Special functions of several complex variables
Тета-функция Якоби θ 1 с номером q = e я п т = 0,1 е 0,1 я р : θ 1 ( z , q ) = 2 q 1 4 ∑ n = 0 ∞ ( − 1 ) n q n ( n + 1 ) sin ( 2 n + 1 ) z = ∑ n = − ∞ ∞ ( − 1 ) n − 1 2 q ( n + 1 2 ) 2 e ( 2 n + 1 ) i z . {\displaystyle {\begin{aligned}\theta _{1}(z,q)&=2q^{\frac {1}{4}}\sum _{n=0}^{\infty }(-1)^{n}q^{n(n+1)}\sin(2n+1)z\\&=\sum _{n=-\infty }^{\infty }(-1)^{n-{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}e^{(2n+1)iz}.\end{aligned}}} В математике . тэта-функции представляют собой функции нескольких комплексных переменных специальные Они встречаются во многих темах, включая абелевы многообразия , пространства модулей , квадратичные формы и солитоны . Как алгебры Грассмана , они появляются в квантовой теории поля . [1]
Наиболее распространенной формой тэта-функции является форма, встречающаяся в теории эллиптических функций . По отношению к одной из комплексных переменных (обычно называемой z ) тэта-функция обладает свойством, выражающим ее поведение относительно сложения периода связанных эллиптических функций, что делает ее квазипериодической функцией . В абстрактной теории эта квазипериодичность происходит из класса когомологий линейного расслоения на комплексном торе , условия спуска .
Одна из интерпретаций тэта-функций при работе с уравнением теплопроводности заключается в том, что «тэта-функция — это специальная функция, которая описывает эволюцию температуры в сегментной области с учетом определенных граничных условий». [2]
На протяжении всей этой статьи ( e π i τ ) α {\displaystyle (e^{\pi i\tau })^{\alpha }} следует интерпретировать как e α π i τ {\displaystyle e^{\alpha \pi i\tau }} (для решения вопросов выбора филиала ). [примечание 1]
Существует несколько тесно связанных функций, называемых тета-функциями Якоби, а также множество различных и несовместимых систем обозначений для них. Одна тета-функция Якоби (названная в честь Карла Густава Якоби Якоби ) — это функция, определенная для двух комплексных переменных z и τ , где z может быть любым комплексным числом , а τ — отношение полупериода , ограниченное верхней полуплоскостью , что означает он имеет положительную мнимую часть. Оно определяется формулой
ϑ ( z ; τ ) = ∑ n = − ∞ ∞ exp ( π i n 2 τ + 2 π i n z ) = 1 + 2 ∑ n = 1 ∞ q n 2 cos ( 2 π n z ) = ∑ n = − ∞ ∞ q n 2 η n {\displaystyle {\begin{aligned}\vartheta (z;\tau )&=\sum _{n=-\infty }^{\infty }\exp \left(\pi in^{2}\tau +2\pi inz\right)\\&=1+2\sum _{n=1}^{\infty }q^{n^{2}}\cos(2\pi nz)\\&=\sum _{n=-\infty }^{\infty }q^{n^{2}}\eta ^{n}\end{aligned}}} где q = exp( πiτ ) — имя , а η = exp(2 πiz ) . Это форма Якоби . Ограничение гарантирует, что это абсолютно сходящийся ряд. При фиксированном τ это ряд Фурье для 1-периодической целой функции от z . Соответственно, тэта-функция 1-периодична по z :
ϑ ( z + 1 ; τ ) = ϑ ( z ; τ ) . {\displaystyle \vartheta (z+1;\tau )=\vartheta (z;\tau ).} Заполняя квадрат , он также становится τ -квазипериодическим по z , причем
ϑ ( z + τ ; τ ) = exp ( − π i ( τ + 2 z ) ) ϑ ( z ; τ ) . {\displaystyle \vartheta (z+\tau ;\tau )=\exp {\bigl (}-\pi i(\tau +2z){\bigr )}\vartheta (z;\tau ).} Таким образом, в целом
ϑ ( z + a + b τ ; τ ) = exp ( − π i b 2 τ − 2 π i b z ) ϑ ( z ; τ ) {\displaystyle \vartheta (z+a+b\tau ;\tau )=\exp \left(-\pi ib^{2}\tau -2\pi ibz\right)\vartheta (z;\tau )} для любых целых чисел a и b .
Для любого фиксированного τ {\displaystyle \tau } , функция является целой функцией на комплексной плоскости, поэтому по теореме Лиувилля она не может быть двоякопериодической по 1 , τ {\displaystyle 1,\tau } если только оно не является постоянным, и поэтому лучшее, что мы можем сделать, это сделать его периодическим в 1 {\displaystyle 1} и квазипериодический по τ {\displaystyle \tau } . Действительно, поскольку | ϑ ( z + a + b τ ; τ ) ϑ ( z ; τ ) | = exp ( π ( b 2 ℑ ( τ ) + 2 b ℑ ( z ) ) ) {\displaystyle \left|{\frac {\vartheta (z+a+b\tau ;\tau )}{\vartheta (z;\tau )}}\right|=\exp \left(\pi (b^{2}\Im (\tau )+2b\Im (z))\right)} и ℑ ( τ ) > 0 {\displaystyle \Im (\tau )>0} , функция ϑ ( z , τ ) {\displaystyle \vartheta (z,\tau )} неограничено, как того требует теорема Лиувилля.
Фактически это наиболее общая целая функция с двумя квазипериодами в следующем смысле: [3]
Тета-функция θ 1 с другим именем q = e ipt . Черная точка на правом рисунке показывает, как q меняется с ростом τ . Тета-функция θ 1 с другим именем q = e ipt . Черная точка на правом рисунке показывает, как q меняется с ростом τ . Определенную выше тэта-функцию Якоби иногда рассматривают вместе с тремя вспомогательными тэта-функциями, и в этом случае она записывается с двойным индексом 0:
ϑ 00 ( z ; τ ) = ϑ ( z ; τ ) {\displaystyle \vartheta _{00}(z;\tau )=\vartheta (z;\tau )} Вспомогательные функции (или полупериодические) определяются формулой
ϑ 01 ( z ; τ ) = ϑ ( z + 1 2 ; τ ) ϑ 10 ( z ; τ ) = exp ( 1 4 π i τ + π i z ) ϑ ( z + 1 2 τ ; τ ) ϑ 11 ( z ; τ ) = exp ( 1 4 π i τ + π i ( z + 1 2 ) ) ϑ ( z + 1 2 τ + 1 2 ; τ ) . {\displaystyle {\begin{aligned}\vartheta _{01}(z;\tau )&=\vartheta \left(z+{\tfrac {1}{2}};\tau \right)\\[3pt]\vartheta _{10}(z;\tau )&=\exp \left({\tfrac {1}{4}}\pi i\tau +\pi iz\right)\vartheta \left(z+{\tfrac {1}{2}}\tau ;\tau \right)\\[3pt]\vartheta _{11}(z;\tau )&=\exp \left({\tfrac {1}{4}}\pi i\tau +\pi i\left(z+{\tfrac {1}{2}}\right)\right)\vartheta \left(z+{\tfrac {1}{2}}\tau +{\tfrac {1}{2}};\tau \right).\end{aligned}}} Эти обозначения следуют Риману и Мамфорду ; Первоначальная формулировка Якоби использовалась в терминах нома q = e ipt а не τ . В обозначениях Якоби θ -функции записываются:
θ 1 ( z ; q ) = θ 1 ( π z , q ) = − ϑ 11 ( z ; τ ) θ 2 ( z ; q ) = θ 2 ( π z , q ) = ϑ 10 ( z ; τ ) θ 3 ( z ; q ) = θ 3 ( π z , q ) = ϑ 00 ( z ; τ ) θ 4 ( z ; q ) = θ 4 ( π z , q ) = ϑ 01 ( z ; τ ) {\displaystyle {\begin{aligned}\theta _{1}(z;q)&=\theta _{1}(\pi z,q)=-\vartheta _{11}(z;\tau )\\\theta _{2}(z;q)&=\theta _{2}(\pi z,q)=\vartheta _{10}(z;\tau )\\\theta _{3}(z;q)&=\theta _{3}(\pi z,q)=\vartheta _{00}(z;\tau )\\\theta _{4}(z;q)&=\theta _{4}(\pi z,q)=\vartheta _{01}(z;\tau )\end{aligned}}} Якоби тета 1 Якоби тета 2 Якоби тета 3 Якоби тета 4 Приведенные выше определения тэта-функций Якоби отнюдь не единственны. См. тета-функции Якоби (варианты обозначений) для дальнейшего обсуждения.
Если мы положим z = 0 в приведенных выше тэта-функциях, мы получим только четыре функции от τ , определенные в верхней полуплоскости. Эти функции называются функциями тета-нульверта , что происходит от немецкого термина, обозначающего нулевое значение , из-за аннулирования левой записи в выражении тета-функции. В качестве альтернативы мы получаем только четыре функции от q , определенные на единичном круге | q | < 1 {\displaystyle |q|<1} . Их иногда называют тэта-константами : [примечание 2]
ϑ 11 ( 0 ; τ ) = − θ 1 ( q ) = − ∑ n = − ∞ ∞ ( − 1 ) n − 1 / 2 q ( n + 1 / 2 ) 2 ϑ 10 ( 0 ; τ ) = θ 2 ( q ) = ∑ n = − ∞ ∞ q ( n + 1 / 2 ) 2 ϑ 00 ( 0 ; τ ) = θ 3 ( q ) = ∑ n = − ∞ ∞ q n 2 ϑ 01 ( 0 ; τ ) = θ 4 ( q ) = ∑ n = − ∞ ∞ ( − 1 ) n q n 2 {\displaystyle {\begin{aligned}\vartheta _{11}(0;\tau )&=-\theta _{1}(q)=-\sum _{n=-\infty }^{\infty }(-1)^{n-1/2}q^{(n+1/2)^{2}}\\\vartheta _{10}(0;\tau )&=\theta _{2}(q)=\sum _{n=-\infty }^{\infty }q^{(n+1/2)^{2}}\\\vartheta _{00}(0;\tau )&=\theta _{3}(q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}\\\vartheta _{01}(0;\tau )&=\theta _{4}(q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n^{2}}\end{aligned}}} с именем q = e ipt . Обратите внимание, что θ 1 ( q ) = 0 {\displaystyle \theta _{1}(q)=0} . Их можно использовать для определения различных модульных форм и параметризации определенных кривых; в частности, тождество Якоби есть
θ 2 ( q ) 4 + θ 4 ( q ) 4 = θ 3 ( q ) 4 {\displaystyle \theta _{2}(q)^{4}+\theta _{4}(q)^{4}=\theta _{3}(q)^{4}} или эквивалентно,
ϑ 01 ( 0 ; τ ) 4 + ϑ 10 ( 0 ; τ ) 4 = ϑ 00 ( 0 ; τ ) 4 {\displaystyle \vartheta _{01}(0;\tau )^{4}+\vartheta _{10}(0;\tau )^{4}=\vartheta _{00}(0;\tau )^{4}} что представляет собой кривую Ферма четвертой степени.
