Обратная задача
Обратная задача в науке — это процесс расчета по совокупности наблюдений причинных факторов, их породивших: например, расчет изображения в рентгеновской компьютерной томографии , реконструкция источника в акустике или расчет плотности Земли по измерениям его гравитационное поле . Это называется обратной задачей, потому что она начинается со следствий, а затем вычисляет причины. Это обратная задача, которая начинается с причин, а затем рассчитывает последствия.
Обратные задачи являются одними из наиболее важных математических задач в науке и математике , поскольку они сообщают нам о параметрах, которые мы не можем наблюдать напрямую. Они широко применяются в системах идентификации , оптике , радиолокации , акустике , теории связи , обработке сигналов , медицинской визуализации , компьютерном зрении , [1] [2] геофизика , океанография , астрономия , дистанционное зондирование , обработка естественного языка , машинное обучение , [3] неразрушающий контроль , анализ устойчивости откосов [4] и многие другие области. [ нужна ссылка ]
История
[ редактировать ]Начинать со следствий и искать причины волновало физиков на протяжении веков. Историческим примером являются расчеты Адамса и Леверье, приведшие к открытию Нептуна по возмущенной траектории Урана . Однако формальное исследование обратных задач началось только в 20 веке.
Один из самых ранних примеров решения обратной задачи был обнаружен Германом Вейлем и опубликован в 1911 году, описывая асимптотическое поведение собственных значений оператора Лапласа-Бельтрами . [5] Сегодня известный как закон Вейля , его, пожалуй, легче всего понять как ответ на вопрос, можно ли услышать форму барабана . Вейль предположил, что собственные частоты барабана будут связаны с площадью и периметром барабана определенным уравнением, и этот результат был улучшен более поздними математиками.
К области обратных задач позднее затронул советско - армянский физик Виктор Амбарцумян . [6] [7]
Еще будучи студентом, Амбарцумян тщательно изучил теорию атомного строения, образования энергетических уровней, уравнение Шрёдингера и его свойства, а когда освоил теорию собственных значений дифференциальных уравнений , указал на кажущуюся аналогию между дискретными уровнями энергии. и собственные значения дифференциальных уравнений. Затем он спросил: возможно ли, учитывая семейство собственных значений, найти форму уравнений, собственными значениями которых они являются? По сути, Амбарцумян исследовал обратную задачу Штурма–Лиувилля , которая касалась определения уравнений колеблющейся струны. Эта статья была опубликована в 1929 году в немецком физическом журнале Zeitschrift für Physik и довольно долгое время оставалась в безвестности. Описывая эту ситуацию спустя многие десятилетия, Амбарцумян сказал: «Если астроном опубликует в физическом журнале статью математического содержания, то, скорее всего, с ним произойдет забвение».
Тем не менее, к концу Второй мировой войны эта статья, написанная 20-летним Амбарцумяном, была найдена шведскими математиками и послужила отправной точкой для целого направления исследований обратных задач, став фундаментом целой дисциплина.
Затем важные усилия были посвящены «прямому решению» обратной задачи рассеяния, особенно Гельфандом и Левитаном в Советском Союзе. [8] Они предложили аналитический конструктивный метод определения решения. Когда стали доступны компьютеры, некоторые авторы исследовали возможность применения своего подхода к аналогичным задачам, таким как обратная задача в одномерном волновом уравнении. Но быстро выяснилось, что инверсия — нестабильный процесс: шум и ошибки могут значительно усилиться, что сделает прямое решение практически невозможным.Затем, примерно в семидесятые годы, появились методы наименьших квадратов и вероятностные подходы, которые оказались очень полезными для определения параметров, участвующих в различных физических системах. Этот подход имел большой успех. В настоящее время обратные задачи исследуются и в других областях, помимо физики, таких как химия, экономика и информатика. В конце концов, когда числовые модели станут преобладать во многих частях общества, мы можем ожидать возникновения обратной проблемы, связанной с каждой из этих числовых моделей.
Концептуальное понимание
[ редактировать ]Со времен Ньютона учёные активно пытались смоделировать мир. В частности, когда доступна математическая модель (например, закон гравитации Ньютона или уравнение электростатики Кулона), мы можем предвидеть, зная некоторые параметры, описывающие физическую систему (например, распределение массы или распределение электрических зарядов), поведение системы. Этот подход известен как математическое моделирование, а вышеупомянутые физические параметры называются параметрами модели или просто моделью . Точнее, введем понятие состояния физической системы : это решение уравнения математической модели. В теории оптимального управления эти уравнения называются уравнениями состояния . Во многих ситуациях нас действительно интересует не физическое состояние, а лишь его влияние на некоторые объекты (например, влияние гравитационного поля на конкретную планету). Следовательно, нам необходимо ввести еще один оператор, называемый оператором наблюдения. , который преобразует состояние физической системы (здесь предсказанное гравитационное поле) в то, что мы хотим наблюдать (здесь движения рассматриваемой планеты). Теперь мы можем представить так называемую прямую задачу , которая состоит из двух шагов:
- определение состояния системы по описывающим ее физическим параметрам
- применение оператора наблюдения к предполагаемому состоянию системы, чтобы предсказать поведение того, что мы хотим наблюдать.
Это приводит к введению еще одного оператора ( F означает «вперед»), что отображает параметры модели. в , данные, моделирующие предсказывает, что это результат этой двухэтапной процедуры. Оператор называется прямым оператором или прямой картой .В этом подходе мы в основном пытаемся предсказать последствия, зная причины.
В приведенной ниже таблице показаны параметры модели, описывающие систему, физическая величина, описывающая состояние физической системы, а также наблюдения, обычно проводимые за состоянием системы (при рассмотрении Земли как физической системы и для различных физических явлений).
Основные уравнения | Параметры модели (вход модели) | Состояние физической системы | Общие наблюдения о системе | |
---|---|---|---|---|
Закон гравитации Ньютона | Распределение массы | Гравитационное поле | Измерения, выполненные гравиметрами в разных местах поверхности. | |
Уравнения Максвелла | Распределение магнитной восприимчивости | Магнитное поле | Магнитное поле, измеренное в различных местах поверхности магнитометрами (случай устойчивого состояния) | |
Волновое уравнение | Распределение скоростей и плотностей волн | Волновое поле, вызванное искусственными или естественными сейсмическими источниками. | Скорость частиц измеряется сейсмометрами, расположенными в разных местах поверхности. | |
Уравнение диффузии | Распределение коэффициента диффузии | Распространение концентрации материала как функция пространства и времени | Мониторинг этой концентрации, измеренной в разных местах |
В подходе обратной задачи мы, грубо говоря, пытаемся узнать причины с учетом следствий.
