именно они вписываются в представления внеземных цивилизаций q , и Т. ​Неудивительно, что построение успешной модели оказалось очень сложной задачей.

Ходячий техниколор

[ редактировать ]

Поскольку массы кварков и лептонов пропорциональны билинейному конденсату технифермионов , деленному на квадрат шкалы масс ETC, их крошечных значений можно избежать, если конденсат превышает оценку слабого α TC в уравнении. (2), .

В 1980-е годы для этого было предложено несколько динамических механизмов. В 1981 году Холдом предположил, что если α TC ( µ ) эволюционирует в нетривиальную неподвижную точку в ультрафиолете, с большой положительной аномальной размерностью γ m для , реалистичные массы кварков и лептонов могут возникнуть при Λ ETC, достаточно большом, чтобы подавить индуцированные ETC смешивание. [16] Однако ни один пример нетривиальной ультрафиолетовой неподвижной точки в четырехмерной калибровочной теории построен не был. В 1985 году Холдом проанализировал теорию техноцвета, в которой «медленно меняющийся» α TC ( μ ). предполагался [17] Его целью было разделить шкалы кирального разрушения и конфайнмента , но он также отметил, что такая теория может улучшить и таким образом позволить поднять шкалу ETC. В 1986 году Акиба и Янагида также рассмотрели возможность увеличения масс кварков и лептонов, просто предположив, что α TC постоянна и сильна на всем пути вплоть до шкалы ETC. [18] В том же году Ямаваки, Бандо и Матумото снова представили ультрафиолетовую фиксированную точку в неасимптотически свободной теории для усиления технифермионного конденсата. [19]

В 1986 году Аппельквист, Карабали и Виджевардхана обсудили увеличение масс фермионов в асимптотически свободной техноцветной теории с медленно текущей или «ходячей» калибровочной связью. [20] Медлительность возникла из-за экранирующего эффекта большого числа технифермионов, при этом анализ проводился с помощью двухпетлевой теории возмущений. В 1987 году Аппельквист и Виджевардхана исследовали этот сценарий ходьбы дальше. [21] Они проанализировали три цикла, отметили, что блуждание может привести к степенному усилению технифермионного конденсата, и оценили результирующие массы кварков, лептонов и технипионов. Усиление конденсата возникает из-за того, что соответствующая масса технифермиона убывает медленно, примерно линейно, в зависимости от масштаба его перенормировки. Это соответствует аномальному размеру конденсата γ m в уравнении (1). (3) приближение к единице (см. ниже). [22]

В 1990-х годах более отчетливо появилась идея о том, что ходьба естественным образом описывается асимптотически свободными калибровочными теориями, в которых в инфракрасном диапазоне доминирует приближенная фиксированная точка. В отличие от спекулятивного предложения фиксированных точек в ультрафиолете, фиксированные точки в инфракрасном диапазоне, как известно, существуют в асимптотически свободных теориях, возникающих в двух петлях бета-функции, при условии, что количество фермионов N f достаточно велико. Это было известно со времен первых двухконтурных вычислений Касвелла в 1974 году. [23] Если N f близок к значению при котором асимптотическая свобода теряется, результирующая инфракрасная неподвижная точка является слабой, параметрического порядка , и надежно доступен в теории возмущений. Этот предел слабой связи был исследован Бэнксом и Заксом в 1982 году. [24]

Связь с неподвижной точкой α IR становится сильнее по мере N f от уменьшения . Ниже некоторого критического значения N fc связь становится достаточно сильной (> αχSB , ) безмассовых технифермионов чтобы спонтанно нарушить киральную симметрию . Поскольку анализ обычно должен выходить за рамки двухпетлевой теории возмущений, определение бегущей связи α TC ( μ ), ее значение в фиксированной точке α IR и сила α χ SB , необходимая для нарушения киральной симметрии, зависят от конкретной принятой схемы перенормировки. . Для ; т.е. для N f чуть ниже N fc эволюция α TC (μ) определяется инфракрасной фиксированной точкой , и она будет развиваться медленно (блуждание) для диапазона импульсов выше шкалы разрушения Λ TC . Чтобы преодолеть -подавление масс кварков первого и второго поколений, участвующих в смешивания, этот диапазон должен простираться почти до их шкалы ETC, т.е. . Коэн и Джорджи утверждали, что γ m = 1 является сигналом спонтанного нарушения киральной симметрии, т. е. что γ m ( α х SB ) = 1. [22] Следовательно, в блуждающего α ТЦ области γ m ≈ 1 и из (2) (2) и (3), массы легких кварков увеличиваются примерно на .

Идея о том, что α TC ( μ ) движется в широком диапазоне импульсов, когда α IR лежит чуть выше α χ SB, была предложена Лейном и Раманой. [25] Они создали явную модель, обсудили последующую ходьбу и использовали ее в обсуждении феноменологии техноцветной ходьбы на адронных коллайдерах. Эту идею довольно подробно развили Аппелквист, Тернинг и Виджевардхана. [26] Объединив пертурбативные вычисления инфракрасной фиксированной точки с аппроксимацией α χ SB на основе уравнения Швингера-Дайсона , они оценили критическое значение N fc и исследовали полученную электрослабую физику. С 1990-х годов большинство дискуссий о цветовой ходьбе ведется в рамках теорий, согласно которым в инфракрасном диапазоне доминирует приблизительная фиксированная точка. Были исследованы различные модели: некоторые с технифермионами в фундаментальном представлении калибровочной группы, а некоторые с использованием более высоких представлений. [27] [28] [29] [30] [31] [32]

Возможность того, что техноцветный конденсат может быть усилен сверх того, что обсуждается в ходячей литературе, также недавно рассматривалась Люти и Окуи под названием «конформный техноцвет». [33] [34] [35] Они предполагают наличие стабильной фиксированной точки в инфракрасном диапазоне, но с очень большими аномальными размерами для оператора. . Еще неизвестно, можно ли это реализовать, например, в классе теорий, изучаемых в настоящее время с использованием решеточных методов.

Масса топ-кварка

[ редактировать ]

Описанное выше усовершенствование шагающего техноцвета может оказаться недостаточным для получения измеренной массы топ-кварка даже для масштаба внеземной цивилизации всего в несколько ТэВ. Однако эту проблему можно было бы решить, если бы эффективная четырехтехнифермионная связь, возникающая в результате обмена калибровочными бозонами ETC, была бы сильной и настроена чуть выше критического значения. [36] Анализ этой возможности сильного ETC представляет собой анализ модели Намбу–Ионы–Лазинио с дополнительным (техническим) калибровочным взаимодействием. Массы технифермионов малы по сравнению с масштабом ETC (порог эффективной теории), но почти постоянны в этом масштабе, что приводит к большой массе топ-кварка. Пока не разработана полностью реалистичная теория внеземных цивилизаций для всех масс кварков, включающая эти идеи. Соответствующее исследование провели Мирански и Ямаваки. [37] Проблема с этим подходом заключается в том, что он предполагает некоторую степень тонкой настройки параметров , что противоречит руководящему принципу естественности цвета.

