Длинная кратковременная память
Эта статья может быть слишком технической для понимания большинства читателей . ( Март 2022 г. ) |
Часть серии о |
Машинное обучение и интеллектуальный анализ данных |
---|
Длинная кратковременная память ( LSTM ) [1] это тип рекуррентной нейронной сети (RNN), предназначенный для решения проблемы исчезающего градиента. [2] присутствует в традиционных RNN. Его относительная нечувствительность к длине промежутка является его преимуществом перед другими RNN, скрытыми моделями Маркова и другими методами обучения последовательностей. Его цель — обеспечить RNN кратковременную память, которая может сохраняться на тысячи временных шагов, то есть « долгую кратковременную память». [1] Он применим для классификации , обработки и прогнозирования данных на основе временных рядов , например, рукописных , [3] распознавание речи , [4] [5] машинный перевод , [6] [7] обнаружение речевой активности, [8] управление роботом, [9] [10] видеоигры, [11] [12] и здравоохранение. [13]
Общий блок LSTM состоит из ячейки , входного вентиля , выходного вентиля. [14] и ворота забвения . [15] Ячейка запоминает значения в течение произвольных интервалов времени, а три шлюза регулируют поток информации в ячейку и из нее. Ворота забывания решают, какую информацию следует отбросить из предыдущего состояния, сопоставляя предыдущее состояние и текущий вход со значением от 0 до 1. (Округленное) значение 1 означает сохранение информации, а значение 0 означает ее отбрасывание. . Входные ворота решают, какие фрагменты новой информации следует сохранить в текущем состоянии ячейки, используя ту же систему, что и ворота забывания. Выходные вентили контролируют, какие фрагменты информации в текущем состоянии ячейки выводить, присваивая информации значение от 0 до 1 с учетом предыдущего и текущего состояний. Выборочный вывод соответствующей информации из текущего состояния позволяет сети LSTM поддерживать полезные долгосрочные зависимости для прогнозирования как на текущих, так и на будущих временных шагах.
Мотивация
[ редактировать ]Теоретически классические RNN могут отслеживать произвольные долгосрочные зависимости во входных последовательностях. Проблема с классическими RNN носит вычислительный (или практический) характер: при обучении классической RNN с использованием обратного распространения ошибки долгосрочные градиенты, которые имеют обратное распространение, могут «исчезнуть» , то есть они могут стремиться к нулю из-за очень малых чисел. проникает в вычисления, в результате чего модель фактически прекращает обучение. RNN, использующие блоки LSTM, частично решают проблему исчезновения градиента , поскольку блоки LSTM также позволяют градиентам течь практически без затухания. Однако сети LSTM все еще могут страдать от проблемы взрывного градиента. [16]
Идея архитектуры LSTM заключается в создании дополнительного модуля в нейронной сети, который учится, когда запоминать, а когда забывать соответствующую информацию. [15] Другими словами, сеть эффективно узнает, какая информация может понадобиться позже в последовательности и когда эта информация больше не нужна. Например, в контексте обработки естественного языка сеть может изучать грамматические зависимости. [17] LSTM может обработать предложение « Дэйв , в результате его спорных утверждений, теперь является изгоем», запоминая (статистически вероятный) грамматический пол и число подлежащего Дэйв , обратите внимание, что эта информация относится к местоимению его и отметьте что эта информация больше не важна после глагола is .
Варианты
[ редактировать ]В приведенных ниже уравнениях переменные нижнего регистра представляют векторы. Матрицы и содержат соответственно веса входной и рекуррентной связей, где индекс может быть либо входным воротами , выходной вентиль , ворота забвения или ячейка памяти , в зависимости от рассчитываемой активации. Таким образом, в этом разделе мы используем «векторную запись». Так, например, это не просто одна единица одной ячейки LSTM, а содержит Единицы ячейки LSTM.
LSTM с воротами забывания
[ редактировать ]Компактные формы уравнений для прямого прохода ячейки LSTM с воротами забывания: [1] [15]
где начальные значения и и оператор обозначает произведение Адамара (поэлементное произведение). Нижний индекс индексирует шаг по времени.
Переменные
[ редактировать ]Использование надстрочных индексов и относятся к количеству входных объектов и количеству скрытых блоков соответственно:
- : входной вектор в модуль LSTM
- : забыть вектор активации ворот
- : вектор активации входа/обновления ворот
- : вектор активации выходного вентиля
- : вектор скрытого состояния, также известный как выходной вектор модуля LSTM.
- : вектор активации ввода ячейки
- : вектор состояния ячейки
- , и : весовые матрицы и параметры вектора смещения, которые необходимо изучить во время обучения.
- : сигмовидная функция .
- : функция гиперболического тангенса .
- : функция гиперболического тангенса или, как в бумаге LSTM в глазке [18] [19] предполагает, .
Глазок ЛСТМ
[ редактировать ]Рисунок справа представляет собой графическое изображение блока LSTM с глазковыми соединениями (т.е. глазок LSTM). [18] [19] Соединения «глазок» позволяют воротам получить доступ к карусели постоянных ошибок (CEC), активацией которой является состояние ячейки. [18] не используется, вместо этого используется в большинстве мест.
Каждый из вентилей можно рассматривать как «стандартный» нейрон в нейронной сети прямого распространения (или многослойной): то есть они вычисляют активацию (используя функцию активации) взвешенной суммы. и представляют собой активации соответственно входа, выхода и вентилей забывания на временном шаге .
3 стрелки выхода из ячейки памяти. до 3 ворот и представляют собой соединения глазка . Эти соединения в виде глазка на самом деле обозначают вклад активации ячейки памяти. на временном шаге , т.е. вклад (и не , как можно предположить на картинке). Другими словами, ворота и рассчитать их активации на временном шаге (т.е., соответственно, и ) также учитывая активацию ячейки памяти на временном шаге , то есть .
