Химическая полярность
Эта статья нуждается в дополнительных цитатах для проверки . ( январь 2015 г. ) |
В химии молекула полярность — это разделение электрического заряда, приводящее к тому, что или ее химические группы имеют электрический дипольный момент с отрицательно заряженным концом и положительно заряженным концом.
Полярные молекулы должны содержать одну или несколько полярных связей из-за разницы в электроотрицательности связанных атомов. Молекулы, содержащие полярные связи, не имеют молекулярной полярности, если диполи связей компенсируют друг друга по симметрии.
Полярные молекулы взаимодействуют посредством диполь-дипольных межмолекулярных сил и водородных связей . Полярность лежит в основе ряда физических свойств, включая поверхностное натяжение , растворимость , температуры плавления и кипения.
Полярность облигаций
[ редактировать ]Не все атомы притягивают электроны с одинаковой силой. Величина «притяжения», которое атом оказывает на свои электроны, называется его электроотрицательностью . Атомы с высокой электроотрицательностью, такие как фтор , кислород и азот , оказывают большее притяжение к электронам, чем атомы с более низкой электроотрицательностью, такие как щелочные и щелочноземельные металлы . В связи это приводит к неравномерному распределению электронов между атомами, поскольку электроны будут притягиваться ближе к атому с более высокой электроотрицательностью.
Поскольку электроны имеют отрицательный заряд, неравномерное распределение электронов внутри связи приводит к образованию электрического диполя : разделения положительного и отрицательного электрического заряда. Поскольку количество заряда, выделяемого в таких диполях, обычно меньше основного заряда , их называют частичными зарядами и обозначают как δ+ ( дельта плюс) и δ− (дельта минус). Эти символы были введены сэром Кристофером Ингольдом и Эдит Хильдой (Ашервуд) Ингольд в 1926 году. [1] [2] Дипольный момент связи рассчитывается путем умножения количества разделенных зарядов на расстояние между зарядами.
Эти диполи внутри молекул могут взаимодействовать с диполями в других молекулах, создавая диполь-дипольные межмолекулярные силы .
Классификация
[ редактировать ]Облигации могут находиться между одной из двух крайностей – полностью неполярной или полностью полярной. Полностью неполярная связь возникает, когда электроотрицательности одинаковы и, следовательно, имеют нулевую разность. Полностью полярная связь правильнее называть ионной связью и возникает, когда разница между электроотрицательностями настолько велика, что один атом фактически забирает электрон у другого. Термины «полярный» и «неполярный» обычно применяются к ковалентным связям , то есть к связям, в которых полярность не является полной. Для определения полярности ковалентной связи численными методами используется разница электроотрицательностей атомов.
Полярность связи обычно делится на три группы, которые в общих чертах основаны на разнице электроотрицательности между двумя связанными атомами. По шкале Полинга :
- Неполярные связи обычно возникают, когда разница в электроотрицательности между двумя атомами меньше 0,5.
- Полярные связи обычно возникают, когда разница в электроотрицательности между двумя атомами составляет примерно от 0,5 до 2,0.
- Ионные связи обычно возникают, когда разница в электроотрицательности между двумя атомами превышает 2,0.
Полинг основал эту схему классификации на частичном ионном характере связи, который является приблизительной функцией разницы в электроотрицательности между двумя связанными атомами. Он подсчитал, что разница в 1,7 соответствует 50% ионному характеру, так что большая разница соответствует преимущественно ионной связи. [3]
В качестве квантовомеханического описания Полинг предположил, что волновая функция полярной молекулы AB представляет собой линейную комбинацию волновых функций ковалентных и ионных молекул: ψ = aψ(A:B) + bψ(A + Б − ). Сумма ковалентного и ионного характера зависит от значений квадратов коэффициентов a 2 и б 2 . [4]
Дипольные моменты связи
[ редактировать ]связи Дипольный момент [5] использует идею электрического дипольного момента для измерения полярности химической связи внутри молекулы . Это происходит всякий раз, когда происходит разделение положительных и отрицательных зарядов.
