Атлантическое многодесятилетнее колебание
Атлантическое многодесятилетнее колебание ( АМО ), также известное как Атлантическая многодесятилетняя изменчивость ( АМВ ), [1] – это теоретическая изменчивость температуры поверхности моря (ТПМ) в северной части Атлантического океана во временном масштабе нескольких десятилетий. [2]
Несмотря на некоторую поддержку этого режима в моделях и исторических наблюдениях, существуют разногласия относительно его амплитуды и того, имеет ли он типичный временной масштаб и может ли он быть классифицирован как колебание. Ведется также дискуссия о том, можно ли объяснить изменение температуры поверхности моря естественными или антропогенными причинами, особенно в тропических районах Атлантического океана, важных для развития ураганов. [3] Атлантические многодесятилетние колебания также связаны со сдвигами в активности ураганов, характере и интенсивности осадков, а также изменениями в популяциях рыб. [4]
Определение и история
[ редактировать ]Доказательства многодесятилетних климатических колебаний с центром в Северной Атлантике начали появляться в 1980-х годах в работе Фолланда и его коллег, как показано на рис. 2.dA. [5] Это колебание было единственным предметом внимания Шлезингера и Раманкутти в 1994 году. [6] но фактический термин «Атлантическое многодесятилетнее колебание» (AMO) был придуман Майклом Манном в телефонном интервью с Ричардом Керром в 2000 году. [7] как рассказывает Манн, с. 30 в «Хоккейной клюшке и климатических войнах: послания с передовой» (2012).
Сигнал АМО обычно определяется по закономерностям изменчивости ТПМ в Северной Атлантике после удаления любого линейного тренда. влияния парниковыми газами вызванного глобального потепления, Это удаление тренда предназначено для исключения из анализа . Однако если сигнал глобального потепления существенно нелинейен во времени (т.е. это не просто плавное линейное увеличение), изменения вынужденного сигнала будут просачиваться в определение AMO. Следовательно, корреляции с индексом AMO могут маскировать эффекты глобального потепления , по мнению Манна, Штейнмана и Миллера: [8] который также дает более подробную историю развития науки.
Индекс АМО
[ редактировать ]Было предложено несколько методов для устранения глобального тренда и влияния Эль-Ниньо-Южного колебания (ЭНСО) на североатлантическое ТПМ . Тренберт и Ши, предполагая, что эффект глобального воздействия на Северную Атлантику аналогичен эффекту глобального океана, вычли глобальное (60° с.ш.–60° ю.ш.) среднее значение ТПМ из североатлантического ТПМ, чтобы получить пересмотренный индекс АМО. [9]
Тинг и др. однако утверждают, что схема принудительного ТПМ не является единообразной в глобальном масштабе; они разделили вынужденную и внутренне генерируемую изменчивость, используя EOF с максимизацией сигнала к шуму. анализ [3]
Ван Олденборг и др. получил индекс AMO как среднее значение SST над внетропической частью Северной Атлантики (чтобы устранить влияние ЭНСО, которое сильнее в тропической широте) за вычетом регрессии на глобальную среднюю температуру. [10]
Гуан и Нигам исключили нестационарный глобальный тренд и естественную тихоокеанскую изменчивость, прежде чем применить анализ EOF к остаточной ТПМ в Северной Атлантике. [11]
Индекс с линейным удалением тренда предполагает, что аномалия ТПО в Северной Атлантике в конце двадцатого века поровну разделена между компонентом внешнего воздействия и изменчивостью, вызванной внутренними причинами, и что текущий пик аналогичен середине двадцатого века; напротив, другие методологии предполагают, что большая часть аномалий в Северной Атлантике в конце двадцатого века возникла извне. [3]
Фрайка-Вильямс и др. В 2017 году было отмечено, что недавние изменения в охлаждении субполярного круговорота , теплые температуры в субтропиках и прохладные аномалии над тропиками увеличили пространственное распределение меридионального градиента температуры поверхности моря, которое не фиксируется индексом AMO. [4]
Механизмы