Единственная стрелка слева направо, выходящая из ячейки памяти, не является соединением глазка и обозначает .
Маленькие кружочки, содержащие Символ представляет собой поэлементное умножение между его входами. Большие круги, содержащие S -образную кривую, представляют собой применение дифференцируемой функции (например, сигмовидной функции) к взвешенной сумме.
Глазок сверточного LSTM
[ редактировать ]Сверточный глазок LSTM. [20] обозначает оператор свертки .
Обучение
[ редактировать ]RNN, использующая блоки LSTM, может быть обучена контролируемым образом на наборе обучающих последовательностей, используя алгоритм оптимизации, такой как градиентный спуск , в сочетании с обратным распространением ошибки во времени, для вычисления градиентов, необходимых в процессе оптимизации, чтобы изменить каждый вес LSTM. сети пропорционально производной ошибки (на выходном уровне сети LSTM) по соответствующему весу.
Проблема с использованием градиентного спуска для стандартных RNN заключается в том, что градиенты ошибок исчезают экспоненциально быстро с увеличением временного лага между важными событиями. Это связано с если радиус спектральный меньше 1. [2] [21]
Однако в модулях LSTM, когда значения ошибок распространяются обратно из выходного слоя, ошибка остается в ячейке модуля LSTM. Эта «карусель ошибок» постоянно передает ошибку обратно каждому из вентилей блока LSTM, пока они не научатся отсекать значение.
Функция оценки CTC
[ редактировать ]Многие приложения используют стеки LSTM RNN. [22] и обучать их с помощью коннекционистской временной классификации (CTC) [23] найти весовую матрицу RNN, которая максимизирует вероятность последовательностей меток в обучающем наборе, учитывая соответствующие входные последовательности. CTC достигает как согласованности, так и признания.
Альтернативы
[ редактировать ]Иногда может быть полезно обучить (части) LSTM с помощью нейроэволюции. [24] или методами политического градиента, особенно когда нет «учителя» (то есть обучающих ярлыков).
Успех
[ редактировать ]Было несколько успешных историй обучения RNN без присмотра с помощью модулей LSTM.
В 2018 году Билл Гейтс назвал «огромной вехой в развитии искусственного интеллекта», когда боты, разработанные OpenAI, смогли победить людей в игре Dota 2 . [11] OpenAI Five состоит из пяти независимых, но скоординированных нейронных сетей. Каждая сеть обучается методом градиента политики без надзора учителя и содержит однослойную долговременную память на 1024 единицы, которая видит текущее состояние игры и генерирует действия через несколько возможных головок действий. [11]
В 2018 году OpenAI также обучила аналогичный LSTM с помощью политических градиентов для управления человекоподобной роботизированной рукой, которая манипулирует физическими объектами с беспрецедентной ловкостью. [10]
В 2019 году компании DeepMind программа AlphaStar использовала глубокое ядро LSTM, чтобы добиться успеха в сложной видеоигре Starcraft II . [12] Это рассматривалось как значительный прогресс на пути к общему искусственному интеллекту. [12]
Приложения
[ редактировать ]Приложения LSTM включают:
- Управление роботом [9]
- Прогнозирование временных рядов [24]
- Распознавание речи [25] [26] [27]
- Обучение ритму [19]
- Гидрологическое моделирование осадков и стока [28]
- Музыкальная композиция [29]
- Изучение грамматики [30] [18] [31]
- Распознавание рукописного ввода [32] [33]
- Распознавание действий человека [34]
- Перевод на язык жестов [35]
- Обнаружение гомологии белков [36]
- Прогнозирование субклеточной локализации белков [37]
- временных рядов Обнаружение аномалий [38]
- Некоторые задачи прогнозирования в области управления бизнес-процессами [39]
- Прогнозирование в путях оказания медицинской помощи [40]
- Семантический анализ [41]
- Совместная сегментация объектов [42] [43]
- Управление пассажирами в аэропорту [44]
- Краткосрочный прогноз трафика [45]
- Дизайн лекарств [46]
- Прогноз рынка [47]
- Классификация действий в видео [48]
Хронология разработки
[ редактировать ]Эту статью может потребовать очистки Википедии , чтобы она соответствовала стандартам качества . Конкретная проблема: слишком много деталей. ( июнь 2024 г. ) |
1989: Работа Майка Мозера о «сфокусированном обратном распространении ошибки». [49] предвосхищает аспекты LSTM, которые цитируются в документе LSTM. [1]
1991: Зепп Хохрайтер проанализировал проблему исчезающего градиента и разработал принципы метода в своей дипломной работе в Германии. [2] назвал «одним из самых важных документов в истории машинного обучения» который его руководитель Юрген Шмидхубер . [50]
1995: «Долгая кратковременная память (LSTM)» опубликована в техническом отчете Зеппа Хохрайтера и Юргена Шмидхубера . [51]
1996: LSTM опубликован на рецензируемой конференции NIPS'1996. [14]
1997: Основная статья LSTM опубликована в журнале Neural Computation . [1] Внедряя блоки карусели постоянных ошибок (CEC), LSTM решает проблему исчезновения градиента . Первоначальная версия блока LSTM включала ячейки, входные и выходные элементы. [52]
1999: Феликс Герс , Юрген Шмидхубер и Фред Камминс представили ворота забывания (также называемые «воротами сохранения») в архитектуру LSTM. [53] позволяя LSTM сбросить свое собственное состояние. [52]
2000: Герс, Шмидхубер и Камминс добавили в архитектуру соединения глазков (соединения от ячейки к воротам). [18] [19] Кроме того, функция активации выхода была опущена. [52]