Большой объем тесно связанных работ, в которых бозон Хиггса представляет собой сложное состояние, состоящее из топ- и антитоп-кварков, представляет собой конденсат топ-кварков . [38] модели верхнего цвета и технические цвета с поддержкой верхних цветов, [39] в которой топ-кварку и другим фермионам третьего поколения приписываются новые сильные взаимодействия.

Техниколор на решетке

[ редактировать ]

Калибровочная теория решетки — это непертурбативный метод, применимый к сильно взаимодействующим многоцветным теориям, позволяющий исследовать первые принципы блуждания и конформной динамики. В 2007 году Каттералл и Саннино использовали решеточную калибровочную теорию для изучения калибровочных теорий SU (2) с двумя разновидностями фермионов Дирака в симметричном представлении: [40] нахождение доказательств конформности, подтвержденных последующими исследованиями. [41]

По состоянию на 2010 год ситуация для калибровочной теории SU (3) с фермионами в фундаментальном представлении не столь однозначна. В 2007 году Аппельквист, Флеминг и Нил сообщили о доказательствах того, что нетривиальная фиксированная инфракрасная точка возникает в таких теориях, когда существует двенадцать ароматов, но не когда их восемь. [42] Хотя некоторые последующие исследования подтвердили эти результаты, другие сообщили о разных выводах, в зависимости от используемых методов решетки, и консенсуса пока нет. [43]

Несколько исследовательских групп проводят дальнейшие исследования решетки, изучающие эти проблемы, а также рассматривающие последствия этих теорий для прецизионных электрослабых измерений . [44]

Яркая феноменология

[ редактировать ]

Любая основа физики за пределами Стандартной модели должна соответствовать точным измерениям электрослабых параметров. Необходимо также изучить его последствия для физики существующих и будущих адронных коллайдеров высоких энергий, а также для темной материи Вселенной.

Прецизионные электрослабые испытания

[ редактировать ]

В 1990 году феноменологические параметры S , T и U были введены Пескиным и Такеучи для количественной оценки вклада в электрослабые радиационные поправки от физики за пределами Стандартной модели. [45] Они имеют простую связь с параметрами электрослабого кирального лагранжиана. [46] [47] Анализ Пескина-Такеучи был основан на общем формализме слабых радиационных поправок, разработанном Кеннеди, Линн, Пескиным и Стюартом: [48] существуют и альтернативные формулировки. [49]

Параметры S , T и U описывают поправки к распространителям электрослабых калибровочных бозонов из физики за пределами Стандартной модели . Их можно записать через функции поляризации электрослабых токов и их спектральное представление следующим образом:

куда включена только новая физика, выходящая за рамки стандартной модели. Величины рассчитываются относительно минимальной Стандартной модели с некоторой выбранной эталонной массой бозона Хиггса , взятой в диапазоне от экспериментальной нижней границы 117 ГэВ до 1000 ГэВ, где ее ширина становится очень большой. [50] Чтобы эти параметры могли описать доминирующие поправки к Стандартной модели, массовый масштаб новой физики должен быть намного больше, чем M W и M Z , а связь кварков и лептонов с новыми частицами должна быть подавлена ​​по сравнению с их связью с калибровочные бозоны. Так обстоит дело с техницветом, поскольку легчайшие технивекторные мезоны ρ T и a T тяжелее 200–300 ГэВ. S - параметр чувствителен ко всей новой физике в масштабе ТэВ, а T является мерой эффектов нарушения слабого изоспина. - параметр U обычно бесполезен; большинство теорий новой физики, включая теории техноцвета, вносят в него незначительный вклад.

S T и W -параметры определяются путем глобальной подгонки к экспериментальным данным, включая Z данные -полюса из LEP в CERN , измерения топ-кварков и - массы в Фермилабе, а также измеренные уровни нарушения атомной четности. Полученные границы этих параметров приведены в «Обзоре свойств частиц». [50] Полагая U = 0, параметры S и T малы и фактически соответствуют нулю:

где центральное значение соответствует массе Хиггса 117 ГэВ, а в скобках указана поправка к центральному значению при увеличении массы Хиггса до 300 ГэВ. Эти значения налагают жесткие ограничения на теории, выходящие за рамки стандартной модели – когда соответствующие поправки могут быть надежно вычислены.

Параметр S , оцененный в КХД -подобных техноцветных теориях, значительно превышает экспериментально разрешенное значение. [45] [49] Вычисления проводились в предположении, что в спектральном интеграле для S преобладают легчайшие ρ T и a T резонансы, или путем масштабирования эффективных лагранжевых параметров из КХД. Однако в «ходячем техноцвете» физика в ТэВном масштабе и за его пределами должна сильно отличаться от физики в теориях, подобных КХД. В частности, в векторных и аксиально-векторных спектральных функциях не могут доминировать только самые нижние резонансы. [51] [52] Неизвестно, вносят ли более высокие энергетические вклады в башню идентифицируемых состояний ρ T и T представляют собой или гладкий континуум. Было высказано предположение, что партнеры ρ T и a T могут быть более вырожденными в теориях ходьбы (приблизительное удвоение четности), уменьшая их вклад в S . [53] Решеточные расчеты проводятся или планируются для проверки этих идей и получения надежных оценок S в теориях ходьбы. [2] [54]

Ограничение на T -параметр создает проблему для генерации массы топ-кварка в рамках ETC. Усиление от ходьбы может позволить соответствующему масштабу ETC достигать нескольких ТэВ. [26] но - поскольку взаимодействия ETC должны быть сильно слабыми изоспиновыми нарушениями, чтобы обеспечить большое массовое расщепление сверху и снизу - вклад в параметр T , [55] а также скорость распада , [56] может быть слишком большим.

Феноменология адронного коллайдера

[ редактировать ]

Ранние исследования обычно предполагали существование только одного электрослабого дублета технифермионов или одного техни-семейства, включающего по одному дублету из цветных триплетов техникварков и цветных синглетных технилептонов (всего четыре электрослабых дублета). [57] [58] Число электрослабых дублетов N D определяет константу распада F, необходимую для создания правильного электрослабого масштаба, поскольку F = F EW N D   = 246 ГэВ N D   . В минимальной однодуплетной модели три голдстоуновских бозона (технипионы, π T ) имеют константу распада F = F EW = 246 ГэВ и поглощаются электрослабыми калибровочными бозонами. Наиболее доступным сигналом коллайдера является производство через аннигиляция в адроном коллайдере со спином один , и их последующий распад на пару продольно поляризованных слабых бозонов и . При ожидаемой массе 1,5–2,0 ТэВ и ширине 300–400 ГэВ такие ρ T было бы трудно обнаружить на БАКе. Односемейная модель имеет большое количество физических технологий, при этом F = F EW 4 = 123 ГэВ. [59] Существует коллекция цветных синглетных и октетных технивекторов соответственно меньшей массы, распадающихся на пары технипионов. T Ожидается , что π распадутся на самые тяжелые пары кварков и лептонов. Несмотря на меньшие массы, ρ T шире, чем в минимальной модели, и фоны π T распадов, вероятно, окажутся непреодолимыми на адронном коллайдере.