Общая постановка обратной задачи
[ редактировать ]Обратная задача является «обратной» прямой задачей: вместо определения данных, создаваемых конкретными параметрами модели, мы хотим определить параметры модели, которые создают данные. это наблюдение, которое мы записали (индекс obs означает «наблюдалось»).Другими словами, наша цель – определить параметры модели. такой, что (хотя бы приблизительно) где это передняя карта. Обозначим через (возможно, бесконечное) количество параметров модели, и количество записанных данных.Мы введем некоторые полезные понятия и связанные с ними обозначения, которые будут использоваться ниже:
- Пространство моделей, обозначаемое : векторное пространство, охватываемое параметрами модели; у него есть размеры;
- Пространство данных , обозначаемое : если мы организуем измеренные образцы в вектор с компоненты (если наши измерения состоят из функций, — векторное пространство бесконечных измерений);
- : ответ модели ; он состоит из данных, предсказанных моделью ;
- : образ согласно прямой карте, это подмножество (но не подпространство, если только линейна) составлена из откликов всех моделей;
- : несоответствия данных (или остатки), связанные с моделью. : их можно расположить как вектор, элемент .
Понятие остатков очень важно: в рамках поиска модели, соответствующей данным, их анализ показывает, можно ли рассматриваемую модель считать реалистичной или нет . Систематические нереалистичные расхождения между данными и ответами модели также показывают, что прогнозная карта неадекватна, и могут дать представление об улучшенной прогнозной карте.
Когда оператор линейна, обратная задача линейна. В противном случае, что чаще всего, обратная задача является нелинейной.Кроме того, модели не всегда могут быть описаны конечным числом параметров. Это тот случай, когда мы ищем распределенные параметры (например, распределение скоростей волн): в таких случаях целью обратной задачи является получение одной или нескольких функций. Такие обратные задачи являются обратными задачами бесконечной размерности.
Линейные обратные задачи
[ редактировать ]В случае линейного прямого отображения и когда мы имеем дело с конечным числом параметров модели, прямое отображение можно записать в виде линейной системы где — матрица , характеризующая прямую карту.
Элементарный пример: гравитационное поле Земли.
[ редактировать ]Лишь немногие физические системы действительно линейны по отношению к параметрам модели. Одной из таких систем геофизики является гравитационное поле Земли . Гравитационное поле Земли определяется распределением плотности Земли в недрах. Поскольку литология Земли меняется весьма существенно, мы можем наблюдать мельчайшие различия в гравитационном поле Земли на поверхности Земли. Из нашего понимания гравитации (закона гравитации Ньютона) мы знаем, что математическое выражение гравитации таково: здесь является мерой местного гравитационного ускорения, — универсальная гравитационная постоянная , - это локальная масса (которая связана с плотностью) породы в недрах и – расстояние от массы до точки наблюдения.
Дискретизируя приведенное выше выражение, мы можем связать дискретные данные наблюдений на поверхности Земли с параметрами дискретной модели (плотностью) в недрах, о которых мы хотим узнать больше. Например, рассмотрим случай, когда у нас есть измерения, проведенные в 5 точках на поверхности Земли. В этом случае наш вектор данных, — вектор-столбец размерности (5×1): его -й компонент связан с -я точка наблюдения. Мы также знаем, что у нас есть только пять неизвестных масс. в недрах (нереалистично, но используется для демонстрации концепции) с известным местоположением: мы обозначаем расстояние между -е место наблюдения и -я масса. Таким образом, мы можем построить линейную систему, связывающую пять неизвестных масс с пятью точками данных следующим образом:
Чтобы определить параметры модели, соответствующие нашим данным, мы могли бы инвертировать матрицу. для прямого преобразования измерений в параметры нашей модели. Например: Система с пятью уравнениями и пятью неизвестными представляет собой очень специфическую ситуацию: наш пример был разработан с учетом этой специфики. В общем случае количество данных и неизвестных различно, поэтому матрица не является квадратным.
Однако даже квадратная матрица не может иметь обратной: матрица может быть дефектным по рангу (т.е. иметь нулевое собственное значение) и решение системы не является уникальным. Тогда решение обратной задачи будет неопределенным. Это первая трудность. У переопределенных систем (больше уравнений, чем неизвестных) есть и другие проблемы.Также шум может исказить результаты наших наблюдений. возможно, за пределами космоса возможных реакций на параметры модели, чтобы решение системы может не существовать. Это еще одна трудность.
Инструменты для преодоления первой трудности
[ редактировать ]Первая трудность отражает важную проблему: наши наблюдения не содержат достаточно информации и требуются дополнительные данные. Дополнительные данные могут быть получены из физической априорной информации о значениях параметров, об их пространственном распределении или, в более общем смысле, об их взаимной зависимости. Это также может быть результатом других экспериментов: например, мы можем подумать об интеграции данных, записанных гравиметрами и сейсмографами, для лучшей оценки плотности. Интеграция этой дополнительной информации, по сути, является проблемой статистики . Именно эта дисциплина может ответить на вопрос: Как смешивать количества разной природы? Мы будем более точны в разделе «Байесовский подход» ниже.
Что касается распределенных параметров, априорная информация об их пространственном распределении часто состоит из информации о некоторых производных этих распределенных параметров. Кроме того, обычной практикой, хотя и несколько искусственной, является поиск «простейшей» модели, которая разумно соответствует данным. Обычно это достигается путем наложения штрафов на норма градиента (или суммарного изменения ) параметров (этот подход также называют максимизацией энтропии). Модель также можно упростить за счет параметризации, при которой степени свободы вводятся только при необходимости.
Дополнительная информация также может быть интегрирована посредством ограничений-неравенств на параметры модели или некоторые их функции. Такие ограничения важны, чтобы избежать нереалистичных значений параметров (например, отрицательных значений). В этом случае пространство, охватываемое параметрами модели, будет уже не векторным пространством, а подмножеством допустимых моделей , обозначаемым в продолжении.
Инструменты для преодоления второй трудности
[ редактировать ]Как упоминалось выше, шум может быть таким, что наши измерения не являются отражением какой-либо модели, поэтому мы не можем искать модель, которая производит данные, а скорее ищем лучшую (или оптимальную) модель : то есть ту, которая лучше всего соответствует данным. Это приводит нас к минимизации целевой функции , а именно функционала , который количественно определяет, насколько велики остатки или насколько далеки прогнозируемые данные от наблюдаемых данных. Конечно, когда у нас есть идеальные данные (т.е. нет шума), восстановленная модель должна идеально соответствовать наблюдаемым данным. Стандартная целевая функция, , имеет вид: где – евклидова норма (это будет норма , когда измерения являются функциями, а не выборками) остатков. Этот подход сводится к использованию обычного метода наименьших квадратов , подхода, широко используемого в статистике. Однако известно, что евклидова норма очень чувствительна к выбросам: чтобы избежать этой трудности, мы можем подумать об использовании других расстояний, например норма, взамен норма.