2001: Герс и Шмидхубер научили LSTM изучать языки, которые невозможно выучить с помощью традиционных моделей, таких как скрытые марковские модели. [18] [54]
Хохрейтер и др. использовал LSTM для метаобучения (т.е. изучения алгоритма обучения). [55]
2004: Первое успешное применение LSTM к речи Алекс Грейвс и др. [56] [54]
2005: Первая публикация (Грейвс и Шмидхубер) LSTM с полным обратным распространением ошибки во времени и двунаправленным LSTM. [25] [54]
2005: Даан Виерстра, Фаустино Гомес и Шмидхубер обучали LSTM методом нейроэволюции без учителя. [24]
2006: Грейвс, Фернандес, Гомес и Шмидхубер представляют новую функцию ошибок для LSTM: коннекционистскую временную классификацию (CTC) для одновременного выравнивания и распознавания последовательностей. [23] LSTM, обученный CTC, привел к прорыву в распознавании речи. [26] [57] [58] [59]
Майер и др. обучил LSTM управлять роботами . [9]
2007: Виерстра, Ферстер, Петерс и Шмидхубер обучили LSTM с помощью политических градиентов для обучения с подкреплением без учителя. [60]
Хохрейтер, Хойзель и Обермайр применили LSTM для обнаружения гомологии белков в области биологии . [36]
2009: LSTM, обученный CTC, выиграл соревнование по распознаванию рукописного текста, подключенное к ICDAR . Три такие модели были представлены командой под руководством Алекса Грейвса . [3] Одна была самой точной моделью на соревновании, а другая – самой быстрой. [61] Это был первый раз, когда РНН выиграла международные соревнования. [54]
2009: Джастин Байер и др. представил поиск нейронной архитектуры для LSTM. [62] [54]
2013: Алекс Грейвс, Абдель-Рахман Мохамед и Джеффри Хинтон использовали сети LSTM в качестве основного компонента сети, которая достигла рекордного уровня ошибок фонем 17,7% в классическом наборе данных естественной речи TIMIT . [27]
2014: Кёнхён Чо и др. выдвинул упрощенный вариант шлюза LSTM [53] называется закрытой рекуррентной единицей (ГРУ). [63]
2015: Google начал использовать LSTM, обученный CTC, для распознавания речи в Google Voice. [57] [58] Согласно официальному сообщению в блоге, новая модель сократила ошибки транскрипции на 49%. [64]
2015: Рупеш Кумар Шривастава, Клаус Грефф и Шмидхубер использовали принципы LSTM. [53] создать сеть Highway — нейронную сеть прямого распространения с сотнями слоев, гораздо более глубокую, чем предыдущие сети. [65] [66] [67] 7 месяцев спустя Каймин Хэ, Сянъюй Чжан; с открытыми воротами или без ворот сети шоссе Шаоцин Рен и Цзянь Сунь выиграли конкурс ImageNet 2015, предложив вариант под названием Остаточная нейронная сеть . [68] Это самая цитируемая нейронная сеть 21 века. [67]
2016: Google начал использовать LSTM для предложения сообщений в приложении Allo Chat. [69] В том же году Google выпустила систему нейронного машинного перевода Google для Google Translate, которая использовала LSTM для уменьшения ошибок перевода на 60%. [6] [70] [71]
Apple объявила на своей Всемирной конференции разработчиков , что начнет использовать LSTM для быстрого набора текста. [72] [73] [74] в iPhone и для Siri. [75] [76]
Amazon выпустила Polly , которая генерирует голоса Alexa, используя двунаправленный LSTM для технологии преобразования текста в речь. [77]
2017: Facebook ежедневно выполняет около 4,5 миллиардов автоматических переводов, используя сети долговременной краткосрочной памяти. [7]
Исследователи из Мичиганского государственного университета , IBM Research и Корнелльского университета опубликовали исследование на конференции Knowledge Discovery and Data Mining (KDD). [78] [79] [80] Их LSTM с учетом времени (T-LSTM) работает лучше с определенными наборами данных, чем стандартный LSTM.
Microsoft сообщила о достижении точности распознавания 94,9% в корпусе Switchboard , включающем словарь в 165 000 слов. В этом подходе использовалась «долговременная память на основе сеансов диалога». [59]
2018: OpenAI использовала LSTM, обученную с помощью градиентов политики, чтобы победить людей в сложной видеоигре Dota 2. [11] и управлять человекоподобной рукой робота, которая манипулирует физическими объектами с беспрецедентной ловкостью. [10] [54]
2019: DeepMind использовала LSTM, обученную по градиентам политики, чтобы преуспеть в сложной видеоигре Starcraft II . [12] [54]
2021: По данным Google Scholar , в 2021 году LSTM цитировали более 16 000 раз в течение одного года. Это отражает применение LSTM во многих различных областях, включая здравоохранение. [13]
2024: публикует эволюцию LSTM под названием xLSTM Команда под руководством Зеппа Хохрайтера . [81] [82]
См. также
[ редактировать ]- Внимание (машинное обучение)
- Глубокое обучение
- Дифференцируемый нейронный компьютер
- Закрытый рекуррентный блок
- Сеть автомобильных дорог
- Долгосрочное потенцирование
- Рабочая память префронтальной коры базальных ганглиев
- Рекуррентная нейронная сеть
- Seq2seq
- Долговременная кратковременная память с осознанием времени
- Трансформатор (модель машинного обучения)
- Временной ряд
Ссылки
[ редактировать ]- ^ Jump up to: а б с д и Зепп Хохрайтер ; Юрген Шмидхубер (1997). «Долгая кратковременная память» . Нейронные вычисления . 9 (8): 1735–1780. дои : 10.1162/neco.1997.9.8.1735 . ПМИД 9377276 . S2CID 1915014 .
- ^ Jump up to: а б с Хохрейтер, Зепп (1991). Исследования по динамическим нейронным сетям (PDF) (дипломная работа). Технический университет Мюнхена, Институт компьютерных наук.