Эта картина изменилась с появлением шагающего техноколора. Ходячая калибровочная связь возникает, если α х SB лежит чуть ниже значения фиксированной точки IR α IR , что требует либо большого количества электрослабых дублетов в фундаментальном представлении калибровочной группы, например, либо нескольких дублетов в представлениях TC более высокой размерности. . [27] [60] В последнем случае ограничения на представления ETC обычно подразумевают и другие технифермионы в фундаментальном представлении. [14] [25] В любом случае существуют технипионы π T с константой распада . Это подразумевает так что самые легкие технивекторы, доступные на БАКе – ρ T , ω T , a T I Г Дж ПК = 1 + 1 −− , 0 1 −− , 1 1 ++ ) – имеют массы значительно ниже ТэВ. Класс теорий со многими технифермионами и, следовательно, называется низкомасштабным техноколором. [61]

Второе последствие «цветного блуждания» касается распада технихадронов со спином один. Поскольку технипионные массы (см. уравнение (4)), ходьба усиливает их гораздо больше, чем другие технихадронные массы. Таким образом, весьма вероятно, что легчайшие M ρ T < 2 M π T и что двух- и трехπ T - каналы распада световых технивекторов закрыты. [27] Это далее означает, что эти технивекторы очень узки. Их наиболее вероятные двутельные каналы: , W L W L , γ π Т и γ W L . Связь легчайших технивекторов с W L пропорциональна F F EW . [62] Таким образом, все их скорости распада подавляются степенями или постоянная тонкой структуры, дающая общую ширину от нескольких ГэВ (для ρ T ) до нескольких десятых ГэВ (для ω T и T ).

Более умозрительное последствие цветной ходьбы мотивировано рассмотрением ее вклада в S -параметр. Как отмечалось выше, обычные предположения, сделанные для оценки S TC, недействительны в теории ходьбы. В частности, в спектральных интегралах, используемых для оценки S TC, не могут доминировать только самые нижние ρ T и a T , и, если S TC должно быть небольшим, массы и слаботочные связи ρ T и a T могут быть более равными, чем в КХД.

Низкомасштабная феноменология техноцвета, включая возможность спектра с большей удвоенной четностью, была развита в набор правил и амплитуд затухания. [62] Объявление в апреле 2011 года об избытке пар струй, образовавшихся в связи с W- бозоном, измеренным на Тэватроне. [63] был интерпретирован Эйхтеном, Лейном и Мартином как возможный сигнал технипиона низкомасштабного техноколора. [64]

Общая схема низкомасштабного техноколора теряет смысл, если ограничение на превышает примерно 700 ГэВ. БАК должен быть в состоянии обнаружить это или исключить. Поиски там распадов на технипионы, а затем и на тяжелые кварковые струи, затруднены фонами от производство; его скорость в 100 раз больше, чем у Тэватрона. Следовательно, открытие низкомасштабного техноцвета на БАКе основано на полностью лептонных каналах конечного состояния с благоприятным соотношением сигнала к фону: , и . [65]

Темная материя

[ редактировать ]

Теории ярких цветов естественным образом содержат на темную материю кандидатов . Почти наверняка можно построить модели, в которых самый нижний технибарион, связанное с техницветом синглетное состояние технифермионов, будет достаточно стабильным, чтобы пережить эволюцию Вселенной. [50] [66] [67] [68] [69] Если теория техноцвета является низкомасштабной ( ), масса бариона должна быть не более 1–2 ТэВ. В противном случае это может быть намного тяжелее. Технибарион должен быть электрически нейтральным и удовлетворять ограничениям на его распространенность. Учитывая ограничения на независимые от спина сечения нуклонов темной материи из экспериментов по поиску темной материи ( для масс интересующихся [70] должен быть электрослабым нейтральным (слабый изоспин T 3 ), возможно, он также = 0). Эти соображения позволяют предположить, что на БАКе может быть сложно создать «старых» кандидатов в цветную темную материю.

Другой класс кандидатов в цветную темную материю, достаточно светлый, чтобы быть доступным на БАКе, был представлен Франческо Саннино и его сотрудниками. [71] [72] [73] [74] [75] [76] Эти состояния представляют собой псевдоголдстоуновские бозоны, обладающие глобальным зарядом, который делает их устойчивыми к распаду.