Байесовский подход
[ редактировать ]Вероятностный подход очень похож на метод наименьших квадратов: если мы знаем статистику шума, который загрязняет данные, мы можем подумать о поиске наиболее вероятной модели m, которая соответствует критерию максимального правдоподобия . Если шум является гауссовым , критерий максимального правдоподобия выглядит как критерий наименьших квадратов, при этом евклидово скалярное произведение в пространстве данных заменяется скалярным произведением, включающим ковариацию шума. Кроме того, если бы была доступна предварительная информация о параметрах модели, мы могли бы подумать об использовании байесовского вывода для формулировки решения обратной задачи. Подробно этот подход описан в книге Тарантолы. [9]
Численное решение нашего элементарного примера
[ редактировать ]Здесь мы используем евклидову норму для количественной оценки несоответствия данных. Поскольку мы имеем дело с линейной обратной задачей, целевая функция является квадратичной. Для его минимизации классическим способом является вычисление градиента, используя то же обоснование (как если бы мы минимизировали функцию только одной переменной). В оптимальной модели , этот градиент исчезает, что можно записать как: где F Т обозначает транспонирование матрицы F . Это уравнение упрощается до:
Это выражение известно как нормальное уравнение и дает нам возможное решение обратной задачи. В нашем примере матрица обычно оказывается полным рангом, так что приведенное выше уравнение имеет смысл и однозначно определяет параметры модели: нам не нужно интегрировать дополнительную информацию, чтобы получить уникальное решение.
Математические и вычислительные аспекты
[ редактировать ]Обратные задачи обычно некорректны, в отличие от корректных задач, обычно встречающихся при математическом моделировании. Из трех условий корректности задачи, предложенных Жаком Адамаром (существование, единственность и устойчивость решения или решений), чаще всего нарушается условие устойчивости. В смысле функционального анализа обратная задача представляет собой отображение метрических пространств . Хотя обратные задачи часто формулируются в бесконечномерных пространствах, ограничения на конечное число измерений и практическое рассмотрение восстановления только конечного числа неизвестных параметров могут привести к тому, что проблемы будут переформулированы в дискретной форме. В этом случае обратная задача обычно будет плохо обусловленной . В этих случаях можно использовать регуляризацию , чтобы ввести мягкие предположения о решении и предотвратить переобучение . Многие случаи регуляризованных обратных задач можно интерпретировать как частные случаи байесовского вывода . [10]
Численное решение задачи оптимизации
[ редактировать ]Некоторые обратные задачи имеют очень простое решение, например, когда у вас есть набор неразрешимых функций , то есть набор функции такие, что их вычисление в различные точки дают набор линейно независимых векторов. Это означает, что при наличии линейной комбинации этих функций коэффициенты можно вычислить, расположив векторы в виде столбцов матрицы и затем инвертировав эту матрицу. Простейшим примером функций несостоятельности являются полиномы, построенные с использованием теоремы о несостоятельности так, чтобы быть несостоятельными. Конкретно это делается путем обращения матрицы Вандермонда . Но это очень специфическая ситуация.
В общем случае решение обратной задачи требует сложных алгоритмов оптимизации. Когда модель описывается большим количеством параметров (количество неизвестных, участвующих в некоторых приложениях дифракционной томографии, может достигать одного миллиарда), решение линейной системы, связанной с нормальными уравнениями, может быть громоздким. Численный метод, который будет использоваться для решения задачи оптимизации, зависит, в частности, от затрат, необходимых для вычисления решения. передовой проблемы. После выбора подходящего алгоритма решения прямой задачи (простое умножение матрицы на вектор может оказаться недостаточным, когда матрица огромен), соответствующий алгоритм проведения минимизации можно найти в учебниках, посвященных численным методам решения линейных систем и минимизации квадратичных функций (см., например, Чиарле [11] или Нокедал [12] ).
Кроме того, пользователь может пожелать добавить к моделям физические ограничения: в этом случае он должен быть знаком с методами оптимизации с ограничениями , что само по себе является предметом. Во всех случаях вычисление градиента целевой функции часто является ключевым элементом решения задачи оптимизации. Как упоминалось выше, информация о пространственном распределении распределенного параметра может быть введена посредством параметризации. Можно также подумать об адаптации этой параметризации во время оптимизации. [13]
Если целевая функция будет основана на норме, отличной от евклидовой, нам придется выйти из области квадратичной оптимизации. В результате задача оптимизации усложняется. В частности, когда норма используется для количественной оценки несоответствия данных, целевая функция больше не дифференцируема: ее градиент больше не имеет смысла. Специальные методы (см., например, Лемарешаль [14] ) из недифференцируемой оптимизации.
После того как оптимальная модель вычислена, нам необходимо ответить на вопрос: «Можем ли мы доверять этой модели?» Вопрос можно сформулировать следующим образом: Насколько велик набор моделей, которые соответствуют данным «почти так же хорошо», как и эта модель? В случае квадратичных целевых функций это множество содержится в гиперэллипсоиде, подмножестве ( — количество неизвестных), размер которых зависит от того, что мы подразумеваем под «почти также», то есть от уровня шума. Направление наибольшей оси этого эллипсоида ( собственный вектор, связанный с наименьшим собственным значением матрицы ) — это направление плохо определенных компонентов: если мы будем следовать этому направлению, мы можем внести в модель сильное возмущение без существенного изменения значения целевой функции и, таким образом, получить существенно другую квазиоптимальную модель. Мы ясно видим, что ответ на вопрос «можем ли мы доверять этой модели» определяется уровнем шума и собственными значениями гессиана целевой функции или, что то же самое, в случае, когда регуляризация не была интегрирована, сингулярными значениями матрицы . Конечно, использование регуляризации (или других видов априорной информации) уменьшает размер набора почти оптимальных решений и, в свою очередь, увеличивает уверенность, которую мы можем выразить в вычисленном решении.
Стабильность, регуляризация и дискретизация модели в бесконечном измерении
[ редактировать ]Здесь мы сосредоточимся на восстановлении распределенного параметра.При поиске распределенных параметров нам приходится дискретизировать эти неизвестные функции. Поступая так, мы уменьшаем размерность проблемы до чего-то конечного. Но теперь возникает вопрос: существует ли какая-либо связь между решением, которое мы вычисляем, и решением исходной задачи? Тогда другой вопрос: что мы подразумеваем под решением исходной задачи? Поскольку конечное число данных не позволяет определить бесконечное количество неизвестных, исходный функционал несоответствия данных должен быть регуляризован, чтобы гарантировать уникальность решения. Во многих случаях сведение неизвестных к конечномерному пространству обеспечивает адекватную регуляризацию: вычисленное решение будет выглядеть как дискретная версия искомого решения. Например, для решения проблемы деконволюции часто подойдет наивная дискретизация : она будет работать до тех пор, пока мы не позволяем пропущенным частотам проявляться в численном решении. Но во многих случаях регуляризацию приходится явно интегрировать в целевую функцию.
Чтобы понять, что может произойти, нужно иметь в виду, что решение такой линейной обратной задачи равносильно решению интегрального уравнения Фредгольма первого рода:
где это ядро, и являются векторами , и это домен в . Это справедливо для 2D-приложения. Для 3D-приложения мы рассматриваем . Обратите внимание, что здесь параметры модели состоят из функции и что отклик модели также состоит из функции, обозначаемой . Это уравнение является расширением матричного уравнения бесконечной размерности дается в случае дискретных задач.