- ^ Jump up to: а б Грейвс, А.; Ливицкий, М.; Фернандес, С.; Бертолами, Р.; Бунке, Х.; Шмидхубер, Дж. (май 2009 г.). «Новая коннекционистская система для неограниченного распознавания рукописного текста». Транзакции IEEE по анализу шаблонов и машинному интеллекту . 31 (5): 855–868. CiteSeerX 10.1.1.139.4502 . дои : 10.1109/tpami.2008.137 . ISSN 0162-8828 . ПМИД 19299860 . S2CID 14635907 .
- ^ Сак, Хасим; Старший, Эндрю; Бофе, Франсуаза (2014). «Архитектуры рекуррентных нейронных сетей с долгосрочной кратковременной памятью для крупномасштабного акустического моделирования» (PDF) . Архивировано из оригинала (PDF) 24 апреля 2018 г.
- ^ Ли, Сянган; У, Сихун (15 октября 2014 г.). «Построение глубоких рекуррентных нейронных сетей на основе долговременной памяти для распознавания речи с большим словарным запасом». arXiv : 1410.4281 [ cs.CL ].
- ^ Jump up to: а б Ву, Юнхуэй; Шустер, Майк; Чен, Чжифэн; Ле, Куок В.; Норузи, Мохаммед; Машери, Вольфганг; Крикун, Максим; Цао, Юань; Гао, Цинь (26 сентября 2016 г.). «Система нейронного машинного перевода Google: преодоление разрыва между человеческим и машинным переводом». arXiv : 1609.08144 [ cs.CL ].
- ^ Jump up to: а б Онг, Туи (4 августа 2017 г.). «Переводы Facebook теперь полностью выполняются искусственным интеллектом» . www.allthingsdistributed.com . Проверено 15 февраля 2019 г.
- ^ Сахидулла, Мэриленд; Патино, Хосе; Корнелл, Сэмюэл; Инь, Жуйкин; Сивасанкаран, Сунит; Бреден, Эрве; Коршунов Павел; Брутти, Алессио; Серизель, Ромен; Винсент, Эммануэль; Эванс, Николас; Марсель, Себастьян; Сквартини, Стефано; Баррас, Клод (6 ноября 2019 г.). «Скорая подача на DIHARD II: вклад и извлеченные уроки». arXiv : 1911.02388 [ eess.AS ].
- ^ Jump up to: а б с Майер, Х.; Гомес, Ф.; Виерстра, Д.; Надь, И.; Нолл, А.; Шмидхубер, Дж. (октябрь 2006 г.). «Система для роботизированной кардиохирургии, которая учится завязывать узлы с помощью рекуррентных нейронных сетей». 2006 Международная конференция IEEE/RSJ по интеллектуальным роботам и системам . стр. 543–548. CiteSeerX 10.1.1.218.3399 . дои : 10.1109/IROS.2006.282190 . ISBN 978-1-4244-0258-8 . S2CID 12284900 .
- ^ Jump up to: а б с «Учимся ловкости» . ОпенАИ . 30 июля 2018 г. Проверено 28 июня 2023 г.
- ^ Jump up to: а б с д Родригес, Хесус (2 июля 2018 г.). «Наука, лежащая в основе OpenAI Five, которая только что совершила один из величайших прорывов в истории искусственного интеллекта» . На пути к науке о данных . Архивировано из оригинала 26 декабря 2019 г. Проверено 15 января 2019 г.
- ^ Jump up to: а б с д Стэнфорд, Стейси (25 января 2019 г.). «ИИ AlphaStar от DeepMind демонстрирует значительный прогресс в области искусственного интеллекта» . Средние мемуары ML . Проверено 15 января 2019 г.
- ^ Jump up to: а б Шмидхубер, Юрген (2021). «2010-е годы: наше десятилетие глубокого обучения / Перспективы на 2020-е годы» . Блог ИИ . ИДСИА, Швейцария . Проверено 30 апреля 2022 г.
- ^ Jump up to: а б Хохрейтер, Зепп; Шмидхубер, Юрген (1996). LSTM может решить сложные проблемы с длительной задержкой . Достижения в области нейронных систем обработки информации .
- ^ Jump up to: а б с Феликс А. Герс; Юрген Шмидхубер; Фред Камминс (2000). «Учимся забывать: постоянное прогнозирование с помощью LSTM». Нейронные вычисления . 12 (10): 2451–2471. CiteSeerX 10.1.1.55.5709 . дои : 10.1162/089976600300015015 . ПМИД 11032042 . S2CID 11598600 .
- ^ Калин, Овидиу (14 февраля 2020 г.). Архитектуры глубокого обучения . Чам, Швейцария: Springer Nature. п. 555. ИСБН 978-3-030-36720-6 .
- ^ Лакрец, Яир; Крушевский, немец; Десборд, Тео; Хупкес, Дьюк; Деэн, Станислас; Барони, Марко (2019), «Появление числовых и синтаксических единиц в» , Появление числовых и синтаксических единиц (PDF) , Ассоциация компьютерной лингвистики, стр. 11–20, doi : 10.18653/v1/N19-1002 , hdl : 11245.1/16cb6800-e10d-4166-8e0b-fed61ca6ebb4 , S2CID 81978369
- ^ Jump up to: а б с д и ж Герс, Ф.А.; Шмидхубер, Дж. (2001). «Рекуррентные сети LSTM изучают простые контекстно-свободные и контекстно-зависимые языки» (PDF) . Транзакции IEEE в нейронных сетях . 12 (6): 1333–1340. дои : 10.1109/72.963769 . ПМИД 18249962 . S2CID 10192330 .