См. также

[ редактировать ]
  1. ^ Знакомство и обзоры техничного цвета и сильной динамики см. в следующем:
    Кристофер Т. Хилл и Элизабет Х. Симмонс (2003). «Сильная динамика и нарушение электрослабой симметрии». Отчеты по физике . 381 (4–6): 235–402. arXiv : hep-ph/0203079 . Бибкод : 2003PhR...381..235H . дои : 10.1016/S0370-1573(03)00140-6 . S2CID   118933166 .
    Кеннет Лейн (2002). Две лекции по цвету . l'Ecole de GIF в LAPP, Анси-ле-Вье, Франция. arXiv : hep-ph/0202255 . Бибкод : 2002hep.ph....2255L .
    Роберт Шрок (2007). «Некоторые недавние результаты по моделям динамического нарушения электрослабой симметрии». У М. Танабаши; М. Харада; К. Ямаваки (ред.). Нагоя, 2006: Происхождение калибровочных теорий массы и сильной связи . Международный семинар по сильно связанным калибровочным теориям. стр. 227–241. arXiv : hep-ph/0703050 . Бибкод : 2008omsc.conf..227S . дои : 10.1142/9789812790750_0023 .
    Адам Мартин (2008). Разноцветные сигналы на БАКе . 46-й курс Международной школы субъядерной физики: предсказанное и совершенно неожиданное на энергетическом фронтире, открытом БАК. arXiv : 0812.1841 . Бибкод : 2008arXiv0812.1841M .
    Франческо Саннино (2009). «Конформная динамика для ТэВной физики и космологии». Акта Физика Полоника . Б40 : 3533–3745. arXiv : 0911.0931 . Бибкод : 2009arXiv0911.0931S .
  2. ^ Перейти обратно: а б Джордж Флеминг (2008). «Сильные взаимодействия для БАКа». Труды науки . РЕШЕТКА 2008: 21. arXiv : 0812.2035 . Бибкод : 2008arXiv0812.2035F .
  3. ^ Перейти обратно: а б «Эксперименты ЦЕРН выявили частицу, соответствующую долгожданному бозону Хиггса» . Пресс-релиз ЦЕРН. 4 июля 2012 года . Проверено 4 июля 2012 г.
  4. ^ Перейти обратно: а б Тейлор, Лукас (4 июля 2012 г.). «Наблюдение новой частицы с массой 125 ГэВ» . Публичный веб-сайт CMS . ЦЕРН.
  5. ^ Перейти обратно: а б «Последние результаты поиска Хиггса ATLAS» . АТЛАС. 4 июля 2012 года. Архивировано из оригинала 7 июля 2012 года . Проверено 4 июля 2012 г.
  6. ^ Уильям А. Бардин; Кристофер Т. Хилл и Манфред Линднер (1990). «Минимальное нарушение динамической симметрии стандартной модели». Физический обзор . Д41 (5): 1647–1660. Бибкод : 1990PhRvD..41.1647B . дои : 10.1103/PhysRevD.41.1647 . ПМИД   10012522 . .
  7. ^ Джекив Р. и Джонсон К. (1973). «Динамическая модель спонтанно нарушенной калибровочной симметрии». Физический обзор . Д8 (8): 2386–2398. Бибкод : 1973PhRvD...8.2386J . дои : 10.1103/PhysRevD.8.2386 .
  8. ^ Корнуолл, Джон М. и Нортон, Ричард Э. (1973). «Спонтанное нарушение симметрии без скалярных мезонов». Физический обзор . Д8 (10): 3338–3346. Бибкод : 1973PhRvD...8.3338C . дои : 10.1103/PhysRevD.8.3338 .
  9. ^ Марвин Вайнштейн (1973). «Сохраняющиеся токи, их коммутаторы и структура симметрии перенормируемых теорий электромагнитных, слабых и сильных взаимодействий». Физический обзор . Д8 (8): 2511–2524. Бибкод : 1973PhRvD...8.2511W . CiteSeerX   10.1.1.412.3345 . дои : 10.1103/PhysRevD.8.2511 .
  10. ^ Вайнберг, Стивен (1976). «Последствия нарушения динамической симметрии». Физический обзор . Д13 (4): 974–996. Бибкод : 1976PhRvD..13..974W . дои : 10.1103/PhysRevD.13.974 .
  11. ^ Вайнберг, С .; Сасскинд, Л. (1979). «Последствия нарушения динамической симметрии: Приложение». Физический обзор . Д19 (4): 1277–1280. Бибкод : 1979PhRvD..19.1277W . дои : 10.1103/PhysRevD.19.1277 .
  12. ^ Сасскинд, Леонард (1979). «Динамика спонтанного нарушения симметрии в теории Вайнберга-Салама». Физический обзор . Д20 (10): 2619–2625. Бибкод : 1979PhRvD..20.2619S . дои : 10.1103/PhysRevD.20.2619 . ОСТИ   1446928 . S2CID   17294645 .
  13. ^ Савас Димопулос и Леонард Сасскинд (1979). «Масса без скаляров». Ядерная физика . Б155 (1): 237–252. Бибкод : 1979НуФБ.155..237Д . дои : 10.1016/0550-3213(79)90364-X .
  14. ^ Перейти обратно: а б с д Эстиа Эйхтен и Кеннет Лейн (1980). «Динамическое нарушение симметрии слабого взаимодействия». Буквы по физике Б. 90 (1–2): 125–130. Бибкод : 1980PhLB...90..125E . дои : 10.1016/0370-2693(80)90065-9 .
  15. ^ Роджер Дашен (1969). «Киральный SU(3)⊗SU(3) как симметрия сильных взаимодействий». Физический обзор . 183 (5): 1245–1260. Бибкод : 1969PhRv..183.1245D . дои : 10.1103/PhysRev.183.1245 .
    Роджер Дашен (1971). «Некоторые особенности нарушения киральной симметрии». Физический обзор . Д3 (8): 1879–1889. Бибкод : 1971PhRvD...3.1879D . doi : 10.1103/PhysRevD.3.1879 .
  16. ^ Холдом, Боб (1981). «Поднятие боковой шкалы». Физический обзор D . 24 (5): 1441–1444. Бибкод : 1981PhRvD..24.1441H . дои : 10.1103/PhysRevD.24.1441 .
  17. ^ Холдом, Боб (1985). «Техниодор». Буквы по физике Б. 150 (4): 301–305. Бибкод : 1985PhLB..150..301H . дои : 10.1016/0370-2693(85)91015-9 .
  18. ^ Акиба Т. и Янагида Т. (1986). «Иерархический киральный конденсат». Буквы по физике Б. 169 (4): 432–435. Бибкод : 1986PhLB..169..432A . дои : 10.1016/0370-2693(86)90385-0 .
  19. ^ Ямаваки, Коичи; Бандо, Масако и Матумото, Кен-ити (1986). «Масштабно-инвариантная гиперцветовая модель и дилатон» Письма о физических отзывах . 56 (13): 1335–1338. Бибкод : 1986PhRvL..56.1335Y . дои : 10.1103/PhysRevLett.56.1335 . ПМИД   10032641 .
  20. ^ Аппелквист, Томас; Карабали, Димитра и Виджевардхана, LCR (1986). «Хиральные иерархии и нейтральные токи, изменяющие вкус, в гиперцвете». Письма о физических отзывах . 57 (8): 957–960. Бибкод : 1986PhRvL..57..957A . doi : 10.1103/PhysRevLett.57.957 . ПМИД   10034209 .