Диполь связи μ определяется выражением:
- .
Диполь связи моделируется как δ + — д – с расстоянием d между парциальными зарядами δ + и δ – . Это вектор, параллельный оси связи, направленный от минуса к плюсу, [6] как это принято для векторов электрического дипольного момента .
Химики часто рисуют вектор от плюса к минусу. [7] Этот вектор можно физически интерпретировать как движение, которому подвергаются электроны, когда два атома расположены на расстоянии d друг от друга и им разрешено взаимодействовать, электроны будут перемещаться из своих положений в свободном состоянии и больше локализоваться вокруг более электроотрицательного атома.
Единицей электрического дипольного момента в системе СИ является кулон-метр. Это слишком велико, чтобы быть практичным в молекулярном масштабе. Дипольные моменты связи обычно измеряются в дебаях , обозначаемых символом D, который получается путем измерения заряда. в количестве 10 −10 статкулон и расстояние d в ангстремах . На основе пересчета коэффициента 10 −10 статкулон составляет 0,208 единицы элементарного заряда, поэтому 1,0 дебая получается из-за того, что электрон и протон разделены на 0,208 Å. Полезный коэффициент преобразования: 1 D = 3,335 64 × 10. −30 См. [8]
Для двухатомных молекул существует только одна (одинарная или множественная) связь, поэтому дипольный момент связи представляет собой молекулярный дипольный момент с типичными значениями в диапазоне от 0 до 11 Д. С одной стороны, симметричная молекула, такая как бром , Br
2 , имеет нулевой дипольный момент, в то время как вблизи другого полюса газовая фаза бромида калия KBr, который является высокоионным, имеет дипольный момент 10,41 Д. [9] [ нужна страница ] [10] [ нужна проверка ]
В многоатомных молекулах имеется более одной связи. Полный дипольный момент молекулы можно аппроксимировать как векторную сумму дипольных моментов отдельных связей. Часто диполи связи получают обратным процессом: известный полный диполь молекулы можно разложить на диполи связи. Это делается для передачи дипольных моментов связей молекулам, имеющим такие же связи, но для которых полный дипольный момент еще не известен. Векторная сумма переданных диполей связей дает оценку полного (неизвестного) диполя молекулы.
Полярность молекул
[ редактировать ]Молекула состоит из одной или нескольких химических связей между молекулярными орбиталями разных атомов. Молекула может быть полярной либо в результате полярных связей из-за различий в электроотрицательности , как описано выше, либо в результате асимметричного расположения неполярных ковалентных связей и несвязывающих пар электронов, известного как полная молекулярная орбиталь .
Хотя молекулы можно описать как «полярно-ковалентные», «неполярно-ковалентные» или «ионные», часто это относительный термин: одна молекула просто более полярна или более неполярна , чем другая. Однако для таких молекул характерны следующие свойства.
Точка кипения
[ редактировать ]При сравнении полярной и неполярной молекулы с одинаковой молярной массой полярная молекула, как правило, имеет более высокую температуру кипения, поскольку диполь-дипольное взаимодействие между полярными молекулами приводит к более сильному межмолекулярному притяжению. Одной из распространенных форм полярного взаимодействия является водородная связь , также известная как Н-связь. Например, вода образует Н-связи и имеет молярную массу М = 18 и температуру кипения +100 °С по сравнению с неполярным метаном с М = 16 и температурой кипения –161 °С.
Растворимость
[ редактировать ]Из-за полярной природы самой молекулы воды другие полярные молекулы обычно растворяются в воде. Большинство неполярных молекул нерастворимы в воде ( гидрофобны ) при комнатной температуре. Многие неполярные органические растворители , например скипидар , способны растворять неполярные вещества.