- ^ Jump up to: а б с д Герс, Ф.; Шраудольф, Н.; Шмидхубер, Дж. (2002). «Изучение точного времени с помощью рекуррентных сетей LSTM» (PDF) . Журнал исследований машинного обучения . 3 : 115–143.
- ^ Синцзянь Ши; Чжоуронг Чен; Хао Ван; Дит-Ян Юнг; Вай-кин Вонг; Ван Чун У (2015). «Сверточная сеть LSTM: подход машинного обучения для прогнозирования текущих осадков». Материалы 28-й Международной конференции по нейронным системам обработки информации : 802–810. arXiv : 1506.04214 . Бибкод : 2015arXiv150604214S .
- ^ Хохрейтер, С.; Бенджио, Ю.; Фраскони, П.; Шмидхубер, Дж. (2001). «Градиентный поток в рекуррентных сетях: сложность изучения долгосрочных зависимостей (доступна загрузка в формате PDF)» . В Кремере и, СК; Колен, Дж. Ф. (ред.). Полевое руководство по динамическим рекуррентным нейронным сетям . IEEE Пресс.
- ^ Фернандес, Сантьяго; Грейвс, Алекс; Шмидхубер, Юрген (2007). «Разметка последовательностей в структурированных доменах с помощью иерархических рекуррентных нейронных сетей». Учеб. 20-й Международный Совместная конф. Об искусственном интеллекте, Ijcai 2007 : 774–779. CiteSeerX 10.1.1.79.1887 .
- ^ Jump up to: а б Грейвс, Алекс; Фернандес, Сантьяго; Гомес, Фаустино; Шмидхубер, Юрген (2006). «Временная классификация коннекционистов: маркировка данных несегментированных последовательностей с помощью рекуррентных нейронных сетей». В материалах Международной конференции по машинному обучению, ICML 2006 : 369–376. CiteSeerX 10.1.1.75.6306 .
- ^ Jump up to: а б с Виерстра, Даан; Шмидхубер, Дж.; Гомес, Ф.Дж. (2005). «Эволино: гибридная нейроэволюция/оптимальный линейный поиск для последовательного обучения» . Материалы 19-й Международной совместной конференции по искусственному интеллекту (IJCAI), Эдинбург : 853–858.
- ^ Jump up to: а б Грейвс, А.; Шмидхубер, Дж. (2005). «Кадровая классификация фонем с помощью двунаправленного LSTM и других архитектур нейронных сетей». Нейронные сети . 18 (5–6): 602–610. CiteSeerX 10.1.1.331.5800 . дои : 10.1016/j.neunet.2005.06.042 . ПМИД 16112549 . S2CID 1856462 .
- ^ Jump up to: а б Фернандес, С.; Грейвс, А.; Шмидхубер, Дж. (9 сентября 2007 г.). «Применение рекуррентных нейронных сетей для распознавания ключевых слов» . Материалы 17-й Международной конференции по искусственным нейронным сетям . ICANN'07. Берлин, Гейдельберг: Springer-Verlag: 220–229. ISBN 978-3540746935 . Проверено 28 декабря 2023 г.
- ^ Jump up to: а б Грейвс, Алекс; Мохамед, Абдель-Рахман; Хинтон, Джеффри (2013). «Распознавание речи с помощью глубоких рекуррентных нейронных сетей». Международная конференция IEEE 2013 по акустике, речи и обработке сигналов . стр. 6645–6649. arXiv : 1303.5778 . дои : 10.1109/ICASSP.2013.6638947 . ISBN 978-1-4799-0356-6 . S2CID 206741496 .
- ^ Кратцерт, Фредерик; Клотц, Дэниел; Шалев, Гай; Кламбауэр, Гюнтер; Хохрейтер, Зепп; Близится, Грей (17 декабря 2019 г.). «На пути к изучению универсального, регионального и местного гидрологического поведения с помощью машинного обучения, применяемого к наборам данных большой выборки» . Гидрология и науки о системе Земли . 23 (12): 5089–5110. arXiv : 1907.08456 . Бибкод : 2019HESS...23.5089K . дои : 10.5194/hess-23-5089-2019 . ISSN 1027-5606 .
- ^ Эк, Дуглас; Шмидхубер, Юрген (28 августа 2002 г.). «Изучение долгосрочной структуры блюза». Искусственные нейронные сети — ICANN 2002 . Конспекты лекций по информатике. Том. 2415. Шпрингер, Берлин, Гейдельберг. стр. 284–289. CiteSeerX 10.1.1.116.3620 . дои : 10.1007/3-540-46084-5_47 . ISBN 978-3540460848 .
- ^ Шмидхубер, Дж.; Герс, Ф.; Эк, Д.; Шмидхубер, Дж.; Герс, Ф. (2002). «Изучение нерегулярных языков: сравнение простых рекуррентных сетей и LSTM». Нейронные вычисления . 14 (9): 2039–2041. CiteSeerX 10.1.1.11.7369 . дои : 10.1162/089976602320263980 . ПМИД 12184841 . S2CID 30459046 .
- ^ Перес-Ортис, Дж.А.; Герс, Ф.А.; Эк, Д.; Шмидхубер, Дж. (2003). «Фильтры Калмана улучшают производительность сети LSTM в задачах, неразрешимых традиционными рекуррентными сетями». Нейронные сети . 16 (2): 241–250. CiteSeerX 10.1.1.381.1992 . дои : 10.1016/s0893-6080(02)00219-8 . ПМИД 12628609 .
- ^ А. Грейвс, Дж. Шмидхубер. Распознавание рукописного текста в автономном режиме с помощью многомерных рекуррентных нейронных сетей. Достижения в области нейронных систем обработки информации 22, NIPS'22, стр. 545–552, Ванкувер, MIT Press, 2009.