[ редактировать ]Судя по 150-летним инструментальным данным, квазипериодичность составляет около 70 лет с несколькими отчетливыми более теплыми фазами между ок. Выявлены 1930–1965 гг. и после 1995 г., а также прохлада между 1900–1930 гг. и 1965–1995 гг. [12] В моделях АМО-подобная изменчивость связана с небольшими изменениями в североатлантической ветви термохалинной циркуляции . [13] Однако исторических океанических наблюдений недостаточно, чтобы связать полученный индекс АМО с современными аномалиями циркуляции. [ нужна ссылка ] Модели и наблюдения показывают, что изменения в атмосферной циркуляции, которые вызывают изменения в облаках, атмосферной пыли и приземном тепловом потоке, в значительной степени ответственны за тропическую часть АМО. [14] [15]
Атлантическое многодесятилетнее колебание (АМО) важно для того, как внешние воздействия связаны с ТПМ в Северной Атлантике. [16]
Влияние климата во всем мире
[ редактировать ]AMO коррелирует с температурой воздуха и количеством осадков на большей части Северного полушария, особенно с летним климатом в Северной Америке и Европе. [17] [18] Благодаря изменениям атмосферной циркуляции AMO также может регулировать весенний снегопад в Альпах. [19] и изменчивость массы ледников. [20] Характер осадков изменяется в северо-восточной части Бразилии и африканском Сахеле. Это также связано с изменениями частоты засух в Северной Америке и отражается на частоте сильных ураганов в Атлантике . [9]
Недавние исследования показывают, что AMO связана с произошедшими в прошлом крупными засухами на Среднем Западе и Юго-Западе США. Когда АМО находится в теплой фазе, эти засухи имеют тенденцию быть более частыми или продолжительными. Две из самых сильных засух 20-го века произошли во время положительного АМО между 1925 и 1965 годами: « Пыльный котел» 1930-х годов и засуха 1950-х годов. Во Флориде и на северо-западе Тихого океана ситуация противоположная: теплая АМО, больше осадков. [21]
Климатические модели предполагают, что теплая фаза АМО усиливает летние дожди над Индией и Сахелем, а также активность тропических циклонов в Северной Атлантике . [22] Палеоклиматологические исследования подтвердили эту закономерность — увеличение количества осадков в теплую фазу АМО и уменьшение в холодную фазу — для Сахеля за последние 3000 лет. [23]
Связь с ураганами в Атлантике
[ редактировать ]Исследование 2008 года сопоставило Атлантический многодесятилетний режим (AMM) с данными HURDAT (1851–2007 гг.) и отметило положительную линейную тенденцию для небольших ураганов (категории 1 и 2), но исчезло, когда авторы скорректировали свою модель с учетом недооцененных штормов, и заявил: «Если и происходит увеличение активности ураганов, связанное с глобальным потеплением, вызванным парниковыми газами, в настоящее время оно скрыто 60-летним квазипериодическим циклом». [24] При полном учете метеорологической науки количество тропических штормов, которые могут перерасти в сильные ураганы, намного больше во время теплых фаз АМО, чем во время прохладных фаз, по крайней мере в два раза больше; АМО отражается на частоте сильных ураганов в Атлантике. [21] Судя по типичной продолжительности отрицательных и положительных фаз АМО, ожидается, что нынешний теплый режим сохранится, по крайней мере, до 2015 г., а возможно, и до 2035 г. Enfield et al. предполагаем пик примерно в 2020 году. [25]
Однако в 2006 году Манн и Эмануэль обнаружили, что «антропогенные факторы ответственны за долгосрочные тенденции повышения температуры в тропиках Атлантического океана и активности тропических циклонов» и «очевидной роли АМО нет». [26]
В 2014 году Манн, Штайнман и Миллер [8] показал, что потепление (и, следовательно, любое воздействие на ураганы) не было вызвано АМО, написав: «некоторые процедуры, использованные в прошлых исследованиях для оценки внутренней изменчивости, и, в частности, внутреннего многодесятилетнего колебания, называемого «Атлантическим многодесятилетним колебанием» или «АМО». ", не могут изолировать истинную внутреннюю изменчивость, когда она априори известна. Такие процедуры дают сигнал AMO с завышенной амплитудой и смещенной фазой, приписывая часть недавнего повышения средней температуры NH на счет AMO. Истинный сигнал AMO, вместо этого, Похоже, что в последние десятилетия он находился в фазе похолодания, компенсируя часть антропогенного потепления».