  21. ^ Аппелквист, Томас и Виджевардхана, LCR (1987). «Киральные иерархии медленно действующих связей в цветных теориях». Физический обзор D . 36 (2): 568–580. Бибкод : 1987PhRvD..36..568A . дои : 10.1103/PhysRevD.36.568 . ПМИД   9958201 .
  22. ^ Перейти обратно: а б Коэн, Эндрю и Джорджи, Ховард (1989). «Прогулка за радугой». Ядерная физика Б . 314 (1): 7–24. Бибкод : 1989НуФБ.314....7С . дои : 10.1016/0550-3213(89)90109-0 .
  23. ^ Касвелл, Уильям Э. (1974). «Асимптотика неабелевых калибровочных теорий в двухпетлевом порядке». Письма о физических отзывах . 33 (4): 244–246. Бибкод : 1974PhRvL..33..244C . doi : 10.1103/PhysRevLett.33.244 .
  24. ^ Бэнкс Т. и Закс А. (1982). «О фазовой структуре векторных калибровочных теорий с безмассовыми фермионами». Ядерная физика Б . 196 (2): 189–204. Бибкод : 1982НуФБ.196..189Б . дои : 10.1016/0550-3213(82)90035-9 .
  25. ^ Перейти обратно: а б Лейн, Кеннет и Рамана, MV (1991). «Ходячие разноцветные подписи на адронных коллайдерах». Физический обзор D . 44 (9): 2678–2700. Бибкод : 1991PhRvD..44.2678L . дои : 10.1103/PhysRevD.44.2678 . ПМИД   10014158 .
  26. ^ Перейти обратно: а б Аппелквист, Томас; Тернинг, Джон и Виджевардхана, LCR (1997). «Постмодернистский Техниколор». Письма о физических отзывах . 79 (15): 2767–2770. arXiv : hep-ph/9706238 . Бибкод : 1997PhRvL..79.2767A . doi : 10.1103/PhysRevLett.79.2767 . S2CID   14292948 .
  27. ^ Перейти обратно: а б с Лейн, Кеннет и Эйхтен, Эстиа (1989). «Двухгаммный техниколор». Буквы по физике Б. 222 (2): 274–280. Бибкод : 1989PhLB..222..274L . дои : 10.1016/0370-2693(89)91265-3 .
  28. ^ Саннино, Франческо и Туоминен, Киммо (2005). «Динамика теории ориентифолда и нарушение симметрии». Физический обзор D . 71 (5): 051901. arXiv : hep-ph/0405209 . Бибкод : 2005PhRvD..71e1901S . doi : 10.1103/PhysRevD.71.051901 . S2CID   119388493 .
  29. ^ Дитрих, Деннис Д.; Саннино, Франческо и Туоминен, Киммо (2005). «Легкий составной бозон Хиггса из более высоких представлений в сравнении с электрослабыми прецизионными измерениями: прогнозы для LHC в ЦЕРН». Физический обзор D . 72 (5): 055001. arXiv : hep-ph/0505059 . Бибкод : 2005PhRvD..72e5001D . doi : 10.1103/PhysRevD.72.055001 . S2CID   117871614 .
    Дитрих, Деннис Д.; Саннино, Франческо и Туоминен, Киммо (2006). «Свет композитного бозона Хиггса и прецизионные электрослабые измерения Z-резонанса: обновленная информация». Физический обзор D . 73 (3): 037701. arXiv : hep-ph/0510217 . Бибкод : 2006PhRvD..73c7701D . дои : 10.1103/PhysRevD.73.037701 . S2CID   119377085 .
  30. ^ Дитрих, Деннис Д. и Саннино, Франческо (2007). «Конформное окно калибровочных теорий SU (N) с фермионами в представлениях более высоких размерностей». Физический обзор D . 75 (8): 085018. arXiv : hep-ph/0611341 . Бибкод : 2007PhRvD..75h5018D . doi : 10.1103/PhysRevD.75.085018 . S2CID   122605099 .
  31. ^ Рыттов, Томас А. и Саннино, Франческо (2007). «Конформные окна калибровочных теорий SU (N), представления более высоких размерностей и размер мира нечастиц». Физический обзор D . 76 (10): 105004. arXiv : 0707.3166 . Бибкод : 2007PhRvD..76j5004R . дои : 10.1103/PhysRevD.76.105004 . S2CID   119152612 .
  32. ^ Томас А. Риттов и Франческо Саннино (2008). «Бета-функция КХД, вдохновленная суперсимметрией». Физический обзор D . 78 (6): 065001. arXiv : 0711.3745 . Бибкод : 2008PhRvD..78f5001R . doi : 10.1103/PhysRevD.78.065001 . S2CID   17535403 .
  33. ^ Люти, Маркус А. и Окуи, Такемичи (2006). «Конформный техниколор». Журнал физики высоких энергий . 0609 (9): 070. arXiv : hep-ph/0409274 . Бибкод : 2006JHEP...09..070L . дои : 10.1088/1126-6708/2006/09/070 . S2CID   14173746 .
  34. ^ Люти, Маркус А. (2009). «Сильная конформная динамика на БАК и на решетке». Журнал физики высоких энергий . 0904 (4): 050. arXiv : 0806.1235 . Бибкод : 2009JHEP...04..050L . дои : 10.1088/1126-6708/2009/04/050 . S2CID   9846381 .
  35. ^ Эванс, Джаред А.; Галлоуэй, Джеймисон; Люти, Маркус А. и Такки, Руджеро Альтаир (2010). «Минимально-конформные техноцветные и прецизионные электрослабые испытания». Журнал физики высоких энергий . 1010 (10): 086. arXiv : 1001.1361 . Бибкод : 2010JHEP...10..086E . дои : 10.1007/JHEP10(2010)086 . S2CID   118637173 .
  36. ^ Аппельквист, Томас; Такеучи, Т.; Эйнхорн, Мартин и Виджевардхана, LCR (1989). «Высшие массовые масштабы и массовые иерархии» (PDF) . Письма по физике . Б220 (1–2): 223–228. Бибкод : 1989PhLB..220..223A . дои : 10.1016/0370-2693(89)90041-5 . hdl : 2027.42/28007 .
  37. ^ Миранский, В.А. и Ямаваки, К. (1989). «О калибровочных теориях с дополнительным четырехфермионным взаимодействием». Буквы по современной физике А. 4 (2): 129–135. Бибкод : 1989МПЛА....4..129М . дои : 10.1142/S0217732389000186 .
  38. ^ Намбу, Ю. (1989). «Механизм БКШ, квазисуперсимметрия и фермионные массы». В Адждуке, З.; Покорский, С.; Траутман, А. (ред.). Материалы конференции Казимира 1988 года по новым теориям в физике . XI Международный симпозиум по физике элементарных частиц. стр. 406–415.
    Миранский, В.А.; Танабаси, Масахару и Ямаваки, Коичи (1989). «Отвечает ли t-кварк за массу W- и Z-бозонов?». Буквы по современной физике А. 4 (11): 1043–1053. Бибкод : 1989МПЛА....4.1043М . дои : 10.1142/S0217732389001210 .
