— метрический тензор теории специальной относительности с метрической сигнатурой для определенности, выбранной равной (–1, 1, 1, 1) . Отрицательность нормы отражает то, что импульс представляет собой времяподобный четырехвектор для массивных частиц. Другой вариант подписи менял бы знаки в определенных формулах (как в случае с нормой здесь). Этот выбор не важен, но однажды сделанный, его необходимо соблюдать во всем.
Норма Минковского является лоренц-инвариантом, то есть ее значение не изменяется в результате преобразований/повышения Лоренца в разные системы отсчета. В более общем смысле, для любых двух четырехимпульсов p и q величина p ⋅ q инвариантна.
Есть несколько способов прийти к правильному выражению для четырехимпульса. Один из способов — сначала определить четырехскоростной вектор u = dx / dτ и просто определить p = mu , довольствуясь тем, что это четырех-вектор с правильными единицами измерения и правильным поведением. Другой, более удовлетворительный подход состоит в том, чтобы начать с принципа наименьшего действия и использовать лагранжеву структуру для получения четырехимпульса, включая выражение для энергии. [2] Можно сразу, используя подробно изложенные ниже наблюдения, определить четырехимпульс действию S. по Учитывая, что в общем случае для замкнутой системы с обобщенными координатами q i и каноническими импульсами p i , [3]
это немедленно (напоминая x 0 = ct , х 1 = х , х 2 = у , х 3 = z и x 0 = − x 0 , х 1 = х 1 , х 2 = х 2 , х 3 = х 3 в нынешней метрической конвенции), что
представляет собой ковариантный четырехвектор, трехвекторная часть которого представляет собой (отрицательный) канонический импульс.
Наблюдения
Consider initially a system of one degree of freedom q. In the derivation of the equations of motion from the action using Hamilton's principle, one finds (generally) in an intermediate stage for the variation of the action,
The assumption is then that the varied paths satisfy δq(t1) = δq(t2) = 0, from which Lagrange's equations follow at once. When the equations of motion are known (or simply assumed to be satisfied), one may let go of the requirement δq(t2) = 0. In this case the path is assumed to satisfy the equations of motion, and the action is a function of the upper integration limit δq(t2), but t2 is still fixed. The above equation becomes with S = S(q), and defining δq(t2) = δq, and letting in more degrees of freedom,
Observing that
one concludes
In a similar fashion, keep endpoints fixed, but let t2 = t vary. This time, the system is allowed to move through configuration space at "arbitrary speed" or with "more or less energy", the field equations still assumed to hold and variation can be carried out on the integral, but instead observe
где L — релятивистский лагранжиан свободной частицы. Из этого,
замалчивая эти детали,
The variation of the action is
To calculate δds, observe first that δds2 = 2dsδds and that
So
or
and thus
which is just
где на втором этапе используются уравнения поля du м / ds = 0 , ( δx м ) t 1 = 0 и ( δx м ) t 2 ≡ δx м как и в наблюдениях выше. Теперь сравните последние три выражения и найдите
с нормой − м 2 с 2 и знаменитый результат для релятивистской энергии,
где m r — вышедшая из моды релятивистская масса , следует. Сравнивая выражения для импульса и энергии напрямую, получаем
это справедливо и для безмассовых частиц. Возведение в квадрат выражений для энергии и трёхимпульса и их связь дают соотношение энергия-импульс :
Также возможно получить результаты непосредственно из лагранжиана. По определению, [5]
которые представляют собой стандартные формулы для канонического импульса и энергии замкнутой (независимой от времени лагранжевой) системы. При таком подходе менее ясно, что энергия и импульс являются частями четырехвектора.
Энергия и трехимпульс являются отдельно сохраняющимися величинами для изолированных систем в лагранжевой системе. Следовательно, четырехимпульс также сохраняется. Подробнее об этом ниже.
Более прозаичные подходы включают ожидаемое поведение в электродинамике. [6] В этом подходе отправной точкой является применение закона сил Лоренца и второго закона Ньютона в системе покоя частицы. Свойства преобразования тензора электромагнитного поля, включая инвариантность электрического заряда , затем используются для преобразования в лабораторную систему координат, а полученное выражение (снова закон силы Лоренца) интерпретируется в духе второго закона Ньютона, что приводит к правильному выражению для релятивистского трехимпульса. Недостаток, конечно, в том, что не сразу становится ясно, применим ли результат ко всем частицам, независимо от того, заряжены они или нет, и что он не дает полного четырехвектора.
Также возможно избежать электромагнетизма и использовать хорошо организованные мыслительные эксперименты с участием хорошо обученных физиков, бросающих бильярдные шары, используя знание формулы сложения скоростей и предполагая сохранение импульса. [7] [8] Это тоже дает только трехвекторную часть.
Трехмерный импульс сохраняется (не путать с классическим нерелятивистским импульсом ).
Обратите внимание, что инвариантная масса системы частиц может быть больше, чем сумма масс покоя частиц, поскольку кинетическая энергия в системе центра масс системы и потенциальная энергия сил между частицами вносят вклад в инвариантную массу. Например, две частицы с четырьмя импульсами (5 ГэВ/ с , 4 ГэВ/ с , 0, 0) и (5 ГэВ/ с , −4 ГэВ/ с , 0, 0) каждая имеют массу (покоя) 3 ГэВ. / с 2 по отдельности, но их общая масса (масса системы) равна 10 ГэВ/ с. 2 . Если бы эти частицы столкнулись и слиплись, масса составного объекта составила бы 10 ГэВ/ с. 2 .
Одно из практических применений в физике элементарных частиц сохранения инвариантной массы включает объединение четырехимпульсов p A и p B двух дочерних частиц, образующихся при распаде более тяжелой частицы, с четырехимпульсом p C для определения массы более тяжелой частицы. . Сохранение четырехимпульса дает p C м = п А м + п Б м , а масса M более тяжелой частицы определяется выражением − P C ⋅ P C = M 2 с 2 . Измеряя энергии и трехимпульсы дочерних частиц, можно восстановить инвариантную массу двухчастичной системы, которая должна быть равна M . Этот метод используется, например, при экспериментальном поиске Z'-бозонов частиц высоких энергий на коллайдерах , где Z'-бозон проявляется как выступ в инвариантном спектре масс пар электрон - позитрон или мюон -антимюон.
Если масса объекта не меняется, внутреннее произведение Минковского его четырехимпульса и соответствующего четырехкратного ускорения A м просто равен нулю. Четырехкратное ускорение пропорционально собственной производной по времени четырехимпульса, деленной на массу частицы, поэтому
Канонический импульс при наличии электромагнитного потенциала [ править ]
^ Тейлор, Эдвин; Уилер, Джон (1992). Введение в физику пространства-времени в специальную теорию относительности . Нью-Йорк: WH Freeman and Company. п. 191. ИСБН 978-0-7167-2327-1 .
Ландау, Л.Д.; Лифшиц, Э.М. (2000). Классическая теория полей . 4-е изд. Английское издание, перепечатанное с исправлениями; перевод с русского Мортона Хамермеша. Оксфорд: Баттерворт Хайнеманн. ISBN 9780750627689 .
Arc.Ask3.Ru Номер скриншота №: e74aba3c365895226f261a04c5784efc__1709047080 URL1:https://arc.ask3.ru/arc/aa/e7/fc/e74aba3c365895226f261a04c5784efc.html Заголовок, (Title) документа по адресу, URL1: Four-momentum - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)