Периодичность и прогноз смен АМО
[ редактировать ]Имеются данные всего за 130–150 лет, основанные на данных приборов, а это слишком мало выборок для традиционных статистических подходов. С помощью прокси-реконструкции, рассчитанной на несколько столетий, Энфилд и Сид-Серрано использовали более длительный период в 424 года в качестве иллюстрации подхода, описанного в их статье под названием «Вероятностная проекция климатического риска». [27] Их гистограмма интервалов пересечения нуля из набора из пяти повторных выборок и сглаженной версии Gray et al. (2004) вместе с гамма-распределением оценки максимального правдоподобия , соответствующим гистограмме, показали, что наибольшая повторяемость интервала режима составляла около 10–20 лет. Совокупная вероятность для всех интервалов 20 лет и менее составила около 70%. [ нужна ссылка ]
Не существует продемонстрированной предсказуемости того, когда произойдет смена AMO, в каком-либо детерминистском смысле. Компьютерные модели, такие как те, которые предсказывают Эль-Ниньо , далеки от того, чтобы это сделать. Энфилд и его коллеги рассчитали вероятность того, что изменение AMO произойдет в течение заданного периода времени в будущем, предполагая, что историческая изменчивость сохранится. Вероятностные прогнозы такого рода могут оказаться полезными для долгосрочного планирования в чувствительных к климату приложениях, таких как управление водными ресурсами.
Исследование 2017 года предсказывает продолжающийся сдвиг похолодания, начиная с 2014 года, и авторы отмечают: «...в отличие от последнего холодного периода в Атлантике, пространственная структура аномалий температуры поверхности моря в Атлантике не является равномерно прохладной, а вместо этого имеет аномально низкие температуры. в субполярном круговороте , теплые температуры в субтропиках и прохладные аномалии над тропиками . Тройная картина аномалий увеличила субполярный и субтропический меридиональный градиент в ТПО, которые не представлены значением индекса АМО, но которые могут привести к увеличению атмосферы. бароклинность и бурность». [4]
Критика
[ редактировать ]В исследовании Майкла Манна и других, проведенном в 2021 году, было показано, что периодичность АМО в последнем тысячелетии определялась извержениями вулканов и другими внешними воздействиями, и, следовательно, нет убедительных доказательств того, что АМО является колебанием или циклом. [28] Также отсутствовало колебательное поведение в моделях на временных масштабах, превышающих Южное колебание Эль-Ниньо; AMV неотличим от красного шума — типичной нулевой гипотезы, позволяющей проверить наличие колебаний в модели. [29] Ссылаясь на исследование 2021 года, Майкл Манн, создатель термина AMO, изложил его более лаконично в сообщении в блоге по этому поводу: «Мы с коллегами предоставили то, что мы считаем наиболее убедительным доказательством того, что AMO не на самом деле он не существует». [30]
Ссылки
[ редактировать ]- ^ «Многодесятилетние изменения климата» . Лаборатория геофизической гидродинамики.
- ^ Джерард Д. Маккарти; Иван Д. Хэй; Жоэль Дж. М. Хирши; Джереми П. Грист и Дэвид А. Смид (27 мая 2015 г.). «Влияние океана на десятилетнюю изменчивость атлантического климата, выявленное наблюдениями за уровнем моря» (PDF) . Природа . 521 (7553): 508–510. Бибкод : 2015Natur.521..508M . дои : 10.1038/nature14491 . ПМИД 26017453 . S2CID 4399436 .
- ^ Перейти обратно: а б с Минфан, Тинг; Йоханан Кушнир; Ричард Сигер; Цуйхуа Ли (2009). «Вынужденные и внутренние тенденции ТПМ двадцатого века в Северной Атлантике» . Журнал климата . 22 (6): 1469–1481. Бибкод : 2009JCli...22.1469T . дои : 10.1175/2008JCLI2561.1 . S2CID 17753758 .
- ^ Перейти обратно: а б с Элеонора Фрайка-Уильямс; Клоди Болье; Орели Дюшес (2017). «Новый отрицательный индекс Атлантического многодесятилетнего колебания, несмотря на теплые субтропики» . Научные отчеты . 7 (1): 11224. Бибкод : 2017NatSR...711224F . дои : 10.1038/s41598-017-11046-x . ПМЦ 5593924 . ПМИД 28894211 .
- ^ Фолланд, СК; Паркер, Д.Э.; Кейтс, FE (1984). «Колебания морской температуры во всем мире 1856–1981». Природа . 310 (5979): 670–673. Бибкод : 1984Natur.310..670F . дои : 10.1038/310670a0 . S2CID 4246538 .
- ^ Шлезингер, Мэн (1994). «Колебания глобальной климатической системы периода 65–70 лет». Природа . 367 (6465): 723–726. Бибкод : 1994Natur.367..723S . дои : 10.1038/367723a0 . S2CID 4351411 .