    Миранский, В.А.; Танабаси, Масахару и Ямаваки, Коичи (1989). «Динамическое нарушение электрослабой симметрии с большой аномальной размерностью и конденсатом t-кварков». Буквы по физике Б. 221 (2): 177–183. Бибкод : 1989PhLB..221..177M . дои : 10.1016/0370-2693(89)91494-9 .
    Бардин, Уильям А.; Хилл, Кристофер Т. и Линднер, Манфред (1990). «Минимальное нарушение динамической симметрии стандартной модели». Физический обзор D . 41 (5): 1647–1660. Бибкод : 1990PhRvD..41.1647B . дои : 10.1103/PhysRevD.41.1647 . ПМИД   10012522 .
  39. ^ Хилл, Кристофер Т. (1991). «Topcolor: конденсация топ-кварков в расширении стандартной модели». Буквы по физике Б. 266 (3–4): 419–424. Бибкод : 1991PhLB..266..419H . дои : 10.1016/0370-2693(91)91061-Y . S2CID   121635635 .
    Хилл, Кристофер Т. (1995). «Технический цвет с использованием Topcolor». Буквы по физике Б. 345 (4): 483–489. arXiv : hep-ph/9411426 . Бибкод : 1995PhLB..345..483H . дои : 10.1016/0370-2693(94)01660-5 . S2CID   15093335 .
  40. ^ Саймон Каттералл и Франческо Саннино (2007). «Минимальная ходьба по решетке». Физический обзор . D76 (3): 034504. arXiv : 0705.1664 . Бибкод : 2007PhRvD..76c4504C . дои : 10.1103/PhysRevD.76.034504 . S2CID   358936 .
  41. ^ Саймон Каттералл; Джоэл Гидт; Франческо Саннино и Джо Шнайбл (2008). «Фазовая диаграмма SU (2) с двумя ароматами динамически сопряженных кварков». Журнал физики высоких энергий . 0811 (11): 009. arXiv : 0807.0792 . Бибкод : 2008JHEP...11..009C . дои : 10.1088/1126-6708/2008/11/009 . S2CID   16246998 .
    Ари Дж. Хиетанен; Кари Руммукайнен и Киммо Туоминен (2009). «Эволюция константы связи в калибровочной теории решетки SU (2) с двумя присоединенными фермионами». Физический обзор . D80 (9): 094504.arXiv : 0904.0864 . Бибкод : 2009PhRvD..80i4504H . doi : 10.1103/PhysRevD.80.094504 . S2CID   119297303 .
  42. ^ Томас Аппелквист; Джордж Т. Флеминг и Итан Т. Нил (2008). «Решётчатое исследование конформного окна в теориях, подобных КХД». Письма о физических отзывах . 100 (17): 171607. arXiv : 0712.0609 . Бибкод : 2008PhRvL.100q1607A . doi : 10.1103/PhysRevLett.100.171607 . ПМИД   18518277 . S2CID   32180869 .
  43. ^ Альберт Дойземан; Мария Паола Ломбардо и Элизабетта Палланте (2008). «Физика восьми вкусов». Письма по физике . Б670 (1): 41–48. arXiv : 0804.2905 . Бибкод : 2008PhLB..670...41D . дои : 10.1016/j.physletb.2008.10.039 . S2CID   14791603 .
    Томас Аппелквист; Джордж Т. Флеминг и Итан Т. Нил (2009). «Решечное исследование конформного поведения в SU (3) теориях Янга-Миллса». Физический обзор . D79 (7): 076010. arXiv : 0901.3766 . Бибкод : 2009PhRvD..79g6010A . doi : 10.1103/PhysRevD.79.076010 . S2CID   119190610 .
    Эрек Билгичи; и др. (2009). «Новая схема бегущей константы связи в калибровочных теориях с использованием петель Вильсона». Физический обзор . D80 (3): 034507.arXiv : 0902.3768 . Бибкод : 2009PhRvD..80c4507B . дои : 10.1103/PhysRevD.80.034507 . S2CID   119306998 .
    Сяо-Ён Цзинь и Роберт Д. Мохинни (2009). «Решётчатая КХД с 8 и 12 вырожденными ароматами кварков» (PDF) . Труды науки . LAT2009: 049.arXiv : 0910.3216 . Бибкод : 2009slft.confE..49J . дои : 10.22323/1.091.0049 . S2CID   115941621 .
    Золтан Фодор; Киран Холланд; Юлий Кути; Дэниел Ногради; и др. (2009). «Нарушение киральной симметрии в почти конформных калибровочных теориях» (PDF) . Труды науки . LAT2009: 058.arXiv : 0911.2463 . Бибкод : 2009arXiv0911.2463F .
    Анна Хазенфрац (2010). «Конформные или ходячие? Исследования группы перенормировки Монте-Карло калибровочных моделей SU (3) с фундаментальными фермионами». Физический обзор . D82 (1): 014506.arXiv : 1004.1004 . Бибкод : 2010PhRvD..82a4506H . дои : 10.1103/PhysRevD.82.014506 . S2CID   118609076 .
  44. ^ Томас ДеГранд; Игаль Шамир и Бенджамин Светицкий (2009). «Фазовая структура калибровочной теории SU (3) с двумя разновидностями фермионов симметричного представления». Физический обзор . D79 (3): 034501. arXiv : 0812.1427 . Бибкод : 2009PhRvD..79c4501D . дои : 10.1103/PhysRevD.79.034501 . S2CID   17730114 .
    Томас Аппелквист; и др. (2010). «К ТЭВ-конформности». Письма о физических отзывах . 104 (7): 071601. arXiv : 0910.2224 . Бибкод : 2010PhRvL.104g1601A . doi : 10.1103/PhysRevLett.104.071601 . ПМИД   20366870 . S2CID   20474941 .
  45. ^ Перейти обратно: а б Майкл Э. Пескин и Тацу Такеучи (1990). «Новое ограничение на сильно взаимодействующий сектор Хиггса». Письма о физических отзывах . 65 (8): 964–967. Бибкод : 1990PhRvL..65..964P . дои : 10.1103/PhysRevLett.65.964 . ОСТИ   1449235 . ПМИД   10043071 .
    Майкл Э. Пескин и Тацу Такеучи (1992). «Оценка косых электрослабых поправок». Физический обзор D . 46 (1): 381–409. Бибкод : 1992PhRvD..46..381P . CiteSeerX   10.1.1.382.2460 . дои : 10.1103/PhysRevD.46.381 . ПМИД   10014770 .
  46. ^ Томас Аппельквист и Клод Бернар (1980). «Сильно взаимодействующие бозоны Хиггса». Физический обзор . Д22 (1): 200–213. Бибкод : 1980PhRvD..22..200A . дои : 10.1103/PhysRevD.22.200 .
  47. ^ Энтони К. Лонгитано (1980). «Тяжелые бозоны Хиггса в модели Вайнберга-Салама». Физический обзор D . 22 (5): 1166–1175. Бибкод : 1980PhRvD..22.1166L . дои : 10.1103/PhysRevD.22.1166 .
    Энтони К. Лонгитано (1981). «Низкоэнергетическое воздействие сектора тяжелого бозона Хиггса». Ядерная физика Б . 188 (1): 118–154. Бибкод : 1981НуФБ.188..118Л . дои : 10.1016/0550-3213(81)90109-7 .