Поверхностное натяжение
[ редактировать ]Полярные соединения имеют тенденцию иметь более высокое поверхностное натяжение , чем неполярные соединения. [ нужна ссылка ]
Капиллярное действие
[ редактировать ]Полярные жидкости имеют тенденцию подниматься против силы тяжести в трубке малого диаметра. [ нужна ссылка ]
Вязкость
[ редактировать ]Полярные жидкости имеют тенденцию быть более вязкими , чем неполярные жидкости. [ нужна ссылка ] Например, неполярный гексан гораздо менее вязкий, чем полярная вода. Однако размер молекулы является гораздо более сильным фактором вязкости, чем полярность, поскольку соединения с более крупными молекулами более вязкие, чем соединения с меньшими молекулами. [ нужна ссылка ] Таким образом, вода (маленькие полярные молекулы) менее вязкая, чем гексадекан (крупные неполярные молекулы).
Примеры
[ редактировать ]Полярные молекулы
[ редактировать ]Полярная молекула имеет чистый диполь в результате противоположных зарядов (т.е. наличия частичных положительных и частичных отрицательных зарядов) полярных связей, расположенных асимметрично. Вода (H 2 O) является примером полярной молекулы, поскольку она имеет небольшой положительный заряд с одной стороны и небольшой отрицательный заряд с другой. Диполи не компенсируются, в результате чего получается чистый диполь. Дипольный момент воды зависит от ее состояния. В газовой фазе дипольный момент составляет ≈ 1,86 дебай (Д), [11] тогда как жидкая вода (≈ 2,95 Д) [12] и лед (≈ 3,09 Д) [13] выше из-за различных сред с водородными связями. Другие примеры включают сахара (например, сахарозу ), которые имеют много полярных кислородно-водородных (-OH) групп и в целом являются высокополярными.
Если дипольные моменты связи молекулы не сокращаются, молекула полярна. Например, молекула воды (H 2 O) содержит две полярные связи O-H в изогнутой (нелинейной) геометрии. Дипольные моменты связи не компенсируются, так что молекула образует молекулярный диполь с отрицательным полюсом у кислорода и положительным полюсом посередине между двумя атомами водорода. На рисунке каждая связь соединяет центральный атом O с отрицательным зарядом (красный) с атомом H с положительным зарядом (синий).
Молекула фтороводорода HF полярна в силу полярных ковалентных связей – в ковалентной связи электроны смещены в сторону более электроотрицательного атома фтора.
Аммиак , NH 3 , представляет собой молекулу, три связи N-H которой имеют лишь небольшую полярность (в сторону более электроотрицательного атома азота). Молекула имеет два одиноких электрона на орбитали, которая направлена к четвертой вершине приблизительно правильного тетраэдра, как предсказывает теория VSEPR . Эта орбиталь не участвует в ковалентной связи; он богат электронами, что приводит к образованию мощного диполя по всей молекуле аммиака.
В молекулах озона (О 3 ) две связи О-О неполярны (нет разницы в электроотрицательности между атомами одного и того же элемента). Однако распределение других электронов неравномерно - поскольку центральный атом должен делиться электронами с двумя другими атомами, а каждый из внешних атомов должен делиться электронами только с одним другим атомом, центральный атом более лишен электронов, чем остальные. (центральный атом имеет формальный заряд +1, а каждый из внешних атомов имеет формальный заряд – 1 ⁄ 2 ). Поскольку молекула имеет изогнутую геометрию, в результате образуется диполь поперек всей молекулы озона.
Неполярные молекулы
[ редактировать ]Молекула может быть неполярной либо при равном распределении электронов между двумя атомами двухатомной молекулы, либо из-за симметричного расположения полярных связей в более сложной молекуле. Например, трифторид бора (BF 3 ) имеет тригонально-планарное расположение трех полярных связей под углом 120°. Это приводит к отсутствию общего диполя в молекуле.
Диоксид углерода (CO 2 ) имеет две полярные связи C=O, но геометрия CO 2 линейна, так что дипольные моменты двух связей компенсируются и суммарный молекулярный дипольный момент отсутствует; молекула неполярна.
Примеры бытовых неполярных соединений включают жиры, масло и бензин/бензин.