- ^ Грейвс, А.; Фернандес, С.; Ливицкий, М.; Бунке, Х.; Шмидхубер, Дж. (3 декабря 2007 г.). «Неограниченное онлайн-распознавание рукописного текста с помощью рекуррентных нейронных сетей» . Материалы 20-й Международной конференции по нейронным системам обработки информации . НИПС'07. США: Curran Associates Inc.: 577–584. ISBN 9781605603520 . Проверено 28 декабря 2023 г.
- ^ Баккуш, М.; Мамалет, Ф.; Вольф, К.; Гарсия, К.; Баскурт, А. (2011). «Последовательное глубокое обучение для распознавания действий человека». Ин Салах, А.А.; Лепри, Б. (ред.). 2-й Международный семинар по пониманию человеческого поведения (HBU) . Конспекты лекций по информатике. Том. 7065. Амстердам, Нидерланды: Springer. стр. 29–39. дои : 10.1007/978-3-642-25446-8_4 . ISBN 978-3-642-25445-1 .
- ^ Цилинь; Ли, Хоуцян; Ли, Вэйпин (30 января 2018 г.). «Распознавание языка жестов Хуан, Цзе; Чжан , без сегментации временной » .
- ^ Jump up to: а б Хохрейтер, С.; Хойзель, М.; Обермайер, К. (2007). «Быстрое обнаружение гомологии белков на основе моделей без выравнивания» . Биоинформатика . 23 (14): 1728–1736. doi : 10.1093/биоинформатика/btm247 . ПМИД 17488755 .
- ^ Тиреу, Т.; Речко, М. (2007). «Двунаправленные сети долговременной краткосрочной памяти для прогнозирования субклеточной локализации эукариотических белков». Транзакции IEEE/ACM по вычислительной биологии и биоинформатике . 4 (3): 441–446. дои : 10.1109/tcbb.2007.1015 . ПМИД 17666763 . S2CID 11787259 .
- ^ Малхотра, Панкадж; Виг, Лавкеш; Шрофф, Гаутам; Агарвал, Пунит (апрель 2015 г.). «Сети долговременной памяти для обнаружения аномалий во временных рядах» (PDF) . Европейский симпозиум по искусственным нейронным сетям, вычислительному интеллекту и машинному обучению — ESANN 2015 . Архивировано из оригинала (PDF) 30 октября 2020 г. Проверено 21 февраля 2018 г.
- ^ Налог, Н.; Веренич И.; Ла Роза, М.; Дюма, М. (2017). «Прогнозирующий мониторинг бизнес-процессов с помощью нейронных сетей LSTM». Инженерия передовых информационных систем . Конспекты лекций по информатике. Том. 10253. стр. 477–492. arXiv : 1612.02130 . дои : 10.1007/978-3-319-59536-8_30 . ISBN 978-3-319-59535-1 . S2CID 2192354 .
- ^ Чой, Э.; Бахадори, Монтана; Шуец, Э.; Стюарт, В.; Сан, Дж. (2016). «Доктор ИИ: прогнозирование клинических событий с помощью рекуррентных нейронных сетей» . Материалы семинара и конференции JMLR . 56 : 301–318. arXiv : 1511.05942 . Бибкод : 2015arXiv151105942C . ПМК 5341604 . ПМИД 28286600 .
- ^ Цзя, Робин; Лян, Перси (2016). «Рекомбинация данных для нейронного семантического анализа». arXiv : 1606.03622 [ cs.CL ].
- ^ Ван, Ле; Дуань, Сюйхуань; Чжан, Цилинь; Ню, Чжэньсин; Хуа, Банда; Чжэн, Наньнин (22 мая 2018 г.). «Segment-Tube: локализация пространственно-временных действий в необрезанных видео с покадровой сегментацией» (PDF) . Датчики . 18 (5): 1657. Бибкод : 2018Senso..18.1657W . дои : 10.3390/s18051657 . ISSN 1424-8220 . ПМЦ 5982167 . ПМИД 29789447 .
- ^ Дуань, Сюйхуань; Ван, Ле; Чжай, Чанбо; Чжэн, Наньнин; Чжан, Цилинь; Ню, Чжэньсин; Хуа, Банда (2018). «Совместная локализация пространственно-временных действий в необрезанных видео с покадровой сегментацией». 2018 25-я Международная конференция IEEE по обработке изображений (ICIP) . 25-я Международная конференция IEEE по обработке изображений (ICIP). стр. 918–922. дои : 10.1109/icip.2018.8451692 . ISBN 978-1-4799-7061-2 .
- ^ Орсини, Ф.; Гастальди, М.; Мантеккини, Л.; Росси, Р. (2019). Нейронные сети, обученные с помощью трассировок Wi-Fi, прогнозируют поведение пассажиров в аэропорту . 6-я Международная конференция по моделям и технологиям интеллектуальных транспортных систем. Краков: IEEE. arXiv : 1910.14026 . дои : 10.1109/МТИЦ.2019.8883365 . 8883365.
- ^ Чжао, З.; Чен, В.; Ву, Х.; Чен, PCY; Лю, Дж. (2017). «Сеть LSTM: подход глубокого обучения для краткосрочного прогнозирования трафика». ИЭПП Интеллектуальные Транспортные Системы . 11 (2): 68–75. doi : 10.1049/iet-its.2016.0208 . S2CID 114567527 .
- ^ Гупта А., Мюллер А.Т., Хьюсман Б.Дж.Х., Фукс Дж.А., Шнайдер П., Шнайдер Г. (2018). «Генераторные рекуррентные сети для разработки лекарств De Novo» . Мол Информ . 37 (1–2). дои : 10.1002/минф.201700111 . ПМК 5836943 . ПМИД 29095571 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Сайфул Ислам, Мэриленд; Хоссейн, Эмам (26 октября 2020 г.). «Прогнозирование курса иностранной валюты с использованием гибридной сети GRU-LSTM» . Мягкие компьютерные буквы . 3 : 100009. doi : 10.1016/j.socl.2020.100009 . ISSN 2666-2221 .