  48. ^ Б.В. Линн; Майкл Эдвард Пескин и Р.Г. Стюарт (1985) [10–12 июня 1985 г.]. «Радиационные поправки в SU(2) × U(1): LEP/SLC». В Брайане В. Линне и Клаудио Верзенасси (ред.). Проверка электрослабых теорий: поляризованные процессы и другие явления . Вторая конференция по проверке электрослабых теорий. Триест, Италия. п. 213.
    Округ Колумбия Кеннеди и Б.В. Линн (1989). «Электрослабые радиационные поправки с эффективным лагранжианом: четырехфермионные процессы». Ядерная физика Б . 322 (1): 1–54. Бибкод : 1989НуФБ.322....1К . дои : 10.1016/0550-3213(89)90483-5 .
  49. ^ Перейти обратно: а б Митчелл Голден и Лиза Рэндалл (1991). «Радиационные поправки к электрослабым параметрам в цветных теориях». Ядерная физика Б . 361 (1): 3–23. Бибкод : 1991NuPhB.361....3G . дои : 10.1016/0550-3213(91)90614-4 . ОСТИ   1879518 .
    Б. Холдом и Дж. Тернинг (1990). «Большие поправки к электрослабым параметрам в цветных теориях». Буквы по физике Б. 247 (1): 88–92. Бибкод : 1990PhLB..247...88H . дои : 10.1016/0370-2693(90)91054-F .
    Дж. Альтарелли; Р. Барбьери и С. Ядах (1992). «На пути к независимому от модели анализу электрослабых данных» . Ядерная физика Б . 369 (1–2): 3–32. Бибкод : 1992НуФБ.369....3А . дои : 10.1016/0550-3213(92)90376-М .
  50. ^ Перейти обратно: а б с Группа данных о частицах (К. Амслер и др. ) (2008). «Обзор физики элементарных частиц» . Буквы по физике Б. 667 (1–5): 1. Бибкод : 2008PhLB..667....1A . дои : 10.1016/j.physletb.2008.07.018 . hdl : 1854/LU-685594 . S2CID   227119789 .
  51. ^ Кеннет Лейн (1994) [6 июня - 2 июля 1993 г.]. «Введение в технический цвет». В КТ Махантаппа (ред.). Боулдер, 1993 г. Труды: строительные блоки творения . Институт перспективных теоретических исследований (TASI 93) по физике элементарных частиц: строительные блоки творения - от микроферми до мегапарсеков. Боулдер, Колорадо. стр. 381–408. arXiv : hep-ph/9401324 . Бибкод : 1994bbc..conf..381L . дои : 10.1142/9789814503785_0010 .
  52. ^ Кеннет Лейн (1995) [20–27 июля 1994 г.]. «Техниколор и прецизионные испытания электрослабых взаимодействий». В Пи Джей Басси; И. Г. Ноулз (ред.). Физика высоких энергий: Труды . 27-я Международная конференция по физике высоких энергий (ИЧЭП). Том. II. Глазго, Шотландия. п. 543. arXiv : hep-ph/9409304 . Бибкод : 1995hep..conf..543L .
  53. ^ Томас Аппелквист и Франческо Саннино (1999). «Физический спектр конформных SU(N) калибровочных теорий». Физический обзор D . 59 (6): 067702. arXiv : hep-ph/9806409 . Бибкод : 1999PhRvD..59f7702A . дои : 10.1103/PhysRevD.59.067702 . S2CID   14365571 .
    Йоханнес Хирн и Вероника Санс (2006). «Отрицательный параметр S от Holographic Technicolor». Письма о физических отзывах . 97 (12): 121803. arXiv : hep-ph/0606086 . Бибкод : 2006PhRvL..97l1803H . doi : 10.1103/PhysRevLett.97.121803 . ПМИД   17025952 . S2CID   25483021 .
    Р. Казальбуони; Д. Доминичи; А. Деандреа; Р. Гатто; и др. (1996). «Малоэнергетический сильный электрослабый сектор с развязкой». Физический обзор D . 53 (9): 5201–5221. arXiv : hep-ph/9510431 . Бибкод : 1996PhRvD..53.5201C . дои : 10.1103/PhysRevD.53.5201 . ПМИД   10020517 . S2CID   16253919 .
  54. ^ «Сотрудничество в области сильной динамики решетки» . Йельский университет.
  55. ^ Томас Аппелквист; Марк Дж. Боуик; Юджин Колер и Ави И. Хаузер (1985). «Нарушение изоспиновой симметрии в теориях с динамическим механизмом Хиггса». Физический обзор D . 31 (7): 1676–1684. Бибкод : 1985PhRvD..31.1676A . дои : 10.1103/PhysRevD.31.1676 . ПМИД   9955884 .
    Р.С. Чивукула; Б. А. Добреску и Дж. Тернинг (1995). «Нарушение изоспина и точная настройка в технике цветов с использованием верхних цветов». Буквы по физике Б. 353 (2–3): 289–294. arXiv : hep-ph/9503203 . Бибкод : 1995PhLB..353..289C . дои : 10.1016/0370-2693(95)00569-7 . S2CID   119385932 .
  56. ^ Р. Сехар Чивукула; Стивен Б. Селипски и Элизабет Х. Симмонс (1992). «Ненаклонные эффекты в вершине Zb b из расширенной разноцветной динамики». Письма о физических отзывах . 69 (4): 575–577. arXiv : hep-ph/9204214 . Бибкод : 1992PhRvL..69..575C . дои : 10.1103/PhysRevLett.69.575 . ПМИД   10046976 . S2CID   44375068 .
    Элизабет Х. Симмонс; Р. С. Чивукула и Дж. Тернинг (1996). «Тестирование расширенного технического цвета с помощью R (b)». Приложение «Прогресс теоретической физики» . 123 : 87–96. arXiv : hep-ph/9509392 . Бибкод : 1996ПТПС.123...87С . дои : 10.1143/PTPS.123.87 . S2CID   14420340 .
  57. ^ Э. Эйхтен; И. Хинчлифф; К. Лейн и К. Куигг (1984). «Физика суперколлайдера». Обзоры современной физики . 56 (4): 579–707. Бибкод : 1984РвМП...56..579Е . дои : 10.1103/RevModPhys.56.579 .
  58. ^ Э. Эйхтен; И. Хинчлифф; К. Лейн и К. Куигг (1986). «Ошибка: физика суперколлайдера» . Обзоры современной физики . 58 (4): 1065–1073. Бибкод : 1986RvMP...58.1065E . дои : 10.1103/RevModPhys.58.1065 .
  59. ^ Э. Фархи и Л. Сасскинд (1979). «Теория Великого объединения с ярким цветом». Физический обзор D . 20 (12): 3404–3411. Бибкод : 1979PhRvD..20.3404F . дои : 10.1103/PhysRevD.20.3404 .
  60. ^ Деннис Д. Дитрих; Франческо Саннино и Киммо Туоминен (2005). «Легкий составной бозон Хиггса из более высоких представлений в сравнении с электрослабыми прецизионными измерениями: прогнозы для LHC в ЦЕРН». Физический обзор D . 72 (5): 055001. arXiv : hep-ph/0505059 . Бибкод : 2005PhRvD..72e5001D . doi : 10.1103/PhysRevD.72.055001 . S2CID   117871614 .