Тождества Якоби описывают, как тета-функции преобразуются под действием модулярной группы , которая порождается τ ↦ τ + 1 и τ ↦ − 1 / τ . Уравнения для первого преобразования легко найти, поскольку добавление единицы к τ в показателе степени имеет тот же эффект, что и добавление 1 / 2 до z ( n ≡ n 2 мод 2 ). Для второго пусть
α = ( − i τ ) 1 2 exp ( π τ i z 2 ) . {\displaystyle \alpha =(-i\tau )^{\frac {1}{2}}\exp \left({\frac {\pi }{\tau }}iz^{2}\right).} Затем
ϑ 00 ( z τ ; − 1 τ ) = α ϑ 00 ( z ; τ ) ϑ 01 ( z τ ; − 1 τ ) = α ϑ 10 ( z ; τ ) ϑ 10 ( z τ ; − 1 τ ) = α ϑ 01 ( z ; τ ) ϑ 11 ( z τ ; − 1 τ ) = − i α ϑ 11 ( z ; τ ) . {\displaystyle {\begin{aligned}\vartheta _{00}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{00}(z;\tau )\quad &\vartheta _{01}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{10}(z;\tau )\\[3pt]\vartheta _{10}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{01}(z;\tau )\quad &\vartheta _{11}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=-i\alpha \,\vartheta _{11}(z;\tau ).\end{aligned}}} Вместо того, чтобы выражать тета-функции через z и τ , мы можем выразить их через аргументы w и ном q , где w = e пицца и q = е яма . В этом виде функции становятся
ϑ 00 ( w , q ) = ∑ n = − ∞ ∞ ( w 2 ) n q n 2 ϑ 01 ( w , q ) = ∑ n = − ∞ ∞ ( − 1 ) n ( w 2 ) n q n 2 ϑ 10 ( w , q ) = ∑ n = − ∞ ∞ ( w 2 ) n + 1 2 q ( n + 1 2 ) 2 ϑ 11 ( w , q ) = i ∑ n = − ∞ ∞ ( − 1 ) n ( w 2 ) n + 1 2 q ( n + 1 2 ) 2 . {\displaystyle {\begin{aligned}\vartheta _{00}(w,q)&=\sum _{n=-\infty }^{\infty }\left(w^{2}\right)^{n}q^{n^{2}}\quad &\vartheta _{01}(w,q)&=\sum _{n=-\infty }^{\infty }(-1)^{n}\left(w^{2}\right)^{n}q^{n^{2}}\\[3pt]\vartheta _{10}(w,q)&=\sum _{n=-\infty }^{\infty }\left(w^{2}\right)^{n+{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}\quad &\vartheta _{11}(w,q)&=i\sum _{n=-\infty }^{\infty }(-1)^{n}\left(w^{2}\right)^{n+{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}.\end{aligned}}} Мы видим, что тэта-функции также могут быть определены через w и q без прямой ссылки на экспоненциальную функцию. Таким образом, эти формулы можно использовать для определения тета-функций в других полях , где показательная функция может быть определена не везде, например, в полях p -адических чисел .
( Тройное произведение Якоби частный случай тождеств Макдональда ) говорит нам, что для комплексных чисел w и q с | д | < 1 и w ≠ 0 имеем
∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 + w 2 q 2 m − 1 ) ( 1 + w − 2 q 2 m − 1 ) = ∑ n = − ∞ ∞ w 2 n q n 2 . {\displaystyle \prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+w^{2}q^{2m-1}\right)\left(1+w^{-2}q^{2m-1}\right)=\sum _{n=-\infty }^{\infty }w^{2n}q^{n^{2}}.} Это можно доказать элементарными средствами, как, например, в книге Харди и Райта « Введение в теорию чисел» .
Если мы выразим тэта-функцию через ном q = e яма (отмечая, что некоторые авторы вместо этого устанавливают q = e 2 ямы ) и возьмем w = e пицца затем
ϑ ( z ; τ ) = ∑ n = − ∞ ∞ exp ( π i τ n 2 ) exp ( 2 π i z n ) = ∑ n = − ∞ ∞ w 2 n q n 2 . {\displaystyle \vartheta (z;\tau )=\sum _{n=-\infty }^{\infty }\exp(\pi i\tau n^{2})\exp(2\pi izn)=\sum _{n=-\infty }^{\infty }w^{2n}q^{n^{2}}.} Таким образом, мы получаем формулу произведения для тэта-функции в виде
ϑ ( z ; τ ) = ∏ m = 1 ∞ ( 1 − exp ( 2 m π i τ ) ) ( 1 + exp ( ( 2 m − 1 ) π i τ + 2 π i z ) ) ( 1 + exp ( ( 2 m − 1 ) π i τ − 2 π i z ) ) . {\displaystyle \vartheta (z;\tau )=\prod _{m=1}^{\infty }{\big (}1-\exp(2m\pi i\tau ){\big )}{\Big (}1+\exp {\big (}(2m-1)\pi i\tau +2\pi iz{\big )}{\Big )}{\Big (}1+\exp {\big (}(2m-1)\pi i\tau -2\pi iz{\big )}{\Big )}.} С точки зрения w и q :
ϑ ( z ; τ ) = ∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 + q 2 m − 1 w 2 ) ( 1 + q 2 m − 1 w 2 ) = ( q 2 ; q 2 ) ∞ ( − w 2 q ; q 2 ) ∞ ( − q w 2 ; q 2 ) ∞ = ( q 2 ; q 2 ) ∞ θ ( − w 2 q ; q 2 ) {\displaystyle {\begin{aligned}\vartheta (z;\tau )&=\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+q^{2m-1}w^{2}\right)\left(1+{\frac {q^{2m-1}}{w^{2}}}\right)\\&=\left(q^{2};q^{2}\right)_{\infty }\,\left(-w^{2}q;q^{2}\right)_{\infty }\,\left(-{\frac {q}{w^{2}}};q^{2}\right)_{\infty }\\&=\left(q^{2};q^{2}\right)_{\infty }\,\theta \left(-w^{2}q;q^{2}\right)\end{aligned}}} где ( ; ) ∞ — символ q -Похгаммера , а θ (; ) — q -тэта-функция . Раскрывая члены, тройное произведение Якоби также можно записать
∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 + ( w 2 + w − 2 ) q 2 m − 1 + q 4 m − 2 ) , {\displaystyle \prod _{m=1}^{\infty }\left(1-q^{2m}\right){\Big (}1+\left(w^{2}+w^{-2}\right)q^{2m-1}+q^{4m-2}{\Big )},} который мы также можем записать как
ϑ ( z ∣ q ) = ∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 + 2 cos ( 2 π z ) q 2 m − 1 + q 4 m − 2 ) . {\displaystyle \vartheta (z\mid q)=\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+2\cos(2\pi z)q^{2m-1}+q^{4m-2}\right).} Эта форма в целом действительна, но, очевидно, представляет особый интерес, когда z действительно. Аналогичные формулы произведения для вспомогательных тэта-функций:
ϑ 01 ( z ∣ q ) = ∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 − 2 cos ( 2 π z ) q 2 m − 1 + q 4 m − 2 ) , ϑ 10 ( z ∣ q ) = 2 q 1 4 cos ( π z ) ∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 + 2 cos ( 2 π z ) q 2 m + q 4 m ) , ϑ 11 ( z ∣ q ) = − 2 q 1 4 sin ( π z ) ∏ m = 1 ∞ ( 1 − q 2 m ) ( 1 − 2 cos ( 2 π z ) q 2 m + q 4 m ) . {\displaystyle {\begin{aligned}\vartheta _{01}(z\mid q)&=\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1-2\cos(2\pi z)q^{2m-1}+q^{4m-2}\right),\\[3pt]\vartheta _{10}(z\mid q)&=2q^{\frac {1}{4}}\cos(\pi z)\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+2\cos(2\pi z)q^{2m}+q^{4m}\right),\\[3pt]\vartheta _{11}(z\mid q)&=-2q^{\frac {1}{4}}\sin(\pi z)\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1-2\cos(2\pi z)q^{2m}+q^{4m}\right).\end{aligned}}} В частности, lim q → 0 ϑ 10 ( z ∣ q ) 2 q 1 4 = cos ( π z ) , lim q → 0 − ϑ 11 ( z ∣ q ) 2 q − 1 4 = sin ( π z ) {\displaystyle \lim _{q\to 0}{\frac {\vartheta _{10}(z\mid q)}{2q^{\frac {1}{4}}}}=\cos(\pi z),\quad \lim _{q\to 0}{\frac {-\vartheta _{11}(z\mid q)}{2q^{-{\frac {1}{4}}}}}=\sin(\pi z)} поэтому мы можем интерпретировать их как однопараметрические деформации периодических функций sin , cos {\displaystyle \sin ,\cos } , что еще раз подтверждает интерпретацию тета-функции как наиболее общей функции 2-квазипериода.