- ^ {{Цитируйте Эбби Мартин, Эндрю Дж. Хилл, Константин М. Зайлер и Мехала Баламурали (2023) Автоматическое распознавание действий экскаватора и локализация необрезанного видео с использованием гибридных сетей LSTM-трансформатора, Международный журнал горного дела, мелиорации и окружающей среды, DOI: 10.1080 /17480930.2023.2290364}}
- ^ Мозер, Майк (1989). «Алгоритм сфокусированного обратного распространения ошибки для распознавания временных образов». Сложные системы .
- ^ Шмидхубер, Юрген (2022). «Аннотированная история современного искусственного интеллекта и глубокого обучения». arXiv : 2212.11279 [ cs.NE ].
- ^ Зепп Хохрайтер ; Юрген Шмидхубер (21 августа 1995 г.), Долгосрочная память , Викиданные Q98967430
- ^ Jump up to: а б с Клаус Грефф; Рупеш Кумар Шривастава; Ян Кутник; Бас Р. Стойнебринк; Юрген Шмидхубер (2015). «LSTM: Поисковая космическая одиссея». Транзакции IEEE в нейронных сетях и системах обучения . 28 (10): 2222–2232. arXiv : 1503.04069 . Бибкод : 2015arXiv150304069G . дои : 10.1109/TNNLS.2016.2582924 . ПМИД 27411231 . S2CID 3356463 .
- ^ Jump up to: а б с Герс, Феликс; Шмидхубер, Юрген; Камминс, Фред (1999). «Учимся забывать: постоянное предсказание с помощью LSTM». 9-я Международная конференция по искусственным нейронным сетям: ICANN '99 . Том. 1999. стр. 850–855. дои : 10.1049/cp:19991218 . ISBN 0-85296-721-7 .
- ^ Jump up to: а б с д и ж г Шмидхубер, Юрген (10 мая 2021 г.). «Глубокое обучение: наш чудесный 1990–1991 год». arXiv : 2005.05744 [ cs.NE ].
- ^ Хохрейтер, С.; Младший, А.С.; Конвелл, PR (2001). «Учимся учиться с помощью градиентного спуска». Искусственные нейронные сети — ICANN 2001 (PDF) . Конспекты лекций по информатике. Том. 2130. стр. 87–94. CiteSeerX 10.1.1.5.323 . дои : 10.1007/3-540-44668-0_13 . ISBN 978-3-540-42486-4 . ISSN 0302-9743 . S2CID 52872549 .
- ^ Грейвс, Алекс; Беринджер, Николь; Эк, Дуглас; Шмидхубер, Юрген (2004). Биологически правдоподобное распознавание речи с помощью нейронных сетей LSTM . Семинар по биологическим подходам к передовым информационным технологиям, Bio-ADIT 2004, Лозанна, Швейцария. стр. 175–184.
- ^ Jump up to: а б Бофе, Франсуаза (11 августа 2015 г.). «Нейронные сети, лежащие в основе транскрипции Google Voice» . Исследовательский блог . Проверено 27 июня 2017 г.
- ^ Jump up to: а б Сак, Хашим; Старший, Эндрю; Рао, Канишка; Бофе, Франсуаза; Шалквик, Йохан (24 сентября 2015 г.). «Голосовой поиск Google: быстрее и точнее» . Исследовательский блог . Проверено 27 июня 2017 г.
- ^ Jump up to: а б Хариди, Рич (21 августа 2017 г.). «Система распознавания речи Microsoft теперь не хуже человека» . newatlas.com . Проверено 27 августа 2017 г.
- ^ Виерстра, Даан; Ферстер, Александр; Петерс, Ян; Шмидхубер, Юрген (2005). «Решение POMDP глубокой памяти с повторяющимися градиентами политики» . Международная конференция по искусственным нейронным сетям ICANN'07 .
- ^ Маргнер, Фолькер; Абед, Хайкал Эль (июль 2009 г.). «Конкурс ICDAR 2009 по распознаванию арабского почерка». 2009 10-я Международная конференция по анализу и распознаванию документов . стр. 1383–1387. дои : 10.1109/ICDAR.2009.256 . ISBN 978-1-4244-4500-4 . S2CID 52851337 .
- ^ Байер, Джастин; Виерстра, Даан; Тогелиус, Джулиан; Шмидхубер, Юрген (2009). «Развитие структур ячеек памяти для последовательного обучения». Международная конференция по искусственным нейронным сетям ICANN'09, Кипр .
- ^ Чо, Кёнхён; ван Мерриенбур, Барт; Гульчере, Чаглар; Богданов Дмитрий; Бугарес, Фетхи; Швенк, Хольгер; Бенджио, Йошуа (2014). «Изучение представлений фраз с использованием кодера-декодера RNN для статистического машинного перевода». arXiv : 1406.1078 [ cs.CL ].
- ^ «Неоновый рецепт… а точнее, Новая транскрипция для Google Voice» . Официальный блог Google . 23 июля 2015 года . Проверено 25 апреля 2020 г.
- ^ Шривастава, Рупеш Кумар; Грефф, Клаус; Шмидхубер, Юрген (2 мая 2015 г.). «Дорожные сети». arXiv : 1505.00387 [ cs.LG ].
- ^ Шривастава, Рупеш К; Грефф, Клаус; Шмидхубер, Юрген (2015). «Обучение очень глубоких сетей» . Достижения в области нейронных систем обработки информации . 28 . Curran Associates, Inc.: 2377–2385.
- ^ Jump up to: а б Шмидхубер, Юрген (2021). «Все наиболее цитируемые нейронные сети основаны на работе, проделанной в моих лабораториях» . Блог ИИ . ИДСИА, Швейцария . Проверено 30 апреля 2022 г.