В молекуле метана (СН 4 ) четыре связи С-Н расположены тетраэдрически вокруг атома углерода. Каждая связь имеет полярность (хотя и не очень прочную). Связи расположены симметрично, поэтому в молекуле нет общего диполя. Двухатомная молекула кислорода (О 2 ) не имеет полярности в ковалентной связи из-за равной электроотрицательности, следовательно, полярности в молекуле нет.
Амфифильные молекулы
[ редактировать ]Большие молекулы, у которых на одном конце присоединены полярные группы, а на другом конце - неполярные группы, называются амфифилами или амфифильными молекулами. Они являются хорошими поверхностно-активными веществами и могут способствовать образованию стабильных эмульсий или смесей воды и жиров. Поверхностно-активные вещества уменьшают межфазное натяжение между маслом и водой за счет адсорбции на границе раздела жидкость-жидкость.
- Эта амфифильная молекула имеет несколько полярных групп ( гидрофильных , водолюбивых ) с правой стороны и длинную неполярную цепь ( липофильную , жиролюбивую ) с левой стороны. Это придает ему поверхностно-активные свойства .
- Мицелла заряженные концы остаются – липофильные концы молекул ПАВ растворяются в масле, а гидрофильные снаружи в водной фазе, экранируя остальную часть гидрофобной мицеллы. Таким образом, маленькая капля масла становится водорастворимой.
- Фосфолипиды являются эффективными природными поверхностно-активными веществами, выполняющими важные биологические функции.
- Поперечное сечение структур, которые могут образовываться фосфолипидами . Они могут образовывать мицеллы и жизненно важны для формирования клеточных мембран.
Прогнозирование полярности молекул
[ редактировать ]Формула | Описание | Пример | Имя | Дипольный момент | |
---|---|---|---|---|---|
Полярный | АБ | Линейные молекулы | СО | Окись углерода | 0.112 |
ХА х | Молекулы с одним H | ВЧ | фтороводород | 1.86 | |
А х ОН | Молекулы с ОН на одном конце | С 2 Н 5 ОН | Этанол | 1.69 | |
О х А й | Молекулы с буквой О на одном конце | Н 2 О | Вода | 1.85 | |
Н х А у | Молекулы с буквой N на одном конце | НХ 3 | Аммиак | 1.42 | |
Неполярный | AА2 | Двухатомные молекулы одного и того же элемента | О 2 | Дикислород | 0.0 |
С х А у | Большинство углеводородных соединений | C3HC3H8 | Пропан | 0.083 | |
С х А у | Углеводород с центром инверсии | С 4 Ч 10 | Бутан | 0.0 |
Определение точечной группы — полезный способ предсказать полярность молекулы. В общем, молекула не будет обладать дипольным моментом, если дипольные моменты отдельных связей молекулы уравновешивают друг друга. Это связано с тем, что дипольные моменты представляют собой евклидовы векторные величины с величиной и направлением, а два равных вектора, противостоящие друг другу, уравновешиваются.
Любая молекула с центром инверсии («i») или горизонтальной зеркальной плоскостью («σh » ) не будет обладать дипольными моментами. Аналогично, молекула с более чем одной C n осью вращения не будет обладать дипольным моментом, поскольку дипольные моменты не могут находиться более чем в одном измерении . В результате этого ограничения все молекулы с диэдральной симметрией (D n ) не будут иметь дипольного момента, поскольку по определению точечные группы D имеют две или несколько C n осей .
Поскольку C 1 , C s , C ∞h C n и C n v точечные группы не имеют центра инверсии, горизонтальных зеркальных плоскостей или кратных осей C n , молекулы в одной из этих точечных групп будут иметь дипольный момент.