Тета-функции Якоби имеют следующие интегральные представления:
ϑ 00 ( z ; τ ) = − i ∫ i − ∞ i + ∞ e i π τ u 2 cos ( 2 π u z + π u ) sin ( π u ) d u ; ϑ 01 ( z ; τ ) = − i ∫ i − ∞ i + ∞ e i π τ u 2 cos ( 2 π u z ) sin ( π u ) d u ; ϑ 10 ( z ; τ ) = − i e i π z + 1 4 i π τ ∫ i − ∞ i + ∞ e i π τ u 2 cos ( 2 π u z + π u + π τ u ) sin ( π u ) d u ; ϑ 11 ( z ; τ ) = e i π z + 1 4 i π τ ∫ i − ∞ i + ∞ e i π τ u 2 cos ( 2 π u z + π τ u ) sin ( π u ) d u . {\displaystyle {\begin{aligned}\vartheta _{00}(z;\tau )&=-i\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz+\pi u)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{01}(z;\tau )&=-i\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{10}(z;\tau )&=-ie^{i\pi z+{\frac {1}{4}}i\pi \tau }\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz+\pi u+\pi \tau u)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{11}(z;\tau )&=e^{i\pi z+{\frac {1}{4}}i\pi \tau }\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz+\pi \tau u)}{\sin(\pi u)}}\mathrm {d} u.\end{aligned}}} Функция Тета Нулверта θ 3 ( q ) {\displaystyle \theta _{3}(q)} как это целостное тождество:
θ 3 ( q ) = 1 + 4 q ln ( 1 / q ) π ∫ 0 ∞ exp [ − ln ( 1 / q ) x 2 ] { 1 − q 2 cos [ 2 ln ( 1 / q ) x ] } 1 − 2 q 2 cos [ 2 ln ( 1 / q ) x ] + q 4 d x {\displaystyle \theta _{3}(q)=1+{\frac {4q{\sqrt {\ln(1/q)}}}{\sqrt {\pi }}}\int _{0}^{\infty }{\frac {\exp[-\ln(1/q)\,x^{2}]\{1-q^{2}\cos[2\ln(1/q)\,x]\}}{1-2q^{2}\cos[2\ln(1/q)\,x]+q^{4}}}\,\mathrm {d} x} Эта формула обсуждалась в эссе « Преобразования производящей функции квадратного ряда» математика Макси Шмидта из Джорджии в Атланте.
На основе этой формулы приводятся следующие три выдающихся примера:
[ 2 π K ( 1 2 2 ) ] 1 / 2 = θ 3 [ exp ( − π ) ] = 1 + 4 exp ( − π ) ∫ 0 ∞ exp ( − π x 2 ) [ 1 − exp ( − 2 π ) cos ( 2 π x ) ] 1 − 2 exp ( − 2 π ) cos ( 2 π x ) + exp ( − 4 π ) d x {\displaystyle {\biggl [}{\frac {2}{\pi }}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}{\biggr ]}^{1/2}=\theta _{3}{\bigl [}\exp(-\pi ){\bigr ]}=1+4\exp(-\pi )\int _{0}^{\infty }{\frac {\exp(-\pi x^{2})[1-\exp(-2\pi )\cos(2\pi x)]}{1-2\exp(-2\pi )\cos(2\pi x)+\exp(-4\pi )}}\,\mathrm {d} x} [ 2 π K ( 2 − 1 ) ] 1 / 2 = θ 3 [ exp ( − 2 π ) ] = 1 + 4 2 4 exp ( − 2 π ) ∫ 0 ∞ exp ( − 2 π x 2 ) [ 1 − exp ( − 2 2 π ) cos ( 2 2 π x ) ] 1 − 2 exp ( − 2 2 π ) cos ( 2 2 π x ) + exp ( − 4 2 π ) d x {\displaystyle {\biggl [}{\frac {2}{\pi }}K({\sqrt {2}}-1){\biggr ]}^{1/2}=\theta _{3}{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=1+4\,{\sqrt[{4}]{2}}\exp(-{\sqrt {2}}\,\pi )\int _{0}^{\infty }{\frac {\exp(-{\sqrt {2}}\,\pi x^{2})[1-\exp(-2{\sqrt {2}}\,\pi )\cos(2{\sqrt {2}}\,\pi x)]}{1-2\exp(-2{\sqrt {2}}\,\pi )\cos(2{\sqrt {2}}\,\pi x)+\exp(-4{\sqrt {2}}\,\pi )}}\,\mathrm {d} x} { 2 π K [ sin ( π 12 ) ] } 1 / 2 = θ 3 [ exp ( − 3 π ) ] = 1 + 4 3 4 exp ( − 3 π ) ∫ 0 ∞ exp ( − 3 π x 2 ) [ 1 − exp ( − 2 3 π ) cos ( 2 3 π x ) ] 1 − 2 exp ( − 2 3 π ) cos ( 2 3 π x ) + exp ( − 4 3 π ) d x {\displaystyle {\biggl \{}{\frac {2}{\pi }}K{\bigl [}\sin {\bigl (}{\frac {\pi }{12}}{\bigr )}{\bigr ]}{\biggr \}}^{1/2}=\theta _{3}{\bigl [}\exp(-{\sqrt {3}}\,\pi ){\bigr ]}=1+4\,{\sqrt[{4}]{3}}\exp(-{\sqrt {3}}\,\pi )\int _{0}^{\infty }{\frac {\exp(-{\sqrt {3}}\,\pi x^{2})[1-\exp(-2{\sqrt {3}}\,\pi )\cos(2{\sqrt {3}}\,\pi x)]}{1-2\exp(-2{\sqrt {3}}\,\pi )\cos(2{\sqrt {3}}\,\pi x)+\exp(-4{\sqrt {3}}\,\pi )}}\,\mathrm {d} x} Более того, тета-примеры θ 3 ( 1 2 ) {\displaystyle \theta _{3}({\tfrac {1}{2}})} и θ 3 ( 1 3 ) {\displaystyle \theta _{3}({\tfrac {1}{3}})} должно отображаться:
θ 3 ( 1 2 ) = 1 + 2 ∑ n = 1 ∞ 1 2 n 2 = 1 + 2 π − 1 / 2 ln ( 2 ) ∫ 0 ∞ exp [ − ln ( 2 ) x 2 ] { 16 − 4 cos [ 2 ln ( 2 ) x ] } 17 − 8 cos [ 2 ln ( 2 ) x ] d x {\displaystyle \theta _{3}{\bigl (}{\frac {1}{2}}{\bigr )}=1+2\sum _{n=1}^{\infty }{\frac {1}{2^{n^{2}}}}=1+2\pi ^{-1/2}{\sqrt {\ln(2)}}\int _{0}^{\infty }{\frac {\exp[-\ln(2)\,x^{2}]\{16-4\cos[2\ln(2)\,x]\}}{17-8\cos[2\ln(2)\,x]}}\,\mathrm {d} x} θ 3 ( 1 2 ) = 2.128936827211877158669 … {\displaystyle \theta _{3}{\bigl (}{\frac {1}{2}}{\bigr )}=2.128936827211877158669\ldots } θ 3 ( 1 3 ) = 1 + 2 ∑ n = 1 ∞ 1 3 n 2 = 1 + 4 3 π − 1 / 2 ln ( 3 ) ∫ 0 ∞ exp [ − ln ( 3 ) x 2 ] { 81 − 9 cos [ 2 ln ( 3 ) x ] } 82 − 18 cos [ 2 ln ( 3 ) x ] d x {\displaystyle \theta _{3}{\bigl (}{\frac {1}{3}}{\bigr )}=1+2\sum _{n=1}^{\infty }{\frac {1}{3^{n^{2}}}}=1+{\frac {4}{3}}\pi ^{-1/2}{\sqrt {\ln(3)}}\int _{0}^{\infty }{\frac {\exp[-\ln(3)\,x^{2}]\{81-9\cos[2\ln(3)\,x]\}}{82-18\cos[2\ln(3)\,x]}}\,\mathrm {d} x} θ 3 ( 1 3 ) = 1.691459681681715341348 … {\displaystyle \theta _{3}{\bigl (}{\frac {1}{3}}{\bigr )}=1.691459681681715341348\ldots } Большая часть этих результатов принадлежит Рамануджану. См. потерянную записную книжку Рамануджана и соответствующую ссылку на функцию Эйлера . Результаты Рамануджана, приведенные в функции Эйлера, плюс несколько элементарных операций дают результаты, приведенные ниже, поэтому они либо находятся в потерянной записной книжке Рамануджана, либо следуют непосредственно из нее. См. также Йи (2004). [4] Определять,
φ ( q ) = ϑ 00 ( 0 ; τ ) = θ 3 ( 0 ; q ) = ∑ n = − ∞ ∞ q n 2 {\displaystyle \quad \varphi (q)=\vartheta _{00}(0;\tau )=\theta _{3}(0;q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}} с именем q = e π i τ , {\displaystyle q=e^{\pi i\tau },} τ = n − 1 , {\displaystyle \tau =n{\sqrt {-1}},} и эта-функция Дедекинда η ( τ ) . {\displaystyle \eta (\tau ).} Тогда для n = 1 , 2 , 3 , … {\displaystyle n=1,2,3,\dots }