- ^ Керр, Ричард К. (2000). «Североатлантический климатический кардиостимулятор на века». Наука . 288 (5473): 1984–1985. дои : 10.1126/science.288.5473.1984 . ПМИД 17835110 . S2CID 21968248 .
- ^ Перейти обратно: а б Манн, Майкл; Байрон А. Стейнман; Соня К. Миллер (2014). «О вынужденных изменениях температуры, внутренней изменчивости и АМО» . Письма о геофизических исследованиях . 41 (9): 3211–3219. Бибкод : 2014GeoRL..41.3211M . CiteSeerX 10.1.1.638.256 . дои : 10.1002/2014GL059233 .
- ^ Перейти обратно: а б Тренберт, Кевин; Деннис Дж. Ши (2005). «Атлантические ураганы и естественная изменчивость в 2005 году» . Письма о геофизических исследованиях . 33 (12): L12704. Бибкод : 2006GeoRL..3312704T . дои : 10.1029/2006GL026894 .
- ^ ван Ольденборг, Дж.Дж.; ЛА те Раа; Х.А. Дейкстра; С.Ю. Филип (2009). «Частотно- или амплитудно-зависимые эффекты меридионального опрокидывания Атлантического океана на тропическую часть Тихого океана» . Наука об океане. 5 (3): 293–301. Бибкод : 2009OcSci...5..293В . дои : 10.5194/os-5-293-2009 .
- ^ Гуань, Бин; Сумант Нигам (2009). «Анализ изменчивости Атлантической температуры с учетом межбассейновых связей и векового тренда: уточненная структура атлантического многодесятилетнего колебания» . Дж. Климат . 22 (15): 4228–4240. Бибкод : 2009JCli...22.4228G . дои : 10.1175/2009JCLI2921.1 . S2CID 16792059 .
- ^ «Климатические явления и их значение для будущего регионального изменения климата» (PDF) . МГЭИК AR5 . 2014. Архивировано из оригинала (PDF) 7 декабря 2017 г. Проверено 9 октября 2017 г.
- ^ О'Рейли, Швейцария; Л. М. Хубер; Т. Вулингс; Л. Занна (2016). «Признак низкочастотного океанического воздействия в Атлантическом многодесятилетнем колебании» . Письма о геофизических исследованиях . 43 (6): 2810–2818. Бибкод : 2016GeoRL..43.2810O . дои : 10.1002/2016GL067925 .
- ^ Браун, ПТ; М. С. Лозье; Р. Чжан; В. Ли (2016). «Необходимость обратной связи облаков для атлантического многодесятилетнего колебания в масштабе бассейна» . Письма о геофизических исследованиях . 43 (8): 3955–3963. Бибкод : 2016GeoRL..43.3955B . дои : 10.1002/2016GL068303 .
- ^ Юань, Т.; Л. Ореопулос; М. Залинка; Х. Ю; Дж. Р. Норрис; М. Чин; С. Платник; К. Мейер (2016). «Положительная обратная связь от низкой облачности и пыли усиливает многодесятилетние колебания в тропической Северной Атлантике» . Письма о геофизических исследованиях . 43 (3): 1349–1356. Бибкод : 2016GeoRL..43.1349Y . дои : 10.1002/2016GL067679 . ПМК 7430503 . ПМИД 32818003 . S2CID 130079254 .
- ^ Мадс Фауршу Кнудсен; Бо Холм Якобсен; Марит-Сольвейг Зайденкранц и Йеспер Ольсен (25 февраля 2014 г.). «Доказательства внешнего воздействия атлантического многодесятилетнего колебания после окончания малого ледникового периода» . Природа . 5 : 3323. Бибкод : 2014NatCo...5.3323K . дои : 10.1038/ncomms4323 . ПМЦ 3948066 . ПМИД 24567051 .
- ^ Гош, Рохит; Мюллер, Вольфганг А.; Бэр, Джоанна; Бадер, Юрген (28 июля 2016 г.). «Воздействие наблюдаемых многодесятилетних изменений Северной Атлантики на европейский летний климат: линейная бароклинная реакция на нагрев поверхности». Климатическая динамика . 48 (11–12): 3547. Бибкод : 2017ClDy...48.3547G . дои : 10.1007/s00382-016-3283-4 . hdl : 11858/00-001M-0000-002B-44E2-8 . ISSN 0930-7575 . S2CID 54020650 .