Электрическое отклонение воды
[ редактировать ]Вопреки распространенному заблуждению, электрическое отклонение потока воды от заряженного объекта не основано на полярности. Отклонение происходит из-за электрически заряженных капель в потоке, который индуцирует заряженный объект. Струя воды также может отклоняться в однородном электрическом поле, которое не может оказывать воздействие на полярные молекулы. Кроме того, после того как поток воды заземлен, его больше нельзя отклонить. Слабое отклонение возможно даже для неполярных жидкостей. [14]
См. также
[ редактировать ]- Химические свойства
- Коллоид
- Моющее средство
- Электроотрицательности элементов (страница данных)
- Группа полярных точек
Ссылки
[ редактировать ]- ^ Дженсен, Уильям Б. (2009). «Происхождение символа «дельта» для дробных зарядов» . Дж. Хим. Образование . 86 (5): 545. Бибкод : 2009JChEd..86..545J . дои : 10.1021/ed086p545 .
- ^ Ингольд, СК; Ингольд, Э.Х. (1926). «Природа знакопеременного эффекта в углеродных цепях. Часть V. Обсуждение ароматического замещения с особым упором на соответствующие роли полярной и неполярной диссоциации; и дальнейшее исследование относительной направленной эффективности кислорода и азота». Дж. Хим. Соц . 129 : 1310–1328. дои : 10.1039/jr9262901310 .
- ^ Полинг, Л. (1960). Природа химической связи (3-е изд.). Издательство Оксфордского университета. стр. 98–100 . ISBN 0801403332 .
- ^ Полинг, Л. (1960). Природа химической связи (3-е изд.). Издательство Оксфордского университета. п. 66 . ISBN 0801403332 .
- ^ Блабер, Майк (2018). «Диполь_Моменты» . Свободные тексты . Калифорнийский государственный университет.
- ^ ИЮПАК , Сборник химической терминологии , 2-е изд. («Золотая книга») (1997). Онлайн-исправленная версия: (2006–) « Электрический дипольный момент, п ». doi : 10.1351/goldbook.E01929
- ^ Ховик, Джеймс В.; Полер, Дж. К. (2005). «Заблуждения в условных обозначениях: изменение электрического дипольного момента». Дж. Хим. Образование . 82 (6): 889. Бибкод : 2005JChEd..82..889H . дои : 10.1021/ed082p889 .
- ^ Аткинс, Питер; де Паула, Хулио (2006). Физическая химия (8-е изд.). У. Х. Фриман. п. 620 (и внутри передней обложки) . ISBN 0-7167-8759-8 .
- ^ Физическая химия, 2-е издание (1966) GM Барроу МакГроу Хилл
- ^ Ван Вахем, Р.; Де Леу, FH; Дайманус, А. (1967). «Дипольные моменты KF и KBr, измеренные методом молекулярно-лучевого электрорезонанса». Дж. Хим. Физ . 47 (7):2256. Бибкод : 1967ЖЧФ..47.2256В . дои : 10.1063/1.1703301 .
- ^ Клаф, Шепард А.; Бирс, Ярдли; Кляйн, Джеральд П.; Ротман, Лоуренс С. (1 сентября 1973 г.). «Дипольный момент воды по измерениям Штарком H2O, HDO и D2O». Журнал химической физики . 59 (5): 2254–2259. Бибкод : 1973JChPh..59.2254C . дои : 10.1063/1.1680328 .
- ^ Губская Анна Владимировна; Кусалик, Питер Г. (27 августа 2002 г.). «Полный молекулярный дипольный момент жидкой воды» . Журнал химической физики . 117 (11): 5290–5302. Бибкод : 2002JChPh.117.5290G . дои : 10.1063/1.1501122 .
- ^ Батиста, Генри Р.; Ксанфей, Сотирис С.; Йонссон, Ханнес (15 сентября 1998 г.). «Молекулярные мультипольные моменты молекул воды во льду Ih». Журнал химической физики . 109 (11): 4546–4551. Бибкод : 1998JChPh.109.4546B дои : 10.1063/1.477058 .
- ^ Зиаи-Моайед, Марьям; Гудман, Эдвард; Уильямс, Питер (1 ноября 2000 г.). «Электрическое отклонение полярных потоков жидкости: неправильно понятая демонстрация». Журнал химического образования . 77 (11): 1520. Бибкод : 2000JChEd..77.1520Z . дои : 10.1021/ed077p1520 . ISSN 0021-9584 .