  61. ^ Кеннет Лейн и Эстиа Эйхтен (1995). «Технический цвет с натуральным верхним цветом». Буквы по физике Б. 352 (3–4): 382–387. arXiv : hep-ph/9503433 . Бибкод : 1995PhLB..352..382L . дои : 10.1016/0370-2693(95)00482-Z . S2CID   15753846 .
    Эстиа Эйхтен и Кеннет Лейн (1996). «Мелкий техниколор на Тэватроне». Буквы по физике Б. 388 (4): 803–807. arXiv : hep-ph/9607213 . Бибкод : 1996PhLB..388..803E . дои : 10.1016/S0370-2693(96)01211-7 . S2CID   277661 .
    Эстиа Эйхтен; Кеннет Лейн и Джон Уомерсли (1997). «Обнаружение низкомасштабного техноцвета на адронных коллайдерах». Буквы по физике Б. 405 (3–4): 305–311. arXiv : hep-ph/9704455 . Бибкод : 1997PhLB..405..305E . дои : 10.1016/S0370-2693(97)00637-0 . S2CID   8600506 .
  62. ^ Перейти обратно: а б Кеннет Лейн (1999). «Производство и распад техниадронов в мелкомасштабном техниколоре». Физический обзор D . 60 (7): 075007. arXiv : hep-ph/9903369 . Бибкод : 1999PhRvD..60g5007L . doi : 10.1103/PhysRevD.60.075007 . S2CID   2772521 .
    Эстиа Эйхтен и Кеннет Лейн (2008). «Мелкомасштабный техниколор на Тэватроне и БАК». Письма по физике . Б669 (3–4): 235–238. arXiv : 0706.2339 . Бибкод : 2008PhLB..669..235E . дои : 10.1016/j.physletb.2008.09.047 . S2CID   14102461 .
  63. ^ Сотрудничество CDF (Т. Аалтонен и др. ) (2011). «Инвариантное массовое распределение пар струй, возникших в связи с W-бозоном в столкновениях ppbar при sqrt (s) = 1,96 ТэВ». Письма о физических отзывах . 106 (17): 171801. arXiv : 1104.0699 . Бибкод : 2011PhRvL.106q1801A . doi : 10.1103/PhysRevLett.106.171801 . ПМИД   21635027 . S2CID   38531871 .
  64. ^ Эстиа Дж. Эйхтен; Кеннет Лейн и Адам Мартин (2011). «Техниколор на Тэватроне». Письма о физических отзывах . 106 (25): 251803. arXiv : 1104.0976 . Бибкод : 2011PhRvL.106y1803E . doi : 10.1103/PhysRevLett.106.251803 . ПМИД   21770631 . S2CID   119193886 .
  65. ^ Густав Х. Бройманс; Рабочая группа по новой физике (2008) [11–29 июня 2007 г.]. «Новая физика на БАКе: отчет Ле Уша». Ле Уш 2007: Физика на ТэВ-коллайдерах . 5-й семинар по физике в Ле Уше на ТэВных коллайдерах. Лез Уш, Франция. стр. 363–489. arXiv : 0802.3715 . Бибкод : 2008arXiv0802.3715B .
  66. ^ С. Нусинов (1985). «Технокосмология - может ли избыток технибарионов стать «естественным» кандидатом на недостающую массу?». Письма по физике . Б165 (1–3): 55–58. Бибкод : 1985PhLB..165...55N . дои : 10.1016/0370-2693(85)90689-6 .
  67. ^ Р. С. Чивукула и Терри П. Уокер (1990). «Техниколорная космология» . Ядерная физика Б . 329 (2): 445–463. Бибкод : 1990НуФБ.329..445С . дои : 10.1016/0550-3213(90)90151-3 .
  68. ^ Джон Баньяско; Майкл Дайн и Скотт Томас (1994). «Обнаружение технибарионной темной материи». Буквы по физике Б. 320 (1–2): 99–104. arXiv : hep-ph/9310290 . Бибкод : 1994PhLB..320...99B . дои : 10.1016/0370-2693(94)90830-3 . S2CID   569339 .
  69. ^ Свен Бьярке Гуднасон; Крис Куварис и Франческо Саннино (2006). «Темная материя из новых цветных теорий». Физический обзор D . 74 (9): 095008. arXiv : hep-ph/0608055 . Бибкод : 2006PhRvD..74i5008G . doi : 10.1103/PhysRevD.74.095008 . S2CID   119021709 .
  70. ^ МакКинси, Д. (2009). «Прямое обнаружение темной материи с использованием благородных жидкостей» (PDF) . Институт перспективных исследований. [ постоянная мертвая ссылка ] альтернативный: «Семинар по современным тенденциям в области темной материи» . Архивировано из оригинала 15 июня 2011 года.
  71. ^ Свен Бьярке Гуднасон; Крис Куварис и Франческо Саннино (2006). «На пути к рабочему техноцвету: эффективные теории и темная материя». Физический обзор D . 73 (11): 115003. arXiv : hep-ph/0603014 . Бибкод : 2006PhRvD..73k5003G . дои : 10.1103/PhysRevD.73.115003 . S2CID   119333119 .
  72. ^ Свен Бьярке Гуднасон; Крис Куварис и Франческо Саннино (2006). «Темная материя из новых цветных теорий». Физический обзор D . 74 (9): 095008. arXiv : hep-ph/0608055 . Бибкод : 2006PhRvD..74i5008G . doi : 10.1103/PhysRevD.74.095008 . S2CID   119021709 .
  73. ^ Томас А. Риттов и Франческо Саннино (2008). «Ультраминимальный техноцвет и его техноцвет темной материи, взаимодействующие с массивными частицами». Физический обзор D . 78 (11): 115010. arXiv : 0809.0713 . Бибкод : 2008PhRvD..78k5010R . дои : 10.1103/PhysRevD.78.115010 . S2CID   118853550 .
  74. ^ Энрико Нарди; Франческо Саннино и Алессандро Струмия (2009). «Распадающаяся темная материя может объяснить э ± Избытки». Журнал космологии и физики астрочастиц . 0901 (1): 043. arXiv : 0811.4153 . Bibcode : 2009JCAP...01..043N . doi : 10.1088/1475-7516/2009/01/043 . S2CID   15711899 .
  75. ^ Рошан Фоади; Мэдс Т. Франдсен и Франческо Саннино (2009). «Техниколор темной материи». Физический обзор D . 80 (3): 037702. arXiv : 0812.3406 . Бибкод : 2009PhRvD..80c7702F . дои : 10.1103/PhysRevD.80.037702 . S2CID   119111212 .
  76. ^ Мэдс Т. Франдсен и Франческо Саннино (2010). «Изотриплетный технический цвет, взаимодействующий с массивной частицей как темная материя». Физический обзор D . 81 (9): 097704. arXiv : 0911.1570 . Бибкод : 2010PhRvD..81i7704F . дои : 10.1103/PhysRevD.81.097704 . S2CID   118661650 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 78e9dd838ed9e4c825a44e2105a08472__1719152880
URL1:https://arc.ask3.ru/arc/aa/78/72/78e9dd838ed9e4c825a44e2105a08472.html
Заголовок, (Title) документа по адресу, URL1:
Technicolor (physics) - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)