Для достаточно гладкого определенный выше оператор компактен в разумных банаховых пространствах, таких как . Теория Ф. Рисса утверждает, что множество сингулярных значений такого оператора содержит ноль (следовательно, существует нуль-пространство), конечно или не более чем счетно, и в последнем случае они составляют последовательность, стремящуюся к нулю. . В случае симметричного ядра мы имеем бесконечное количество собственных значений, а соответствующие собственные векторы составляют гильбертов базис . Таким образом, любое решение этого уравнения определяется с точностью до аддитивной функции в нулевом пространстве, а в случае бесконечности сингулярных значений решение (которое включает обратную величину произвольных малых собственных значений) неустойчиво: два ингредиента, которые составляют решение этого интегрального уравнения — типичная некорректная задача! Однако мы можем определить решение через псевдообратное прямое отображение (опять же с точностью до произвольной аддитивной функции). Когда прямое отображение компактно, классическая регуляризация Тихонова будет работать, если мы используем ее для интеграции априорной информации, утверждающей, что норма решения должна быть как можно меньше: это сделает обратную задачу корректной. Тем не менее, как и в случае конечного измерения, мы должны поставить под сомнение уверенность, которую мы можем выразить в вычисленном решении. Опять же, по сути, информация содержится в собственных значениях оператора Гессе. Если для вычисления решения исследовать подпространства, содержащие собственные векторы, связанные с малыми собственными значениями, то решению вряд ли можно доверять: некоторые его компоненты будут плохо определены. Наименьшее собственное значение равно весу, введенному в регуляризацию Тихонова.
Нерегулярные ядра могут дать прямое отображение, которое не будет компактным и даже неограниченным , если мы наивно снабдим пространство моделей норма. В таких случаях гессиан не является ограниченным оператором, и понятие собственного значения больше не имеет смысла. необходим математический анализ : иллюстрацию можно найти здесь. Чтобы сделать его ограниченным оператором и сформулировать корректную задачу, [15] Опять же, нам придется поставить под сомнение уверенность, которую мы можем выразить в вычисленном решении, и нам придется обобщить понятие собственного значения, чтобы получить ответ. [16]
Таким образом, анализ спектра оператора Гессе является ключевым элементом для определения надежности вычисленного решения. Однако такой анализ обычно представляет собой очень трудную задачу. Это побудило нескольких авторов исследовать альтернативные подходы в случае, когда нас интересуют не все компоненты неизвестной функции, а только поднеизвестные, которые являются изображениями неизвестной функции с помощью линейного оператора. Эти подходы называются «методом Бэкуса и Гилберта». [17] ", Львиные стражи приближаются, [18] и метод SOLA: [19] эти подходы оказались тесно связаны друг с другом, как объяснено в Chavent. [20] Наконец, концепция ограниченного разрешения , часто используемая физиками, представляет собой не что иное, как особый взгляд на тот факт, что некоторые плохо определенные компоненты могут исказить решение. Но, вообще говоря, эти плохо детерминированные компоненты модели не обязательно связаны с высокими частотами.
Некоторые классические линейные обратные задачи восстановления распределенных параметров
[ редактировать ]Упомянутые ниже проблемы соответствуют различным версиям интеграла Фредгольма: каждая из них связана с определенным ядром. .
Деконволюция
[ редактировать ]Цель деконволюции — восстановить исходное изображение или сигнал. который выглядит шумным и размытым на данных . [21] С математической точки зрения ядро здесь зависит только от разницы между и .
Томографические методы
[ редактировать ]В этих методах мы пытаемся восстановить распределенный параметр, наблюдение состоит в измерении интегралов от этого параметра, осуществляемом вдоль семейства линий. Обозначим через линия в этом семействе, связанная с точкой измерения . Наблюдение в таким образом, можно записать как: где длина дуги вдоль и известная весовая функция. Сравнивая это уравнение с приведенным выше интегралом Фредгольма, мы замечаем, что ядро это своего рода дельта-функция , которая достигает максимума на линии . При таком ядре прямая карта не является компактной.
Компьютерная томография
[ редактировать ]В рентгеновской компьютерной томографии линии, по которым интегрируется параметр, представляют собой прямые линии: томографическая реконструкция распределения параметра основана на обращении преобразования Радона . Хотя с теоретической точки зрения многие линейные обратные задачи хорошо изучены, проблемы, связанные с преобразованием Радона и его обобщениями, по-прежнему представляют собой множество теоретических проблем, а вопросы достаточности данных до сих пор не решены. К таким проблемам относятся неполные данные для рентгеновского преобразования в трех измерениях и проблемы, связанные с обобщением рентгеновского преобразования на тензорные поля. Исследуемые решения включают в себя технику алгебраической реконструкции , обратное проецирование с фильтром , а по мере увеличения вычислительной мощности итерационные методы реконструкции, такие как итеративная разреженная асимптотическая минимальная дисперсия . [22]
Дифракционная томография
[ редактировать ]Дифракционная томография — это классическая линейная обратная задача в разведочной сейсмологии: амплитуда, зарегистрированная за один раз для данной пары источник-приемник, представляет собой сумму вкладов, возникающих от таких точек, что сумма расстояний, измеренных за время пробега, от источника и приемника соответственно равно соответствующему времени записи. В 3D параметр интегрируется не по линиям, а по поверхностям. Если скорость распространения постоянна, такие точки распределяются на эллипсоиде. Обратная задача состоит в восстановлении распределения дифрагирующих точек по сейсмограммам, записанным по ходу съемки, при известном распределении скоростей. Прямое решение было первоначально предложено Бейлкиным и Ламбаре и др.: [23] эти работы послужили отправной точкой подходов, известных как миграция с сохранением амплитуды (см. Бейлкин [24] [25] и Блейштайн [26] ). Если для решения волнового уравнения используются методы геометрической оптики (т.е. лучи ), то эти методы оказываются тесно связанными с так называемыми методами миграции наименьших квадратов. [27] получено на основе метода наименьших квадратов (см. Lailly, [28] Тарантул [29] ).
Допплеровская томография (астрофизика)
[ редактировать ]Если мы рассмотрим вращающийся звездный объект, спектральные линии, которые мы можем наблюдать на спектральном профиле, будут смещены из-за эффекта Доплера. Целью доплеровской томографии является преобразование информации, содержащейся в спектральном мониторинге объекта, в двумерное изображение излучения (в зависимости от лучевой скорости и фазы периодического вращательного движения) звездной атмосферы. Как объяснил Том Марш [30] эта линейная обратная задача похожа на томографию: нам нужно восстановить распределенный параметр, который был проинтегрирован вдоль линий, чтобы произвести его влияние на записи.