φ ( e − π ) = π 4 Γ ( 3 4 ) = 2 η ( − 1 ) φ ( e − 2 π ) = π 4 Γ ( 3 4 ) 2 + 2 2 φ ( e − 3 π ) = π 4 Γ ( 3 4 ) 1 + 3 108 8 φ ( e − 4 π ) = π 4 Γ ( 3 4 ) 2 + 8 4 4 φ ( e − 5 π ) = π 4 Γ ( 3 4 ) 2 + 5 5 φ ( e − 6 π ) = π 4 Γ ( 3 4 ) 1 4 + 3 4 + 4 4 + 9 4 12 3 8 φ ( e − 7 π ) = π 4 Γ ( 3 4 ) 13 + 7 + 7 + 3 7 14 3 8 ⋅ 7 16 φ ( e − 8 π ) = π 4 Γ ( 3 4 ) 2 + 2 + 128 8 4 φ ( e − 9 π ) = π 4 Γ ( 3 4 ) 1 + 2 + 2 3 3 3 φ ( e − 10 π ) = π 4 Γ ( 3 4 ) 64 4 + 80 4 + 81 4 + 100 4 200 4 φ ( e − 11 π ) = π 4 Γ ( 3 4 ) 11 + 11 + ( 5 + 3 3 + 11 + 33 ) − 44 + 33 3 3 + ( − 5 + 3 3 − 11 + 33 ) 44 + 33 3 3 52180524 8 φ ( e − 12 π ) = π 4 Γ ( 3 4 ) 1 4 + 2 4 + 3 4 + 4 4 + 9 4 + 18 4 + 24 4 2 108 8 φ ( e − 13 π ) = π 4 Γ ( 3 4 ) 13 + 8 13 + ( 11 − 6 3 + 13 ) 143 + 78 3 3 + ( 11 + 6 3 + 13 ) 143 − 78 3 3 19773 4 φ ( e − 14 π ) = π 4 Γ ( 3 4 ) 13 + 7 + 7 + 3 7 + 10 + 2 7 + 28 8 4 + 7 28 7 16 φ ( e − 15 π ) = π 4 Γ ( 3 4 ) 7 + 3 3 + 5 + 15 + 60 4 + 1500 4 12 3 8 ⋅ 5 2 φ ( e − 16 π ) = φ ( e − 4 π ) + π 4 Γ ( 3 4 ) 1 + 2 4 128 16 φ ( e − 17 π ) = π 4 Γ ( 3 4 ) 2 ( 1 + 17 4 ) + 17 8 5 + 17 17 + 17 17 2 φ ( e − 20 π ) = φ ( e − 5 π ) + π 4 Γ ( 3 4 ) 3 + 2 5 4 5 2 6 φ ( e − 36 π ) = 3 φ ( e − 9 π ) + 2 φ ( e − 4 π ) − φ ( e − π ) + π 4 Γ ( 3 4 ) 2 4 + 18 4 + 216 4 3 {\displaystyle {\begin{aligned}\varphi \left(e^{-\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}={\sqrt {2}}\,\eta \left({\sqrt {-1}}\right)\\\varphi \left(e^{-2\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {2+{\sqrt {2}}}}{2}}\\\varphi \left(e^{-3\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {1+{\sqrt {3}}}}{\sqrt[{8}]{108}}}\\\varphi \left(e^{-4\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {2+{\sqrt[{4}]{8}}}{4}}\\\varphi \left(e^{-5\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt {\frac {2+{\sqrt {5}}}{5}}}\\\varphi \left(e^{-6\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{1}}+{\sqrt[{4}]{3}}+{\sqrt[{4}]{4}}+{\sqrt[{4}]{9}}}}{\sqrt[{8}]{12^{3}}}}\\\varphi \left(e^{-7\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt {13+{\sqrt {7}}}}+{\sqrt {7+3{\sqrt {7}}}}}}{{\sqrt[{8}]{14^{3}}}\cdot {\sqrt[{16}]{7}}}}\\\varphi \left(e^{-8\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {{\sqrt {2+{\sqrt {2}}}}+{\sqrt[{8}]{128}}}{4}}\\\varphi \left(e^{-9\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {1+{\sqrt[{3}]{2+2{\sqrt {3}}}}}{3}}\\\varphi \left(e^{-10\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{64}}+{\sqrt[{4}]{80}}+{\sqrt[{4}]{81}}+{\sqrt[{4}]{100}}}}{\sqrt[{4}]{200}}}\\\varphi \left(e^{-11\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {11+{\sqrt {11}}+(5+3{\sqrt {3}}+{\sqrt {11}}+{\sqrt {33}}){\sqrt[{3}]{-44+33{\sqrt {3}}}}+(-5+3{\sqrt {3}}-{\sqrt {11}}+{\sqrt {33}}){\sqrt[{3}]{44+33{\sqrt {3}}}}}}{\sqrt[{8}]{52180524}}}\\\varphi \left(e^{-12\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{1}}+{\sqrt[{4}]{2}}+{\sqrt[{4}]{3}}+{\sqrt[{4}]{4}}+{\sqrt[{4}]{9}}+{\sqrt[{4}]{18}}+{\sqrt[{4}]{24}}}}{2{\sqrt[{8}]{108}}}}\\\varphi \left(e^{-13\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {13+8{\sqrt {13}}+(11-6{\sqrt {3}}+{\sqrt {13}}){\sqrt[{3}]{143+78{\sqrt {3}}}}+(11+6{\sqrt {3}}+{\sqrt {13}}){\sqrt[{3}]{143-78{\sqrt {3}}}}}}{\sqrt[{4}]{19773}}}\\\varphi \left(e^{-14\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt {13+{\sqrt {7}}}}+{\sqrt {7+3{\sqrt {7}}}}+{\sqrt {10+2{\sqrt {7}}}}+{\sqrt[{8}]{28}}{\sqrt {4+{\sqrt {7}}}}}}{\sqrt[{16}]{28^{7}}}}\\\varphi \left(e^{-15\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {7+3{\sqrt {3}}+{\sqrt {5}}+{\sqrt {15}}+{\sqrt[{4}]{60}}+{\sqrt[{4}]{1500}}}}{{\sqrt[{8}]{12^{3}}}\cdot {\sqrt {5}}}}\\2\varphi \left(e^{-16\pi }\right)&=\varphi \left(e^{-4\pi }\right)+{\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt[{4}]{1+{\sqrt {2}}}}{\sqrt[{16}]{128}}}\\\varphi \left(e^{-17\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {{\sqrt {2}}(1+{\sqrt[{4}]{17}})+{\sqrt[{8}]{17}}{\sqrt {5+{\sqrt {17}}}}}{\sqrt {17+17{\sqrt {17}}}}}\\2\varphi \left(e^{-20\pi }\right)&=\varphi \left(e^{-5\pi }\right)+{\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt {\frac {3+2{\sqrt[{4}]{5}}}{5{\sqrt {2}}}}}\\6\varphi \left(e^{-36\pi }\right)&=3\varphi \left(e^{-9\pi }\right)+2\varphi \left(e^{-4\pi }\right)-\varphi \left(e^{-\pi }\right)+{\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt[{3}]{{\sqrt[{4}]{2}}+{\sqrt[{4}]{18}}+{\sqrt[{4}]{216}}}}\end{aligned}}} Если возвести обратную константу Гельфонда в степень обратной нечетному числу, то соответствующее ϑ 00 {\displaystyle \vartheta _{00}} ценности или ϕ {\displaystyle \phi } значения можно представить упрощенно, используя гиперболический лемнискатический синус :
φ [ exp ( − 1 5 π ) ] = π 4 Γ ( 3 4 ) − 1 slh ( 1 5 2 ϖ ) slh ( 2 5 2 ϖ ) {\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{5}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{5}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{5}}{\sqrt {2}}\,\varpi {\bigr )}} φ [ exp ( − 1 7 π ) ] = π 4 Γ ( 3 4 ) − 1 slh ( 1 7 2 ϖ ) slh ( 2 7 2 ϖ ) slh ( 3 7 2 ϖ ) {\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{7}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{7}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{7}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {3}{7}}{\sqrt {2}}\,\varpi {\bigr )}} φ [ exp ( − 1 9 π ) ] = π 4 Γ ( 3 4 ) − 1 slh ( 1 9 2 ϖ ) slh ( 2 9 2 ϖ ) slh ( 3 9 2 ϖ ) slh ( 4 9 2 ϖ ) {\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{9}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{9}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{9}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {3}{9}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {4}{9}}{\sqrt {2}}\,\varpi {\bigr )}} φ [ exp ( − 1 11 π ) ] = π 4 Γ ( 3 4 ) − 1 slh ( 1 11 2 ϖ ) slh ( 2 11 2 ϖ ) slh ( 3 11 2 ϖ ) slh ( 4 11 2 ϖ ) slh ( 5 11 2 ϖ ) {\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{11}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {3}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {4}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {5}{11}}{\sqrt {2}}\,\varpi {\bigr )}} С письмом ϖ {\displaystyle \varpi } константа лемнискаты представлена .