- ^ Зампиери, М.; Торети, А.; Шиндлер, А.; Скоччимарро, Э.; Гуальди, С. (апрель 2017 г.). «Влияние атлантических многодесятилетних колебаний на погодные режимы Европы и Средиземноморья весной и летом». Глобальные и планетарные изменения . 151 : 92–100. Бибкод : 2017GPC...151...92Z . дои : 10.1016/j.gloplacha.2016.08.014 .
- ^ Зампиери, Маттео; Скоччимарро, Энрико; Гуальди, Сильвио (01 января 2013 г.). «Влияние Атлантики на весенние снегопады в Альпах за последние 150 лет» . Письма об экологических исследованиях . 8 (3): 034026. Бибкод : 2013ERL.....8c4026Z . дои : 10.1088/1748-9326/8/3/034026 . ISSN 1748-9326 .
- ^ Гус, Матиас; Хок, Регина; Баудер, Андреас; Фанк, Мартин (01 мая 2010 г.). «100-летние массовые изменения в Швейцарских Альпах, связанные с атлантическим многодесятилетним колебанием» (PDF) . Письма о геофизических исследованиях . 37 (10): L10501. Бибкод : 2010GeoRL..3710501H . дои : 10.1029/2010GL042616 . ISSN 1944-8007 .
- ^ Перейти обратно: а б «Часто задаваемые вопросы Национального управления океанических и атмосферных исследований об атлантическом многодесятилетнем колебании» . Архивировано из оригинала 26 ноября 2005 г.
- ^ Чжан, Р.; Делворт, ТЛ (2006). «Влияние многодесятилетних колебаний Атлантики на осадки в Индии/Сахеле и ураганы в Атлантике». Геофиз. Рез. Летт . 33 (17): L17712. Бибкод : 2006GeoRL..3317712Z . дои : 10.1029/2006GL026267 . S2CID 16588748 .
- ^ Шанахан, ТМ; и др. (2009). «Атлантическое воздействие устойчивой засухи в Западной Африке». Наука . 324 (5925): 377–380. Бибкод : 2009Sci...324..377S . CiteSeerX 10.1.1.366.1394 . дои : 10.1126/science.1166352 . ПМИД 19372429 . S2CID 2679216 .
- ^ Чилек П. и Лесинс Г. (2008). «Многодесятилетняя изменчивость активности ураганов в Атлантике: 1851–2007 гг.» . Журнал геофизических исследований . 113 (Д22): Д22106. Бибкод : 2008JGRD..11322106C . дои : 10.1029/2008JD010036 .
- ^ Энфилд, Дэвид Б.; Сид-Серрано, Луис (2010). «Вековые и многодесятилетние потепления в Северной Атлантике и их связь с крупными ураганами». Международный журнал климатологии . 30 (2): 174–184. дои : 10.1002/joc.1881 . S2CID 18833210 .
- ^ Манн, Мэн; Эмануэль, К.А. (2006). «Тенденции ураганов в Атлантике, связанные с изменением климата» . ЭОС . 87 (24): 233–244. Бибкод : 2006EOSTr..87..233M . дои : 10.1029/2006EO240001 . S2CID 128633734 .
- ^ «Архивная копия» (PDF) . Архивировано из оригинала (PDF) 26 августа 2014 г. Проверено 23 августа 2014 г.
{{cite web}}
: CS1 maint: архивная копия в заголовке ( ссылка ) - ^ Манн, Майкл Э.; Штейнман, Байрон А.; Бруйетт, Дэниел Дж.; Миллер, Соня К. (05 марта 2021 г.). «Многодесятилетние климатические колебания в течение последнего тысячелетия, вызванные вулканическими воздействиями» . Наука . 371 (6533): 1014–1019. Бибкод : 2021Sci...371.1014M . дои : 10.1126/science.abc5810 . ISSN 0036-8075 . PMID 33674487 . S2CID 232124643 .
- ^ Манн, Майкл Э.; Штейнман, Байрон А.; Миллер, Соня К. (3 января 2020 г.). «Отсутствие внутренних многодесятилетних и междекадных колебаний в моделях климата» . Природные коммуникации . 11 (1): 49. Бибкод : 2020NatCo..11...49M . дои : 10.1038/s41467-019-13823-w . ISSN 2041-1723 . ПМК 6941994 . ПМИД 31900412 .
- ^ Манн, Майкл. «Взлет и падение «Атлантического многодесятилетнего колебания» » . michaelmann.net . Проверено 14 сентября 2023 г.