Обратная теплопроводность
[ редактировать ]Ранние публикации по обратной теплопроводности возникли в результате определения поверхностного теплового потока во время входа в атмосферу с помощью подземных датчиков температуры. [31] [32] Другие применения, в которых необходим поверхностный тепловой поток, но использование поверхностных датчиков нецелесообразно, включают: внутри поршневых двигателей, внутри ракетных двигателей; и испытания компонентов ядерного реактора. [33] Для устранения некорректности и чувствительности к ошибкам измерения, вызванным затуханием и запаздыванием температурного сигнала, были разработаны различные численные методы. [34] [35] [36]
Нелинейные обратные задачи
[ редактировать ]Нелинейные обратные задачи представляют собой по своей сути более сложное семейство обратных задач. Вот передовая карта является нелинейным оператором. Моделирование физических явлений часто основано на решении уравнения в частных производных (см. таблицу выше, за исключением закона гравитации): хотя эти уравнения в частных производных часто являются линейными, физические параметры, входящие в эти уравнения, зависят нелинейным образом от состояние системы и, следовательно, на наблюдения, которые мы делаем над ней.
Некоторые классические нелинейные обратные задачи
[ редактировать ]Обратная задача рассеяния
[ редактировать ]Тогда как линейные обратные задачи были полностью решены с теоретической точки зрения в конце XIX в. [ нужна ссылка ] , только один класс нелинейных обратных задач был таковым до 1970 года, а именно обратные спектральные и (одномерные) обратные задачи рассеяния , после основополагающих работ русской математической школы ( Крейна , Гельфанда , Левитана, Марченко ). Большой обзор результатов дан Чаданом и Сабатье в книге «Обратные задачи квантовой теории рассеяния» (два издания на английском языке, одно — на русском).
В задачах такого рода данные представляют собой свойства спектра линейного оператора, описывающие рассеяние. Спектр состоит из собственных значений и собственных функций , образующих вместе «дискретный спектр», и обобщений, называемых непрерывным спектром. Весьма примечательным физическим моментом является то, что эксперименты по рассеянию дают информацию только о непрерывном спектре и что знание его полного спектра необходимо и достаточно для восстановления оператора рассеяния. Следовательно, у нас есть невидимые параметры, гораздо более интересные, чем нулевое пространство, которое обладает аналогичным свойством в линейных обратных задачах. Кроме того, существуют физические движения, в которых вследствие такого движения спектр такого оператора сохраняется. Это явление определяется специальными нелинейными эволюционными уравнениями в частных производных, например уравнением Кортевега – де Фриза . Если спектр оператора свести к одному собственному значению, то соответствующее ему движение будет движением одиночного удара, распространяющегося с постоянной скоростью и без деформации, — уединенной волны, называемой «волна». солитон ».
Совершенный сигнал и его обобщения для уравнения Кортевега – де Фриза или других интегрируемых нелинейных уравнений в частных производных представляют большой интерес и имеют множество возможных применений. Эта область изучается как раздел математической физики с 1970-х годов. Нелинейные обратные задачи в настоящее время изучаются также во многих областях прикладной науки (акустика, механика, квантовая механика, электромагнитное рассеяние - в частности, радиолокационное зондирование, сейсмическое зондирование и почти все методы визуализации).
Последний пример, связанный с гипотезой Римана , был приведен Ву и Спрунгом. Идея состоит в том, что в квазиклассической старой квантовой теории обратный потенциал внутри гамильтониана пропорционален полупроизводной функции подсчета собственных значений (энергий) n ( х ).
Согласование проницаемости нефтяных и газовых пластов
[ редактировать ]Цель состоит в том, чтобы восстановить коэффициент диффузии в параболическом уравнении в частных производных , которое моделирует потоки однофазной жидкости в пористой среде. Эта проблема была объектом многих исследований, начиная с новаторской работы, проведенной в начале семидесятых годов. [37] Что касается двухфазных потоков, важной проблемой является оценка относительных проницаемостей и капиллярных давлений. [38]
Обратные задачи в волновых уравнениях
[ редактировать ]Цель состоит в том, чтобы восстановить скорости волн (P и S-волны) и распределения плотности по сейсмограммам . Такие обратные задачи представляют большой интерес в сейсмологии и разведочной геофизике .В основном мы можем рассмотреть две математические модели:
- Уравнение акустической волны (в котором S-волны игнорируются, когда размеры пространства равны 2 или 3)
- Уравнение эластодинамики , в котором скорости продольных и поперечных волн могут быть получены из параметров Ламе и плотности.
Эти основные гиперболические уравнения можно усовершенствовать, включив в них затухание , анизотропию ,...
Решение обратной задачи в одномерном волновом уравнении являлось предметом многих исследований. Это одна из немногих нелинейных обратных задач, для которой можно доказать единственность решения. [8] Еще одной проблемой стал анализ устойчивости решения. [39] Были разработаны практические приложения с использованием метода наименьших квадратов. [39] [40] Расширение на 2D или 3D задачи и уравнения упругодинамики предпринималось с 80-х годов, но оказалось очень трудным! Эта проблема, часто называемая полной инверсией формы волны (FWI), еще не решена полностью: среди основных трудностей — наличие негауссовского шума в сейсмограммах, проблемы пропуска циклов (также известные как фазовая неоднозначность) и хаотичная поведение функции несоответствия данных. [41] Некоторые авторы исследовали возможность переформулировать обратную задачу, чтобы сделать целевую функцию менее хаотичной, чем функция несоответствия данных. [42] [43]
Томография времени путешествия
[ редактировать ]Понимая, насколько сложна обратная задача волнового уравнения, сейсмологи исследовали упрощенный подход с использованием геометрической оптики. В частности, они стремились инвертировать распределение скоростей распространения, зная времена прихода волновых фронтов, наблюдаемых на сейсмограммах. Эти волновые фронты могут быть связаны с прямыми приходами или с отражениями, связанными с отражателями, геометрию которых необходимо определить вместе с распределением скорости.
Распределение времени прибытия ( — точка в физическом пространстве) волнового фронта, исходящего из точечного источника, удовлетворяет уравнению Эйконала : где обозначает распределение медленности (обратное скорости). Наличие делает это уравнение нелинейным. Классически она решается путем стрельбы лучами (траекториями, относительно которых время прихода стационарно) из точечного источника.
Эта проблема похожа на томографию: измеренное время прихода представляет собой интеграл по траектории луча медленности. Но эта задача, похожая на томографию, является нелинейной, главным образом потому, что неизвестная геометрия траектории лучей зависит от распределения скорости (или медленности). Несмотря на свой нелинейный характер, томография времени пробега оказалась очень эффективной для определения скорости распространения в Земле или в недрах, причем последний аспект является ключевым элементом для построения сейсмических изображений, в частности с использованием методов, упомянутых в разделе «Дифракция». томография".
Математические аспекты: вопросы Адамара
[ редактировать ]Вопросы касаются корректности: имеет ли задача наименьших квадратов единственное решение, которое постоянно зависит от данных (проблема устойчивости)? Это первый вопрос, но он также труден из-за нелинейности . Чтобы увидеть, откуда возникают трудности, Шаван [44] предложил концептуально разбить минимизацию функции несоответствия данных на два последовательных шага ( – подмножество допустимых моделей):
- шаг проекции: задан найти проекцию на (ближайшая точка на в зависимости от расстояния, участвующего в определении целевой функции)
- учитывая эту проекцию, найдите одно прообраз, представляющее собой модель, изображение которой с помощью оператора это проекция.