Обратите внимание, что имеют место следующие модульные тождества:
2 φ ( q 4 ) = φ ( q ) + 2 φ 2 ( q 2 ) − φ 2 ( q ) 3 φ ( q 9 ) = φ ( q ) + 9 φ 4 ( q 3 ) φ ( q ) − φ 3 ( q ) 3 5 φ ( q 25 ) = φ ( q 5 ) cot ( 1 2 arctan ( 2 5 φ ( q ) φ ( q 5 ) φ 2 ( q ) − φ 2 ( q 5 ) 1 + s ( q ) − s 2 ( q ) s ( q ) ) ) {\displaystyle {\begin{aligned}2\varphi \left(q^{4}\right)&=\varphi (q)+{\sqrt {2\varphi ^{2}\left(q^{2}\right)-\varphi ^{2}(q)}}\\3\varphi \left(q^{9}\right)&=\varphi (q)+{\sqrt[{3}]{9{\frac {\varphi ^{4}\left(q^{3}\right)}{\varphi (q)}}-\varphi ^{3}(q)}}\\{\sqrt {5}}\varphi \left(q^{25}\right)&=\varphi \left(q^{5}\right)\cot \left({\frac {1}{2}}\arctan \left({\frac {2}{\sqrt {5}}}{\frac {\varphi (q)\varphi \left(q^{5}\right)}{\varphi ^{2}(q)-\varphi ^{2}\left(q^{5}\right)}}{\frac {1+s(q)-s^{2}(q)}{s(q)}}\right)\right)\end{aligned}}} где s ( q ) = s ( e π i τ ) = − R ( − e − π i / ( 5 τ ) ) {\displaystyle s(q)=s\left(e^{\pi i\tau }\right)=-R\left(-e^{-\pi i/(5\tau )}\right)} представляет собой непрерывную дробь Роджерса-Рамануджана :
s ( q ) = tan ( 1 2 arctan ( 5 2 φ 2 ( q 5 ) φ 2 ( q ) − 1 2 ) ) cot 2 ( 1 2 arccot ( 5 2 φ 2 ( q 5 ) φ 2 ( q ) − 1 2 ) ) 5 = e − π i / ( 25 τ ) 1 − e − π i / ( 5 τ ) 1 + e − 2 π i / ( 5 τ ) 1 − ⋱ {\displaystyle {\begin{aligned}s(q)&={\sqrt[{5}]{\tan \left({\frac {1}{2}}\arctan \left({\frac {5}{2}}{\frac {\varphi ^{2}\left(q^{5}\right)}{\varphi ^{2}(q)}}-{\frac {1}{2}}\right)\right)\cot ^{2}\left({\frac {1}{2}}\operatorname {arccot} \left({\frac {5}{2}}{\frac {\varphi ^{2}\left(q^{5}\right)}{\varphi ^{2}(q)}}-{\frac {1}{2}}\right)\right)}}\\&={\cfrac {e^{-\pi i/(25\tau )}}{1-{\cfrac {e^{-\pi i/(5\tau )}}{1+{\cfrac {e^{-2\pi i/(5\tau )}}{1-\ddots }}}}}}\end{aligned}}} Математик Брюс Берндт обнаружил дополнительные значения [5] тета-функции:
φ ( exp ( − 3 π ) ) = π − 1 Γ ( 4 3 ) 3 / 2 2 − 2 / 3 3 13 / 8 φ ( exp ( − 2 3 π ) ) = π − 1 Γ ( 4 3 ) 3 / 2 2 − 2 / 3 3 13 / 8 cos ( 1 24 π ) φ ( exp ( − 3 3 π ) ) = π − 1 Γ ( 4 3 ) 3 / 2 2 − 2 / 3 3 7 / 8 ( 2 3 + 1 ) φ ( exp ( − 4 3 π ) ) = π − 1 Γ ( 4 3 ) 3 / 2 2 − 5 / 3 3 13 / 8 ( 1 + cos ( 1 12 π ) ) φ ( exp ( − 5 3 π ) ) = π − 1 Γ ( 4 3 ) 3 / 2 2 − 2 / 3 3 5 / 8 sin ( 1 5 π ) ( 2 5 100 3 + 2 5 10 3 + 3 5 5 + 1 ) {\displaystyle {\begin{array}{lll}\varphi \left(\exp(-{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{13/8}\\\varphi \left(\exp(-2{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{13/8}\cos({\tfrac {1}{24}}\pi )\\\varphi \left(\exp(-3{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{7/8}({\sqrt[{3}]{2}}+1)\\\varphi \left(\exp(-4{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-5/3}3^{13/8}{\Bigl (}1+{\sqrt {\cos({\tfrac {1}{12}}\pi )}}{\Bigr )}\\\varphi \left(\exp(-5{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{5/8}\sin({\tfrac {1}{5}}\pi )({\tfrac {2}{5}}{\sqrt[{3}]{100}}+{\tfrac {2}{5}}{\sqrt[{3}]{10}}+{\tfrac {3}{5}}{\sqrt {5}}+1)\end{array}}} Многие значения тета-функции [6] и особенно показанную фи-функцию можно представить через гамма-функцию:
φ ( exp ( − 2 π ) ) = π − 1 / 2 Γ ( 9 8 ) Γ ( 5 4 ) − 1 / 2 2 7 / 8 φ ( exp ( − 2 2 π ) ) = π − 1 / 2 Γ ( 9 8 ) Γ ( 5 4 ) − 1 / 2 2 1 / 8 ( 1 + 2 − 1 ) φ ( exp ( − 3 2 π ) ) = π − 1 / 2 Γ ( 9 8 ) Γ ( 5 4 ) − 1 / 2 2 3 / 8 3 − 1 / 2 ( 3 + 1 ) tan ( 5 24 π ) φ ( exp ( − 4 2 π ) ) = π − 1 / 2 Γ ( 9 8 ) Γ ( 5 4 ) − 1 / 2 2 − 1 / 8 ( 1 + 2 2 − 2 4 ) φ ( exp ( − 5 2 π ) ) = π − 1 / 2 Γ ( 9 8 ) Γ ( 5 4 ) − 1 / 2 1 15 2 3 / 8 × × [ 5 3 10 + 2 5 ( 5 + 2 + 3 3 3 + 5 + 2 − 3 3 3 ) − ( 2 − 2 ) 25 − 10 5 ] φ ( exp ( − 6 π ) ) = π − 1 / 2 Γ ( 5 24 ) Γ ( 5 12 ) − 1 / 2 2 − 13 / 24 3 − 1 / 8 sin ( 5 12 π ) φ ( exp ( − 1 2 6 π ) ) = π − 1 / 2 Γ ( 5 24 ) Γ ( 5 12 ) − 1 / 2 2 5 / 24 3 − 1 / 8 sin ( 5 24 π ) {\displaystyle {\begin{array}{lll}\varphi \left(\exp(-{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{7/8}\\\varphi \left(\exp(-2{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{1/8}{\Bigl (}1+{\sqrt {{\sqrt {2}}-1}}{\Bigr )}\\\varphi \left(\exp(-3{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{3/8}3^{-1/2}({\sqrt {3}}+1){\sqrt {\tan({\tfrac {5}{24}}\pi )}}\\\varphi \left(\exp(-4{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{-1/8}{\Bigl (}1+{\sqrt[{4}]{2{\sqrt {2}}-2}}{\Bigr )}\\\varphi \left(\exp(-5{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}{\frac {1}{15}}\,2^{3/8}\times \\&&\times {\biggl [}{\sqrt[{3}]{5}}\,{\sqrt {10+2{\sqrt {5}}}}{\biggl (}{\sqrt[{3}]{5+{\sqrt {2}}+3{\sqrt {3}}}}+{\sqrt[{3}]{5+{\sqrt {2}}-3{\sqrt {3}}}}\,{\biggr )}-{\bigl (}2-{\sqrt {2}}\,{\bigr )}{\sqrt {25-10{\sqrt {5}}}}\,{\biggr ]}\\\varphi \left(\exp(-{\sqrt {6}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {5}{24}}\right){\Gamma \left({\tfrac {5}{12}}\right)}^{-1/2}2^{-13/24}3^{-1/8}{\sqrt {\sin({\tfrac {5}{12}}\pi )}}\\\varphi \left(\exp(-{\tfrac {1}{2}}{\sqrt {6}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {5}{24}}\right){\Gamma \left({\tfrac {5}{12}}\right)}^{-1/2}2^{5/24}3^{-1/8}\sin({\tfrac {5}{24}}\pi )\end{array}}} Для преображения нома [7] в тэта-функциях можно использовать эти формулы:
θ 2 ( q 2 ) = 1 2 2 [ θ 3 ( q ) 2 − θ 4 ( q ) 2 ] {\displaystyle \theta _{2}(q^{2})={\tfrac {1}{2}}{\sqrt {2[\theta _{3}(q)^{2}-\theta _{4}(q)^{2}]}}} θ 3 ( q 2 ) = 1 2 2 [ θ 3 ( q ) 2 + θ 4 ( q ) 2 ] {\displaystyle \theta _{3}(q^{2})={\tfrac {1}{2}}{\sqrt {2[\theta _{3}(q)^{2}+\theta _{4}(q)^{2}]}}} θ 4 ( q 2 ) = θ 4 ( q ) θ 3 ( q ) {\displaystyle \theta _{4}(q^{2})={\sqrt {\theta _{4}(q)\theta _{3}(q)}}} Квадраты трех тэта-функций с нулевым значением с функцией квадрата в качестве внутренней функции также формируются по образцу пифагорейских троек в соответствии с тождеством Якоби. Более того, эти преобразования действительны:
θ 3 ( q 4 ) = 1 2 θ 3 ( q ) + 1 2 θ 4 ( q ) {\displaystyle \theta _{3}(q^{4})={\tfrac {1}{2}}\theta _{3}(q)+{\tfrac {1}{2}}\theta _{4}(q)} Эти формулы можно использовать для вычисления тета-значений куба нома:
27 θ 3 ( q 3 ) 8 − 18 θ 3 ( q 3 ) 4 θ 3 ( q ) 4 − θ 3 ( q ) 8 = 8 θ 3 ( q 3 ) 2 θ 3 ( q ) 2 [ 2 θ 4 ( q ) 4 − θ 3 ( q ) 4 ] {\displaystyle 27\,\theta _{3}(q^{3})^{8}-18\,\theta _{3}(q^{3})^{4}\theta _{3}(q)^{4}-\,\theta _{3}(q)^{8}=8\,\theta _{3}(q^{3})^{2}\theta _{3}(q)^{2}[2\,\theta _{4}(q)^{4}-\theta _{3}(q)^{4}]} 27 θ 4 ( q 3 ) 8 − 18 θ 4 ( q 3 ) 4 θ 4 ( q ) 4 − θ 4 ( q ) 8 = 8 θ 4 ( q 3 ) 2 θ 4 ( q ) 2 [ 2 θ 3 ( q ) 4 − θ 4 ( q ) 4 ] {\displaystyle 27\,\theta _{4}(q^{3})^{8}-18\,\theta _{4}(q^{3})^{4}\theta _{4}(q)^{4}-\,\theta _{4}(q)^{8}=8\,\theta _{4}(q^{3})^{2}\theta _{4}(q)^{2}[2\,\theta _{3}(q)^{4}-\theta _{4}(q)^{4}]} Для расчета тета-значений пятой степени нома можно использовать следующие формулы:
[ θ 3 ( q ) 2 − θ 3 ( q 5 ) 2 ] [ 5 θ 3 ( q 5 ) 2 − θ 3 ( q ) 2 ] 5 = 256 θ 3 ( q 5 ) 2 θ 3 ( q ) 2 θ 4 ( q ) 4 [ θ 3 ( q ) 4 − θ 4 ( q ) 4 ] {\displaystyle [\theta _{3}(q)^{2}-\theta _{3}(q^{5})^{2}][5\,\theta _{3}(q^{5})^{2}-\theta _{3}(q)^{2}]^{5}=256\,\theta _{3}(q^{5})^{2}\theta _{3}(q)^{2}\theta _{4}(q)^{4}[\theta _{3}(q)^{4}-\theta _{4}(q)^{4}]} [ θ 4 ( q 5 ) 2 − θ 4 ( q ) 2 ] [ 5 θ 4 ( q 5 ) 2 − θ 4 ( q ) 2 ] 5 = 256 θ 4 ( q 5 ) 2 θ 4 ( q ) 2 θ 3 ( q ) 4 [ θ 3 ( q ) 4 − θ 4 ( q ) 4 ] {\displaystyle [\theta _{4}(q^{5})^{2}-\theta _{4}(q)^{2}][5\,\theta _{4}(q^{5})^{2}-\theta _{4}(q)^{2}]^{5}=256\,\theta _{4}(q^{5})^{2}\theta _{4}(q)^{2}\theta _{3}(q)^{4}[\theta _{3}(q)^{4}-\theta _{4}(q)^{4}]} Формулы для значений тета-функции Нулверта из кубического корня эллиптического нома получаются путем сопоставления двух вещественных решений соответствующих уравнений четвертой степени:
[ θ 3 ( q 1 / 3 ) 2 θ 3 ( q ) 2 − 3 θ 3 ( q 3 ) 2 θ 3 ( q ) 2 ] 2 = 4 − 4 [ 2 θ 2 ( q ) 2 θ 4 ( q ) 2 θ 3 ( q ) 4 ] 2 / 3 {\displaystyle {\biggl [}{\frac {\theta _{3}(q^{1/3})^{2}}{\theta _{3}(q)^{2}}}-{\frac {3\,\theta _{3}(q^{3})^{2}}{\theta _{3}(q)^{2}}}{\biggr ]}^{2}=4-4{\biggl [}{\frac {2\,\theta _{2}(q)^{2}\theta _{4}(q)^{2}}{\theta _{3}(q)^{4}}}{\biggr ]}^{2/3}} [ 3 θ 4 ( q 3 ) 2 θ 4 ( q ) 2 − θ 4 ( q 1 / 3 ) 2 θ 4 ( q ) 2 ] 2 = 4 + 4 [ 2 θ 2 ( q ) 2 θ 3 ( q ) 2 θ 4 ( q ) 4 ] 2 / 3 {\displaystyle {\biggl [}{\frac {3\,\theta _{4}(q^{3})^{2}}{\theta _{4}(q)^{2}}}-{\frac {\theta _{4}(q^{1/3})^{2}}{\theta _{4}(q)^{2}}}{\biggr ]}^{2}=4+4{\biggl [}{\frac {2\,\theta _{2}(q)^{2}\theta _{3}(q)^{2}}{\theta _{4}(q)^{4}}}{\biggr ]}^{2/3}} Непрерывная дробь Роджерса -Рамануджана может быть определена через тэта-функцию Якоби следующим образом:
R ( q ) = tan { 1 2 arctan [ 1 2 − θ 4 ( q ) 2 2 θ 4 ( q 5 ) 2 ] } 1 / 5 tan { 1 2 arccot [ 1 2 − θ 4 ( q ) 2 2 θ 4 ( q 5 ) 2 ] } 2 / 5 {\displaystyle R(q)=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{1/5}\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{2/5}} R ( q 2 ) = tan { 1 2 arctan [ 1 2 − θ 4 ( q ) 2 2 θ 4 ( q 5 ) 2 ] } 2 / 5 cot { 1 2 arccot [ 1 2 − θ 4 ( q ) 2 2 θ 4 ( q 5 ) 2 ] } 1 / 5 {\displaystyle R(q^{2})=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{2/5}\cot {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{1/5}} R ( q 2 ) = tan { 1 2 arctan [ θ 3 ( q ) 2 2 θ 3 ( q 5 ) 2 − 1 2 ] } 2 / 5 tan { 1 2 arccot [ θ 3 ( q ) 2 2 θ 3 ( q 5 ) 2 − 1 2 ] } 1 / 5 {\displaystyle R(q^{2})=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{2/5}\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{1/5}} Попеременная функция цепной дроби Роджерса-Рамануджана S(q) имеет следующие два тождества:
S ( q ) = R ( q 4 ) R ( q 2 ) R ( q ) = tan { 1 2 arctan [ θ 3 ( q ) 2 2 θ 3 ( q 5 ) 2 − 1 2 ] } 1 / 5 cot { 1 2 arccot [ θ 3 ( q ) 2 2 θ 3 ( q 5 ) 2 − 1 2 ] } 2 / 5 {\displaystyle S(q)={\frac {R(q^{4})}{R(q^{2})R(q)}}=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{1/5}\cot {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{2/5}} Значения тета-функции из пятого корня нома можно представить как рациональную комбинацию непрерывных дробей R и S и значений тета-функции из пятой степени нома и самого нома. Следующие четыре уравнения действительны для всех значений q от 0 до 1:
θ 3 ( q 1 / 5 ) θ 3 ( q 5 ) − 1 = 1 S ( q ) [ S ( q ) 2 + R ( q 2 ) ] [ 1 + R ( q 2 ) S ( q ) ] {\displaystyle {\frac {\theta _{3}(q^{1/5})}{\theta _{3}(q^{5})}}-1={\frac {1}{S(q)}}{\bigl [}S(q)^{2}+R(q^{2}){\bigr ]}{\bigl [}1+R(q^{2})S(q){\bigr ]}} 1 − θ 4 ( q 1 / 5 ) θ 4 ( q 5 ) = 1 R ( q ) [ R ( q 2 ) + R ( q ) 2 ] [ 1 − R ( q 2 ) R ( q ) ] {\displaystyle 1-{\frac {\theta _{4}(q^{1/5})}{\theta _{4}(q^{5})}}={\frac {1}{R(q)}}{\bigl [}R(q^{2})+R(q)^{2}{\bigr ]}{\bigl [}1-R(q^{2})R(q){\bigr ]}} θ 3 ( q 1 / 5 ) 2 − θ 3 ( q ) 2 = [ θ 3 ( q ) 2 − θ 3 ( q 5 ) 2 ] [ 1 + 1 R ( q 2 ) S ( q ) + R ( q 2 ) S ( q ) + 1 R ( q 2 ) 2 + R ( q 2 ) 2 + 1 S ( q ) − S ( q ) ] {\displaystyle \theta _{3}(q^{1/5})^{2}-\theta _{3}(q)^{2}={\bigl [}\theta _{3}(q)^{2}-\theta _{3}(q^{5})^{2}{\bigr ]}{\biggl [}1+{\frac {1}{R(q^{2})S(q)}}+R(q^{2})S(q)+{\frac {1}{R(q^{2})^{2}}}+R(q^{2})^{2}+{\frac {1}{S(q)}}-S(q){\biggr ]}} θ 4 ( q ) 2 − θ 4 ( q 1 / 5 ) 2 = [ θ 4 ( q 5 ) 2 − θ 4 ( q ) 2 ] [ 1 − 1 R ( q 2 ) R ( q ) − R ( q 2 ) R ( q ) + 1 R ( q 2 ) 2 + R ( q 2 ) 2 − 1 R ( q ) + R ( q ) ] {\displaystyle \theta _{4}(q)^{2}-\theta _{4}(q^{1/5})^{2}={\bigl [}\theta _{4}(q^{5})^{2}-\theta _{4}(q)^{2}{\bigr ]}{\biggl [}1-{\frac {1}{R(q^{2})R(q)}}-R(q^{2})R(q)+{\frac {1}{R(q^{2})^{2}}}+R(q^{2})^{2}-{\frac {1}{R(q)}}+R(q){\biggr ]}} В сочетании с эллиптическим модулем можно отобразить следующие формулы:
Вот формулы квадрата эллиптического нома:
θ 4 [ q ( k ) ] = θ 4 [ q ( k ) 2 ] 1 − k 2 8 {\displaystyle \theta _{4}[q(k)]=\theta _{4}[q(k)^{2}]{\sqrt[{8}]{1-k^{2}}}} θ 4 [ q ( k ) 2 ] = θ 3 [ q ( k ) ] 1 − k 2 8 {\displaystyle \theta _{4}[q(k)^{2}]=\theta _{3}[q(k)]{\sqrt[{8}]{1-k^{2}}}} θ 3 [ q ( k ) 2 ] = θ 3 [ q ( k ) ] cos [ 1 2 arcsin ( k ) ] {\displaystyle \theta _{3}[q(k)^{2}]=\theta _{3}[q(k)]\cos[{\tfrac {1}{2}}\arcsin(k)]} А это эффективная формула куба нома:
θ 4 ⟨ q { tan [ 1 2 arctan ( t 3 ) ] } 3 ⟩ = θ 4 ⟨ q { tan [ 1 2 arctan ( t 3 ) ] } ⟩ 3 − 1 / 2 ( 2 t 4 − t 2 + 1 − t 2 + 2 + t 2 + 1 ) 1 / 2 {\displaystyle \theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(t^{3}){\bigr ]}{\bigr \}}^{3}{\biggr \rangle }=\theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(t^{3}){\bigr ]}{\bigr \}}{\biggr \rangle }\,3^{-1/2}{\bigl (}{\sqrt {2{\sqrt {t^{4}-t^{2}+1}}-t^{2}+2}}+{\sqrt {t^{2}+1}}\,{\bigr )}^{1/2}} Для всех реальных ценностей t ∈ R {\displaystyle t\in \mathbb {R} } теперь упомянутая формула действительна.