- ^ Он, Кайминг; Чжан, Сянъюй; Рен, Шаоцин; Сунь, Цзянь (2016). Глубокое остаточное обучение для распознавания изображений . Конференция IEEE 2016 по компьютерному зрению и распознаванию образов (CVPR) . Лас-Вегас, Невада, США: IEEE. стр. 770–778. arXiv : 1512.03385 . дои : 10.1109/CVPR.2016.90 . ISBN 978-1-4673-8851-1 .
- ^ Хайтан, Пранав (18 мая 2016 г.). «Общайтесь с Allo умнее» . Исследовательский блог . Проверено 27 июня 2017 г.
- ^ Мец, Кейд (27 сентября 2016 г.). «Внедрение искусственного интеллекта делает Google Translate более мощным, чем когда-либо | WIRED» . Проводной . Проверено 27 июня 2017 г.
- ^ «Нейронная сеть для машинного перевода в промышленном масштабе» . Блог Google AI . 27 сентября 2016 г. Проверено 25 апреля 2020 г.
- ^ Эфрати, Амир (13 июня 2016 г.). «Машины Apple тоже могут учиться» . Информация . Проверено 27 июня 2017 г.
- ^ Рейнджер, Стив (14 июня 2016 г.). «iPhone, искусственный интеллект и большие данные: вот как Apple планирует защитить вашу конфиденциальность» . ЗДНет . Проверено 27 июня 2017 г.
- ^ «Может ли глобальный семантический контекст улучшить модели нейронного языка? – Apple» . Журнал Apple по машинному обучению . Проверено 30 апреля 2020 г.
- ^ Смит, Крис (13 июня 2016 г.). «iOS 10: Siri теперь работает в сторонних приложениях и оснащена дополнительными функциями искусственного интеллекта» . БГР . Проверено 27 июня 2017 г.
- ^ Кейпс, Тим; Коулз, Пол; Конки, Алистер; Голипур, Ладан; Хаджитархани, Аби; Ху, Цюн; Хаддлстон, Нэнси; Хант, Мелвин; Ли, Цзянчуань; Ниракер, Матиас; Прахаллад, Кишор (20 августа 2017 г.). «Система преобразования текста в речь, управляемая с помощью глубокого обучения Siri на устройстве» . Интерспич 2017 . ISCA: 4011–4015. doi : 10.21437/Interspeech.2017-1798 .
- ^ Фогельс, Вернер (30 ноября 2016 г.). «Привнесение волшебства Amazon AI и Alexa в приложения на AWS. – Все распределено» . www.allthingsdistributed.com . Проверено 27 июня 2017 г.
- ^ «Подтипирование пациентов с помощью сетей LSTM с учетом времени» (PDF) . msu.edu . Проверено 21 ноября 2018 г.
- ^ «Подтипирование пациентов с помощью сетей LSTM с учетом времени» . Кдд.орг . Проверено 24 мая 2018 г.
- ^ «СИГКДД» . Кдд.орг . Проверено 24 мая 2018 г.
- ^ Бек, Максимилиан; Пеппель, Корбиниан; Спанринг, Маркус; Ауэр, Андреас; Прудникова, Александра; Копп, Майкл; Кламбауэр, Гюнтер; Брандштеттер, Йоханнес; Хохрайтер, Зепп (07 мая 2024 г.). «xLSTM: расширенная долгосрочная краткосрочная память». arXiv : 2405.04517 [ cs.LG ].
- ^ NX-AI/xlstm , NXAI, 04 июня 2024 г. , получено 4 июня 2024 г.
Дальнейшее чтение
[ редактировать ]- Моннер, Дерек Д.; Реджиа, Джеймс А. (2010). «Обобщенный LSTM-подобный алгоритм обучения для рекуррентных нейронных сетей второго порядка» (PDF) . Нейронные сети . 25 (1): 70–83. дои : 10.1016/j.neunet.2011.07.003 . ПМК 3217173 . ПМИД 21803542 .
Высокопроизводительное расширение LSTM, упрощенное до одного типа узла и способное обучать произвольные архитектуры.
- Герс, Феликс А.; Шраудольф, Никол Н.; Шмидхубер, Юрген (август 2002 г.). «Изучение точного времени с помощью рекуррентных сетей LSTM» (PDF) . Журнал исследований машинного обучения . 3 : 115–143.
- Герс, Феликс (2001). «Долгая краткосрочная память в рекуррентных нейронных сетях» (PDF) . Кандидатская диссертация .
- Абидогун, Олусола Аденийи (2005). Интеллектуальный анализ данных, обнаружение мошенничества и мобильные телекоммуникации: анализ шаблонов вызовов с помощью неконтролируемых нейронных сетей . Магистерская диссертация (Диссертация). Университет Западного Кейпа. hdl : 11394/249 . Архивировано (PDF) из оригинала 22 мая 2012 г.
- оригинал с двумя главами, посвященными объяснению рекуррентных нейронных сетей, особенно LSTM.
Внешние ссылки
[ редактировать ]- Рекуррентные нейронные сети с более чем 30 статьями LSTM группы Юргена Шмидхубера в IDSIA
- Дельфин, Р. (12 ноября 2021 г.). «Сети LSTM — подробное объяснение» . Статья .
- Герта, Кристиан. «Как реализовать LSTM в Python с помощью Theano» . Учебник .
- ^ Эбби Мартин, Эндрю Дж. Хилл, Константин М. Зайлер и Мехала Баламурали (2023) Автоматическое распознавание действий экскаватора и локализация необрезанного видео с использованием гибридных сетей LSTM-трансформатора, Международный журнал горного дела, мелиорации и окружающей среды, DOI: 10.1080/17480930.2023. 2290364