Трудности могут (и обычно возникают) возникнуть на обоих этапах:
- оператор вряд ли будет один к одному, поэтому может быть более одного прообраза,
- даже когда взаимно однозначен, его инверсия не может быть непрерывной по ,
- проекция на может не существовать, если это множество не закрыто,
- проекция на может быть неединственным и ненепрерывным, поскольку оно может быть невыпуклым из-за нелинейности .
Мы имеем в виду Чавент [44] для математического анализа этих точек.
Вычислительные аспекты
[ редактировать ]Невыпуклая функция несоответствия данных
[ редактировать ]Поскольку прямая карта нелинейна, функция несоответствия данных, вероятно, будет невыпуклой, что делает методы локальной минимизации неэффективными. Для преодоления этой трудности было исследовано несколько подходов:
- использование методов глобальной оптимизации, таких как выборка функции апостериорной плотности и алгоритм Метрополиса в вероятностной структуре обратной задачи, [45] генетические алгоритмы (отдельно или в сочетании с алгоритмом Метрополиса: см. [46] для применения в определении проницаемости, которая соответствует существующим данным о проницаемости), нейронные сети, методы регуляризации, включая многомасштабный анализ;
- переформулировать целевую функцию метода наименьших квадратов, чтобы сделать ее более гладкой (см. [42] [43] для обратной задачи в волновых уравнениях.)
Вычисление градиента целевой функции
[ редактировать ]Обратные задачи, особенно в бесконечной размерности, могут иметь большой размер, что требует значительного вычислительного времени. Когда прямая карта нелинейна, вычислительные трудности возрастают, и минимизация целевой функции может оказаться затруднительной. В отличие от линейной ситуации, явное использование матрицы Гессе для решения нормальных уравнений здесь не имеет смысла: матрица Гессе варьируется в зависимости от модели. Гораздо более эффективной является оценка градиента целевой функции для некоторых моделей. Важные вычислительные усилия можно сэкономить, если избежать очень тяжелых вычислений якобиана ( часто называемого « производными Фреше »): метод сопряженного состояния, предложенный Шаваном и Лионсом, [47] призван избежать этих очень тяжелых вычислений. Сейчас он очень широко используется. [48]
Приложения
[ редактировать ]Теория обратной задачи широко используется в прогнозировании погоды, океанографии, гидрологии и нефтяной инженерии. [50] [51] [52] Другое применение — инверсия упругих волн для неразрушающего определения характеристик инженерных сооружений. [49]
Обратные задачи встречаются также в области теплопередачи, где поверхностный тепловой поток [53] оценивается исходя из данных о температуре, измеренной внутри твердого тела; и в понимании мер контроля за разложением растительных веществ. [54] Линейная обратная задача также является основой спектральной оценки и оценки направления прибытия (DOA) при обработке сигналов .
Обратная литография применяется при изготовлении фотошаблонов для изготовления полупроводниковых приборов .
См. также
[ редактировать ]- Обратная задача атмосферы – измерение вертикального распределения физических свойств атмосферного столба.
- Метод Бэкуса – Гилберта
- Компьютерная томография — процедура медицинской визуализации с использованием рентгеновских лучей для получения изображений поперечного сечения.
- Методика алгебраической реконструкции - Методика компьютерной томографии.
- Фильтрованное обратное проецирование — страницы встроенного преобразования,
- Итеративная реконструкция
- Ассимиляция данных - метод обновления численной модели данными наблюдений.
- Инженерная оптимизация - Методы оптимизации.
- Модель серого ящика – математическая модель производства данных с ограниченной структурой.
- Математическая геофизика – Применение математики в географических областях.
- Оптимальная оценка - прикладная статистика, метод обратной регуляризованной матрицы, основанный на теореме Байеса.
- Сейсмическая инверсия
- Регуляризация Тихонова — метод регуляризации для некорректных задач.
- Сжатое зондирование – техника обработки сигналов
- Проблема индукции - Вопрос о том, приводит ли индуктивное рассуждение к окончательному знанию.
Академические журналы
[ редактировать ]Четыре основных академических журнала в целом освещают обратные задачи:
- Обратная задача
- Журнал обратных и некорректных задач [55]
- Обратные задачи в науке и технике [56]
- Обратная задача и визуализация [57]
Во многих журналах по медицинской визуализации, геофизике, неразрушающему контролю и т. д. преобладают обратные задачи в этих областях.
Ссылки
[ редактировать ]- ^ Мохамад-Джафари, Али (29 января 2013 г.). Обратные задачи зрения и трехмерной томографии . Джон Уайли и сыновья. ISBN 978-1-118-60046-7 .
- ^ Пизло, Зигмунт. « Восприятие рассматривается как обратная задача ». Исследование зрения 41.24 (2001): 3145-3161.
- ^ Вито, Эрнесто Де и др. « Обучение на примерах как обратная задача ». Журнал исследований машинного обучения, 6 мая (2005 г.): 883-904.
- ^ Карденас, IC (2019). «Об использовании байесовских сетей в качестве подхода к метамоделированию для анализа неопределенностей при анализе устойчивости склонов». Геориск: оценка и управление рисками для инженерных систем и опасных геологических процессов . 13 (1): 53–65. дои : 10.1080/17499518.2018.1498524 . S2CID 216590427 .
- ^ Вейль, Герман (1911). «Об асимптотическом распределении собственных значений» . Новости Королевского общества наук в Геттингене : 110–117. Архивировано из оригинала 1 августа 2013 г. Проверено 14 мая 2018 г.
- ^ » Эпилог — статья Амбарцумяна Виктор Амбарцумян
- ^ Амбарцумян, Рубен В. (1998). «Жизнь в астрофизике. Избранные статьи Виктора А. Амбарцумяна». Астрофизика . 41 (4): 328–330. дои : 10.1007/BF02894658 . S2CID 118952753 .
- ↑ Перейти обратно: Перейти обратно: а б Берридж, Роберт (1980). «Интегральные уравнения Гельфанда-Левитана, Марченко и Гопинатха-Сондхи обратной теории рассеяния, рассматриваемые в контексте обратных задач импульсной характеристики». Волновое движение . 2 (4): 305–323. дои : 10.1016/0165-2125(80)90011-6 .
- ^ Тарантола, Альберт (1987). Теория обратных задач (1-е изд.). Эльзевир. ISBN 9780444599674 .
- ^ Тарантола, Альберт (2005). «Передняя часть» (PDF) . Теория обратных задач и методы оценки параметров модели . СИАМ. стр. I – XII. дои : 10.1137/1.9780898717921.fm . ISBN 978-0-89871-572-9 .