И для этой формулы будут приведены два примера:
Первый пример расчета со значением t = 1 {\displaystyle t=1} вставлено:
θ 4 ⟨ q { tan [ 1 2 arctan ( 1 ) ] } 3 ⟩ = θ 4 ⟨ q { tan [ 1 2 arctan ( 1 ) ] } ⟩ 3 − 1 / 2 ( 3 + 2 ) 1 / 2 {\displaystyle \theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(1){\bigr ]}{\bigr \}}^{3}{\biggr \rangle }=\theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(1){\bigr ]}{\bigr \}}{\biggr \rangle }\,3^{-1/2}{\bigl (}{\sqrt {3}}+{\sqrt {2}}\,{\bigr )}^{1/2}}
θ 4 [ exp ( − 3 2 π ) ] = θ 4 [ exp ( − 2 π ) ] 3 − 1 / 2 ( 3 + 2 ) 1 / 2 {\displaystyle \theta _{4}{\bigl [}\exp(-3{\sqrt {2}}\,\pi ){\bigr ]}=\theta _{4}{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}\,3^{-1/2}{\bigl (}{\sqrt {3}}+{\sqrt {2}}\,{\bigr )}^{1/2}}
Второй пример расчета со значением t = Φ − 2 {\displaystyle t=\Phi ^{-2}} вставлено:
θ 4 ⟨ q { tan [ 1 2 arctan ( Φ − 6 ) ] } 3 ⟩ = θ 4 ⟨ q { tan [ 1 2 arctan ( Φ − 6 ) ] } ⟩ 3 − 1 / 2 ( 2 Φ − 8 − Φ − 4 + 1 − Φ − 4 + 2 + Φ − 4 + 1 ) 1 / 2 {\displaystyle \theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(\Phi ^{-6}){\bigr ]}{\bigr \}}^{3}{\biggr \rangle }=\theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(\Phi ^{-6}){\bigr ]}{\bigr \}}{\biggr \rangle }\,3^{-1/2}{\bigl (}{\sqrt {2{\sqrt {\Phi ^{-8}-\Phi ^{-4}+1}}-\Phi ^{-4}+2}}+{\sqrt {\Phi ^{-4}+1}}\,{\bigr )}^{1/2}}
θ 4 [ exp ( − 3 10 π ) ] = θ 4 [ exp ( − 10 π ) ] 3 − 1 / 2 ( 2 Φ − 8 − Φ − 4 + 1 − Φ − 4 + 2 + Φ − 4 + 1 ) 1 / 2 {\displaystyle \theta _{4}{\bigl [}\exp(-3{\sqrt {10}}\,\pi ){\bigr ]}=\theta _{4}{\bigl [}\exp(-{\sqrt {10}}\,\pi ){\bigr ]}\,3^{-1/2}{\bigl (}{\sqrt {2{\sqrt {\Phi ^{-8}-\Phi ^{-4}+1}}-\Phi ^{-4}+2}}+{\sqrt {\Phi ^{-4}+1}}\,{\bigr )}^{1/2}}
Константа Φ {\displaystyle \Phi } представляет собой золотого сечения число Φ = 1 2 ( 5 + 1 ) {\displaystyle \Phi ={\tfrac {1}{2}}({\sqrt {5}}+1)} точно.
Бесконечная сумма [8] [9] обратных чисел Фибоначчи с нечетными индексами имеет следующее тождество:
∑ n = 1 ∞ 1 F 2 n − 1 = 5 2 ∑ n = 1 ∞ 2 ( Φ − 2 ) n − 1 / 2 1 + ( Φ − 2 ) 2 n − 1 = 5 4 ∑ a = − ∞ ∞ 2 ( Φ − 2 ) a − 1 / 2 1 + ( Φ − 2 ) 2 a − 1 = {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{2n-1}}}={\frac {\sqrt {5}}{2}}\,\sum _{n=1}^{\infty }{\frac {2(\Phi ^{-2})^{n-1/2}}{1+(\Phi ^{-2})^{2n-1}}}={\frac {\sqrt {5}}{4}}\sum _{a=-\infty }^{\infty }{\frac {2(\Phi ^{-2})^{a-1/2}}{1+(\Phi ^{-2})^{2a-1}}}=} = 5 4 θ 2 ( Φ − 2 ) 2 = 5 8 [ θ 3 ( Φ − 1 ) 2 − θ 4 ( Φ − 1 ) 2 ] {\displaystyle ={\frac {\sqrt {5}}{4}}\,\theta _{2}(\Phi ^{-2})^{2}={\frac {\sqrt {5}}{8}}{\bigl [}\theta _{3}(\Phi ^{-1})^{2}-\theta _{4}(\Phi ^{-1})^{2}{\bigr ]}} Не используя выражение тета-функции, можно сформулировать следующее тождество между двумя суммами:
∑ n = 1 ∞ 1 F 2 n − 1 = 5 4 [ ∑ n = 1 ∞ 2 Φ − ( 2 n − 1 ) 2 / 2 ] 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{2n-1}}}={\frac {\sqrt {5}}{4}}\,{\biggl [}\sum _{n=1}^{\infty }2\,\Phi ^{-(2n-1)^{2}/2}{\biggr ]}^{2}} ∑ n = 1 ∞ 1 F 2 n − 1 = 1.82451515740692456814215840626732817332 … {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{2n-1}}}=1.82451515740692456814215840626732817332\ldots } Также в этом случае Φ = 1 2 ( 5 + 1 ) {\displaystyle \Phi ={\tfrac {1}{2}}({\sqrt {5}}+1)} это снова число золотого сечения .
Бесконечная сумма обратных квадратов чисел Фибоначчи:
∑ n = 1 ∞ 1 F n 2 = 5 24 [ 2 θ 2 ( Φ − 2 ) 4 − θ 3 ( Φ − 2 ) 4 + 1 ] = 5 24 [ θ 3 ( Φ − 2 ) 4 − 2 θ 4 ( Φ − 2 ) 4 + 1 ] {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}^{2}}}={\frac {5}{24}}{\bigl [}2\,\theta _{2}(\Phi ^{-2})^{4}-\theta _{3}(\Phi ^{-2})^{4}+1{\bigr ]}={\frac {5}{24}}{\bigl [}\theta _{3}(\Phi ^{-2})^{4}-2\,\theta _{4}(\Phi ^{-2})^{4}+1{\bigr ]}} Бесконечная сумма обратных чисел Пелля с нечетными индексами:
∑ n = 1 ∞ 1 P 2 n − 1 = 1 2 θ 2 [ ( 2 − 1 ) 2 ] 2 = 1 2 2 [ θ 3 ( 2 − 1 ) 2 − θ 4 ( 2 − 1 ) 2 ] {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{P_{2n-1}}}={\frac {1}{\sqrt {2}}}\,\theta _{2}{\bigl [}({\sqrt {2}}-1)^{2}{\bigr ]}^{2}={\frac {1}{2{\sqrt {2}}}}{\bigl [}\theta _{3}({\sqrt {2}}-1)^{2}-\theta _{4}({\sqrt {2}}-1)^{2}{\bigr ]}} Следующие две серии тождественности были доказаны Иштваном Мезё : [10]
θ 4 2 ( q ) = i q 1 4 ∑ k = − ∞ ∞ q 2 k 2 − k θ 1 ( 2 k − 1 2 i ln q , q ) , θ 4 2 ( q ) = ∑ k = − ∞ ∞ q 2 k 2 θ 4 ( k ln q i , q ) . {\displaystyle {\begin{aligned}\theta _{4}^{2}(q)&=iq^{\frac {1}{4}}\sum _{k=-\infty }^{\infty }q^{2k^{2}-k}\theta _{1}\left({\frac {2k-1}{2i}}\ln q,q\right),\\[6pt]\theta _{4}^{2}(q)&=\sum _{k=-\infty }^{\infty }q^{2k^{2}}\theta _{4}\left({\frac {k\ln q}{i}},q\right).\end{aligned}}} Эти соотношения справедливы для всех 0 < q < 1 . Специализируя значения q , мы имеем следующие суммы без параметров:
π e π 2 ⋅ 1 Γ 2 ( 3 4 ) = i ∑ k = − ∞ ∞ e π ( k − 2 k 2 ) θ 1 ( i π 2 ( 2 k − 1 ) , e − π ) {\displaystyle {\sqrt {\frac {\pi {\sqrt {e^{\pi }}}}{2}}}\cdot {\frac {1}{\Gamma ^{2}\left({\frac {3}{4}}\right)}}=i\sum _{k=-\infty }^{\infty }e^{\pi \left(k-2k^{2}\right)}\theta _{1}\left({\frac {i\pi }{2}}(2k-1),e^{-\pi }\right)} π 2 ⋅ 1 Γ 2 ( 3 4 ) = ∑ k = − ∞ ∞ θ 4 ( i k π , e − π ) e 2 π k 2 {\displaystyle {\sqrt {\frac {\pi }{2}}}\cdot {\frac {1}{\Gamma ^{2}\left({\frac {3}{4}}\right)}}=\sum _{k=-\infty }^{\infty }{\frac {\theta _{4}\left(ik\pi ,e^{-\pi }\right)}{e^{2\pi k^{2}}}}} Все нули тэта-функций Якоби являются простыми нулями и задаются следующим образом:
ϑ ( z ; τ ) = ϑ 00 ( z ; τ ) = 0 ⟺ z = m + n τ + 1 2 + τ 2 ϑ 11 ( z ; τ ) = 0 ⟺ z = m + n τ ϑ 10 ( z ; τ ) = 0 ⟺ z = m + n τ + 1 2 ϑ 01 ( z ; τ ) = 0 ⟺ z = m + n τ + τ 2 {\displaystyle {\begin{aligned}\vartheta (z;\tau )=\vartheta _{00}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {1}{2}}+{\frac {\tau }{2}}\\[3pt]\vartheta _{11}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau \\[3pt]\vartheta _{10}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {1}{2}}\\[3pt]\vartheta _{01}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {\tau }{2}}\end{aligned}}} где m , n — произвольные целые числа.