Дальнейшее чтение
[ редактировать ]- Андронова, Н.Г.; Шлезингер, Мэн (2000). «Причины глобальных изменений температуры в XIX и XX веках» . Геофиз. Рез. Летт. 27 (14): 2137–2140. Бибкод : 2000GeoRL..27.2137A . дои : 10.1029/2000GL006109 .
- Делворт, ТЛ; Манн, Мэн (2000). «Наблюдаемая и смоделированная многодесятилетняя изменчивость в Северном полушарии» . Климатическая динамика . 16 (9): 661–676. Бибкод : 2000ClDy...16..661D . дои : 10.1007/s003820000075 . S2CID 7412990 .
- Энфилд, Д.Б.; Местас-Нуньес, AM; Тримбл, П.Дж. (2001). «Атлантическое многодесятилетнее колебание и его связь с осадками и речными стоками в континентальной части США» Geophys. Рез. Летт . 28 (10): 2077–2080. Бибкод : 2001GeoRL..28.2077E . CiteSeerX 10.1.1.594.1411 . дои : 10.1029/2000GL012745 . S2CID 53534572 .
- Гольденберг, С.Б. (2001). «Недавнее увеличение активности ураганов в Атлантике: причины и последствия». Наука . 293 (5529): 474–479. Бибкод : 2001Sci...293..474G . дои : 10.1126/science.1060040 . ПМИД 11463911 . S2CID 29147811 .
- Грей, СТ (2004). «Реконструкция Атлантического многодесятилетнего колебания на основе годичных колец с 1567 года нашей эры» Geophys. Рез. Летт . 31 (12): L12205. Бибкод : 2004GeoRL..3112205G . дои : 10.1029/2004GL019932 .
- Хетцингер, Штеффен (2008). «Карибские кораллы отслеживают атлантические многодесятилетние колебания и прошлую ураганную активность». Геология . 36 (1): 11–14. Бибкод : 2008Geo....36...11H . дои : 10.1130/G24321A.1 .
- Керр, Р.А. (2000). «Кардисмекер климата Северной Атлантики на протяжении веков». Наука . 288 (5473): 1984–1986. дои : 10.1126/science.288.5473.1984 . ПМИД 17835110 . S2CID 21968248 .
- Керр, Р.А. (2005). «Кульминатор атлантического климата на протяжении тысячелетий прошлого и десятилетий спустя?». Наука . 309 (5731): 41–43. дои : 10.1126/science.309.5731.41 . ПМИД 15994503 . S2CID 40555628 .
- Найт, младший (2005). «Признак постоянных естественных циклов термохалинной циркуляции в наблюдаемом климате». Геофиз. Рез. Летт . 32 (20): L20708. Бибкод : 2005GeoRL..3220708K . дои : 10.1029/2005GL024233 . S2CID 16909466 .
- Маккейб, Дж.Дж.; Палецкий, Массачусетс; Бетанкур, JL (2004). «Влияние Тихого и Атлантического океана на частоту многодесятилетних засух в Соединенных Штатах» . ПНАС . 101 (12): 4136–4141. Бибкод : 2004PNAS..101.4136M . дои : 10.1073/pnas.0306738101 . ПМЦ 384707 . ПМИД 15016919 .
- Саттон, RT; Ходсон, Л.Р. (2005). «Атлантическое воздействие на летний климат Северной Америки и Европы». Наука . 309 (5731): 115–118. Бибкод : 2005Sci...309..115S . дои : 10.1126/science.1109496 . ПМИД 15994552 . S2CID 19372166 .
- Найт, младший; Фолланд, СК; Скайф, А.А. (2006). «Климатические воздействия Атлантического многодесятилетнего колебания» . Геофиз. Рез. Летт . 33 (17): L17706. Бибкод : 2006GeoRL..3317706K . дои : 10.1029/2006GL026242 . S2CID 17217746 .
- Тигаварапу, РСВ; Голи, А.; Обейсекера, Дж. (2013). «Влияние атлантических многодесятилетних колебаний на региональные экстремальные осадки». Журнал гидрологии . 495 : 74–93. Бибкод : 2013JHyd..495...74T . doi : 10.1016/j.jгидроl.2013.05.003 .
- Голи, Аниш; Тигаварапу, Рамеш С.В. (2014). «Индивидуальное и совместное влияние АМО и ЭНСО на региональные характеристики осадков и экстремальные явления» . Исследования водных ресурсов . 50 (6): 4686–4709. Бибкод : 2014WRR....50.4686G . дои : 10.1002/2013WR014540 .