- ^ Сиарле, Филипп (1994). Введение в матричный численный анализ и оптимизацию . Париж: Массон. ISBN 9782225688935 .
- ^ Носедаль, Хорхе (2006). Численная оптимизация . Спрингер.
- ^ Бен Амер, Хенд; Шавент, Гай; Жаффре, Жером (2002). «Уточнение и укрупнение показателей для адаптивной параметризации: применение для оценки гидравлической проводимости» (PDF) . Обратная задача . 18 (3): 775–794. Бибкод : 2002ИнвПр..18..775Б . дои : 10.1088/0266-5611/18/3/317 . S2CID 250892174 .
- ^ Лемарешаль, Клод (1989). Оптимизация, Справочники по исследованию операций и науке управления . Эльзевир. стр. 529–572.
- ^ Дельпра-Жаннауд, Флоренция; Лайли, Патрик (1993). «Некорректные и корректные формулировки задачи томографии времени путешествия отражения». Журнал геофизических исследований . 98 (Б4): 6589–6605. Бибкод : 1993JGR....98.6589D . дои : 10.1029/92JB02441 .
- ^ Дельпра-Жаннауд, Флоренция; Лайли, Патрик (1992). «Какую информацию о модели Земли предоставляют времена прохождения отражений». Журнал геофизических исследований . 98 (Б13): 827–844. Бибкод : 1992JGR....9719827D . дои : 10.1029/92JB01739 .
- ^ Бэкус, Джордж; Гилберт, Фриман (1968). «Разрешающая способность общих данных о Земле» . Геофизический журнал Королевского астрономического общества . 16 (10): 169–205. Бибкод : 1968GeoJ...16..169B . дои : 10.1111/j.1365-246X.1968.tb00216.x .
- ^ Львы, Жак Луи (1988). «О стражах распределенных систем». ЧР акад. наук. Париж . Я Математика: 819–823.
- ^ Пайперс, Фрэнк; Томпсон, Майкл (1993). «Метод SOLA для гелиосейсмической инверсии». Астрономия и астрофизика . 281 (12): 231–240. Бибкод : 1994A&A...281..231P .
- ^ Чавент, Гай (1998). Метод наименьших квадратов, контрольные показатели и вычитающее оптимально локализованное среднее в уравнениях с частными производными и приложениях . Париж: Готье Виллар. стр. 345–356.
- ^ Кайпио, Дж., и Сомерсало, Э. (2010). Статистические и вычислительные обратные задачи. Нью-Йорк, штат Нью-Йорк: Спрингер.
- ^ Абейда, Хабти; Чжан, Цилинь; Ли, Цзянь; Мерабтин, Наджим (2013). «Итеративные разреженные асимптотические подходы к обработке массивов, основанные на минимальной дисперсии» (PDF) . Транзакции IEEE по обработке сигналов . 61 (4): 933–944. arXiv : 1802.03070 . Бибкод : 2013ITSP...61..933A . дои : 10.1109/tsp.2012.2231676 . ISSN 1053-587X . S2CID 16276001 .
- ^ Ламбаре, Жиль; Вирье, Жан; Мадариага, Рауль; Джин, Сиде (1992). «Итеративная асимптотическая инверсия в акустическом приближении». Геофизика . 57 (9): 1138–1154. Бибкод : 1992Geop...57.1138L . дои : 10.1190/1.1443328 . S2CID 55836067 .
- ^ Бейлкин, Григорий (1984). «Проблема обращения и применение обобщенного преобразования Радона» (PDF) . Сообщения по чистой и прикладной математике . XXXVII (5): 579–599. дои : 10.1002/cpa.3160370503 .
- ^ Бейлкин, Григорий (1985). «Отображение разрывов в обратной задаче рассеяния путем обращения причинного обобщенного преобразования Радона». Дж. Математика. Физ . 26 (1): 99–108. Бибкод : 1985JMP....26...99B . дои : 10.1063/1.526755 .
- ^ Блейстейн, Норман (1987). «О изображении отражателей в земле». Геофизика . 52 (7): 931–942. Бибкод : 1987Geop...52..931B . дои : 10.1190/1.1442363 . S2CID 5095133 .
- ^ Немет, Тамас; У, Чэнцзюнь; Шустер, Джерард (1999). «Миграция данных неполного отражения методом наименьших квадратов» (PDF) . Геофизика . 64 (1): 208–221. Бибкод : 1999Geop...64..208N . дои : 10.1190/1.1444517 .
- ^ Лайли, Патрик (1983). Сейсмическая обратная задача как последовательность миграций до суммирования . Филадельфия: СИАМ. стр. 206–220. ISBN 0-89871-190-8 .
- ^ Тарантола, Альберт (1984). «Инверсия данных сейсмического отражения в акустическом приближении». Геофизика . 49 (8): 1259–1266. Бибкод : 1984Geop...49.1259T . дои : 10.1190/1.1441754 . S2CID 7596552 .
- ^ Марш, Том (2005). «Допплеровская томография». Астрофизика и космическая наука . 296 (1–4): 403–415. arXiv : astro-ph/0011020 . Бибкод : 2005Ap&SS.296..403M . дои : 10.1007/s10509-005-4859-3 . S2CID 15334110 .
- ^ Шумаков, Н. В. (1957). «Метод экспериментального исследования процесса нагрева твердого тела». Советская физика – Техническая физика (Перевод Американского института физики) . 2 : 771.
- ^ Штольц, Г. младший (1960). «Численные решения обратной задачи теплопроводности для простых форм». Журнал теплопередачи . 82 : 20–26. дои : 10.1115/1.3679871 .
- ^ Бек, СП; Блэквелл, Б.; Сент-Клер, ЧР-младший (1985). Обратная теплопроводность. Некорректно поставленные задачи . Нью-Йорк: Дж. Уайли и сыновья. ISBN 0471083194 .
- ^ Бек, СП; Блэквелл, Б.; Хаджи-Шейх, Б. (1996). «Сравнение некоторых методов обратной теплопроводности с использованием экспериментальных данных». Международный журнал тепломассообмена . 39 (17): 3649–3657. дои : 10.1016/0017-9310(96)00034-8 .
- ^ Озисик, Миннесота; Орланд, HRB (2021). Обратная теплопередача, основы и приложения (2-е изд.). ЦРК Пресс. ISBN 9780367820671 .
- ^ Справочник по обратной инженерии под редакцией К. А. Вудбери . ЦРК Пресс. 2002. ISBN 9780849308611 .
- ^ Шавент, Гай; Лемонье, Патрик; Дюпюи, Мишель (1975). «Сопоставление истории с использованием теории оптимального управления». Журнал Общества инженеров-нефтяников . 15 (2): 74–86. дои : 10.2118/4627-PA .
- ^ Шавент, Гай; Коэн, Гэри; Эспи, М. (1980). «Определение относительных проницаемостей и капиллярных давлений методом автоматической корректировки». Общество инженеров-нефтяников (январь). дои : 10.2118/9237-MS .
- ↑ Перейти обратно: Перейти обратно: а б Бамбергер, Ален; Шавент, Гай; Лайли, Патрик (1979). «Об устойчивости обратной задачи в одномерном волновом уравнении, применении к интерпретации сейсмических профилей». Журнал прикладной математики и оптимизации . 5 : 1–47. дои : 10.1007/bf01442542 . S2CID 122428594 .
- ^ Масе, Даниэль; Лайли, Патрик (1986). «Решение одномерной обратной задачи ВСП». Геофизическая разведка . 34 (7): 1002–1021. Бибкод : 1986GeopP..34.1002M . дои : 10.1111/j.1365-2478.1986.tb00510.x . ОСТИ 6901651 .
- ^ Вирье, Жан; Оперто, Стефан (2009). «Обзор полноволновой инверсии в разведочной геофизике» . Геофизика . 74 (6): ВКК1 – ВКК26. дои : 10.1190/1.3238367 .
- ↑ Перейти обратно: Перейти обратно: а б Клеман, Франсуа; Шавент, Гай; Гомес, Сюзана (2001). «Инверсия формы волны времени пробега на основе миграции простых двумерных структур: синтетический пример». Геофизика . 66 (3): 845–860. Бибкод : 2001Geop...66..845C . дои : 10.1190/1.1444974 .
- ↑ Перейти обратно: Перейти обратно: а б Саймс, Уильям; Карразон, Джим (1991). «Инверсия скорости с помощью дифференциальной оптимизации подобия». Геофизика . 56 (5): 654–663. Бибкод : 1991Geop...56..654S . дои : 10.1190/1.1443082 .
- ↑ Перейти обратно: Перейти обратно: а б Чавент, Гай (2010). Нелинейный метод наименьших квадратов для обратных задач . Спрингер. ISBN 978-90-481-2785-6 .
- ^ Корен, Цви; Мозегор, Клаус; Ланда, Евгений; Торе, Пьер; Тарантола, Альберт (1991). «Оценка Монте-Карло и анализ разрешения сейсмических фоновых скоростей». Журнал геофизических исследований . 96 (Б12): 20289–20299. Бибкод : 1991JGR....9620289K . дои : 10.1029/91JB02278 .
- ^ Тахмасеби, Пейман; Джавадпур, Фарзам; Сахими, Мухаммед (август 2016 г.). «Стохастическая адаптация проницаемости сланцев: трехмерная характеристика и моделирование» . Международный журнал угольной геологии . 165 : 231–242. дои : 10.1016/j.coal.2016.08.024 .
- ^ Чавент, Гай (1971). Идентификация распределенных коэффициентов в уравнениях в частных производных . Парижский университет 6: Государственная диссертация.
{{cite book}}
: CS1 maint: местоположение ( ссылка ) - ^ Плесси, Рене (2006). «Обзор метода сопряженного состояния для вычисления градиента функционала в геофизических приложениях» . Международный геофизический журнал . 167 (2): 495–503. Бибкод : 2006GeoJI.167..495P . дои : 10.1111/j.1365-246X.2006.02978.x .
- ↑ Перейти обратно: Перейти обратно: а б Таслимиан, Рохолла; Джаганатан, Арун П. (2024). «Инверсия окружных упругих волн для определения характеристик бетонных труб» . Волновое движение . 127 : 103272. doi : 10.1016/j.wavemoti.2024.103272 .
- ^ Карл Вунш (13 июня 1996 г.). Обратная задача циркуляции океана . Издательство Кембриджского университета. стр. 9–. ISBN 978-0-521-48090-1 .
- ^ Тахмасеби, Пейман; Джавадпур, Фарзам; Сахими, Мухаммед (август 2016 г.). «Стохастическая адаптация проницаемости сланцев: трехмерная характеристика и моделирование». Международный журнал угольной геологии . 165 : 231–242. дои : 10.1016/j.coal.2016.08.024 .
- ^ Найтон, Джеймс; Сингх, Канишка; Эваристо, Хайвиме (2020). «Понимание стратегий поглощения корневой воды лесов в масштабе водосборного бассейна на территории континентальной части Соединенных Штатов посредством обратного экогидрологического моделирования» . Письма о геофизических исследованиях . 47 (1): e2019GL085937. Бибкод : 2020GeoRL..4785937K . дои : 10.1029/2019GL085937 . ISSN 1944-8007 . S2CID 213914582 .
- ^ Патрик Фигейредо (декабрь 2014 г.). Разработка итерационного метода решения многомерных обратных задач теплопроводности . Кафедра тепломассообмена RWTH Ахена. [ постоянная мертвая ссылка ]
- ^ Форни, Дэвид К.; Ротман, Дэниел Х. (7 сентября 2012 г.). «Единая структура в неоднородности распада растительного вещества» . Журнал интерфейса Королевского общества . 9 (74): 2255–2267. дои : 10.1098/rsif.2012.0122 . ПМЦ 3405759 . ПМИД 22535699 .
- ^ «Журнал обратных и некорректных задач» . Архивировано из оригинала 1 февраля 2013 года.
- ^ «Обратные задачи в науке и технике: Том 25, № 4» .
- ^ «ИПИ» . Архивировано из оригинала 11 октября 2006 года.
Ссылки
[ редактировать ]- Чадан, Хосров и Сабатье, Пьер Селестен (1977). Обратные задачи квантовой теории рассеяния . Спрингер Верлаг. ISBN 0-387-08092-9
- Астер, Ричард; Борчерс, Брайан, и Тербер, Клиффорд (2018). Оценка параметров и обратные задачи , третье издание, Elsevier. ISBN 9780128134238 , ISBN 9780128134238
- Пресс, WH; Теукольский, С.А.; Феттерлинг, WT; Фланнери, BP (2007). «Раздел 19.4. Обратные задачи и использование априорной информации» . Численные рецепты: искусство научных вычислений (3-е изд.). Нью-Йорк: Издательство Кембриджского университета. ISBN 978-0-521-88068-8 . Архивировано из оригинала 11 августа 2011 г. Проверено 17 августа 2011 г.
Дальнейшее чтение
[ редактировать ]- К.В. Гроетч (1999). Обратные задачи: занятия для студентов . Издательство Кембриджского университета. ISBN 978-0-88385-716-8 .
Внешние ссылки
[ редактировать ]- Международная ассоциация обратных задач. Архивировано 15 июня 2017 г. в Wayback Machine.
- Евразийская ассоциация по обратным задачам
- Финское общество обратных задач
- Сеть обратных задач
- На веб-сайте Альберта Тарантолы есть бесплатная PDF-версия его книги «Теория обратных задач» и несколько онлайн-статей по обратным задачам.
- Страница обратных задач в Университете Алабамы. Архивировано 5 апреля 2014 г. в Wayback Machine.
- Проект обратных задач и геостатистики. Архивировано 2 ноября 2017 г. в Wayback Machine , Институт Нильса Бора, Копенгагенский университет.
- Страница ресурсов Энди Ганса по геофизической обратной теории
- Финский центр передового опыта в области исследования обратных задач