Отношение
ϑ ( 0 ; − 1 τ ) = ( − i τ ) 1 2 ϑ ( 0 ; τ ) {\displaystyle \vartheta \left(0;-{\frac {1}{\tau }}\right)=\left(-i\tau \right)^{\frac {1}{2}}\vartheta (0;\tau )} был использован Риманом для доказательства функционального уравнения для дзета-функции Римана с помощью преобразования Меллина
Γ ( s 2 ) π − s 2 ζ ( s ) = 1 2 ∫ 0 ∞ ( ϑ ( 0 ; i t ) − 1 ) t s 2 d t t {\displaystyle \Gamma \left({\frac {s}{2}}\right)\pi ^{-{\frac {s}{2}}}\zeta (s)={\frac {1}{2}}\int _{0}^{\infty }{\bigl (}\vartheta (0;it)-1{\bigr )}t^{\frac {s}{2}}{\frac {\mathrm {d} t}{t}}} можно показать, что он инвариантен при замене s на 1 − s . Соответствующий интеграл для z ≠ 0 приведен в статье о дзета-функции Гурвица .
Тета-функция использовалась Якоби для построения (в форме, адаптированной для легкого расчета) его эллиптических функций как частных четырех вышеупомянутых тета-функций, и могла быть использована им также для построения эллиптических функций Вейерштрасса , поскольку
℘ ( z ; τ ) = − ( log ϑ 11 ( z ; τ ) ) ″ + c {\displaystyle \wp (z;\tau )=-{\big (}\log \vartheta _{11}(z;\tau ){\big )}''+c} где вторая производная относится к z , а константа c определена так, что разложение Лорана ℘ ( z ) при z = 0 имеет нулевой постоянный член.
Четвертая тэта-функция – а значит, и все остальные – тесно связана с Джексона q -гамма-функцией соотношением [11]
( Γ q 2 ( x ) Γ q 2 ( 1 − x ) ) − 1 = q 2 x ( 1 − x ) ( q − 2 ; q − 2 ) ∞ 3 ( q 2 − 1 ) θ 4 ( 1 2 i ( 1 − 2 x ) log q , 1 q ) . {\displaystyle \left(\Gamma _{q^{2}}(x)\Gamma _{q^{2}}(1-x)\right)^{-1}={\frac {q^{2x(1-x)}}{\left(q^{-2};q^{-2}\right)_{\infty }^{3}\left(q^{2}-1\right)}}\theta _{4}\left({\frac {1}{2i}}(1-2x)\log q,{\frac {1}{q}}\right).} Пусть η ( τ ) — эта-функция Дедекинда , а аргумент тета-функции — ном q = e яма . Затем,
θ 2 ( q ) = ϑ 10 ( 0 ; τ ) = 2 η 2 ( 2 τ ) η ( τ ) , θ 3 ( q ) = ϑ 00 ( 0 ; τ ) = η 5 ( τ ) η 2 ( 1 2 τ ) η 2 ( 2 τ ) = η 2 ( 1 2 ( τ + 1 ) ) η ( τ + 1 ) , θ 4 ( q ) = ϑ 01 ( 0 ; τ ) = η 2 ( 1 2 τ ) η ( τ ) , {\displaystyle {\begin{aligned}\theta _{2}(q)=\vartheta _{10}(0;\tau )&={\frac {2\eta ^{2}(2\tau )}{\eta (\tau )}},\\[3pt]\theta _{3}(q)=\vartheta _{00}(0;\tau )&={\frac {\eta ^{5}(\tau )}{\eta ^{2}\left({\frac {1}{2}}\tau \right)\eta ^{2}(2\tau )}}={\frac {\eta ^{2}\left({\frac {1}{2}}(\tau +1)\right)}{\eta (\tau +1)}},\\[3pt]\theta _{4}(q)=\vartheta _{01}(0;\tau )&={\frac {\eta ^{2}\left({\frac {1}{2}}\tau \right)}{\eta (\tau )}},\end{aligned}}} и,
θ 2 ( q ) θ 3 ( q ) θ 4 ( q ) = 2 η 3 ( τ ) . {\displaystyle \theta _{2}(q)\,\theta _{3}(q)\,\theta _{4}(q)=2\eta ^{3}(\tau ).} См. также модульные функции Вебера .
Эллиптический модуль
k ( τ ) = ϑ 10 ( 0 ; τ ) 2 ϑ 00 ( 0 ; τ ) 2 {\displaystyle k(\tau )={\frac {\vartheta _{10}(0;\tau )^{2}}{\vartheta _{00}(0;\tau )^{2}}}} а дополнительный эллиптический модуль равен
k ′ ( τ ) = ϑ 01 ( 0 ; τ ) 2 ϑ 00 ( 0 ; τ ) 2 {\displaystyle k'(\tau )={\frac {\vartheta _{01}(0;\tau )^{2}}{\vartheta _{00}(0;\tau )^{2}}}} Это два одинаковых определения полного эллиптического интеграла второго рода:
E ( k ) = ∫ 0 π / 2 1 − k 2 sin ( φ ) 2 ∂ φ {\displaystyle E(k)=\int _{0}^{\pi /2}{\sqrt {1-k^{2}\sin(\varphi )^{2}}}\partial \varphi } E ( k ) = π 2 ∑ a = 0 ∞ [ ( 2 a ) ! ] 2 ( 1 − 2 a ) 16 a ( a ! ) 4 k 2 a {\displaystyle E(k)={\frac {\pi }{2}}\sum _{a=0}^{\infty }{\frac {[(2a)!]^{2}}{(1-2a)16^{a}(a!)^{4}}}k^{2a}} Производные функций Тета Нулверта имеют следующие ряды Маклорена:
θ 2 ′ ( x ) = d d x θ 2 ( x ) = 1 2 x − 3 / 4 + ∑ n = 1 ∞ 1 2 ( 2 n + 1 ) 2 x ( 2 n − 1 ) ( 2 n + 3 ) / 4 {\displaystyle \theta _{2}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{2}(x)={\frac {1}{2}}x^{-3/4}+\sum _{n=1}^{\infty }{\frac {1}{2}}(2n+1)^{2}x^{(2n-1)(2n+3)/4}} θ 3 ′ ( x ) = d d x θ 3 ( x ) = 2 + ∑ n = 1 ∞ 2 ( n + 1 ) 2 x n ( n + 2 ) {\displaystyle \theta _{3}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{3}(x)=2+\sum _{n=1}^{\infty }2(n+1)^{2}x^{n(n+2)}} θ 4 ′ ( x ) = d d x θ 4 ( x ) = − 2 + ∑ n = 1 ∞ 2 ( n + 1 ) 2 ( − 1 ) n + 1 x n ( n + 2 ) {\displaystyle \theta _{4}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{4}(x)=-2+\sum _{n=1}^{\infty }2(n+1)^{2}(-1)^{n+1}x^{n(n+2)}} Производные тэта-функций с нулевым значением [12] следующие:
θ 2 ′ ( x ) = d d x θ 2 ( x ) = 1 2 π x θ 2 ( x ) θ 3 ( x ) 2 E [ θ 2 ( x ) 2 θ 3 ( x ) 2 ] {\displaystyle \theta _{2}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{2}(x)={\frac {1}{2\pi x}}\theta _{2}(x)\theta _{3}(x)^{2}E{\biggl [}{\frac {\theta _{2}(x)^{2}}{\theta _{3}(x)^{2}}}{\biggr ]}} θ 3 ′ ( x ) = d d x θ 3 ( x ) = θ 3 ( x ) [ θ 3 ( x ) 2 + θ 4 ( x ) 2 ] { 1 2 π x E [ θ 3 ( x ) 2 − θ 4 ( x ) 2 θ 3 ( x ) 2 + θ 4 ( x ) 2 ] − θ 4 ( x ) 2 4 x } {\displaystyle \theta _{3}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{3}(x)=\theta _{3}(x){\bigl [}\theta _{3}(x)^{2}+\theta _{4}(x)^{2}{\bigr ]}{\biggl \{}{\frac {1}{2\pi x}}E{\biggl [}{\frac {\theta _{3}(x)^{2}-\theta _{4}(x)^{2}}{\theta _{3}(x)^{2}+\theta _{4}(x)^{2}}}{\biggr ]}-{\frac {\theta _{4}(x)^{2}}{4\,x}}{\biggr \}}} θ 4 ′ ( x ) = d d x θ 4 ( x ) = θ 4 ( x ) [ θ 3 ( x ) 2 + θ 4 ( x ) 2 ] { 1 2 π x E [ θ 3 ( x ) 2 − θ 4 ( x ) 2 θ 3 ( x ) 2 + θ 4 ( x ) 2 ] − θ 3 ( x ) 2 4 x } {\displaystyle \theta _{4}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{4}(x)=\theta _{4}(x){\bigl [}\theta _{3}(x)^{2}+\theta _{4}(x)^{2}{\bigr ]}{\biggl \{}{\frac {1}{2\pi x}}E{\biggl [}{\frac {\theta _{3}(x)^{2}-\theta _{4}(x)^{2}}{\theta _{3}(x)^{2}+\theta _{4}(x)^{2}}}{\biggr ]}-{\frac {\theta _{3}(x)^{2}}{4\,x}}{\biggr \}}} Две последние упомянутые формулы действительны для всех действительных чисел действительного интервала определения: − 1 < x < 1 ∩ x ∈ R {\displaystyle -1<x<1\,\cap \,x\in \mathbb {R} }
И эти две последние названные тета-производные функции связаны друг с другом следующим образом:
ϑ 4 ( x ) [ d d x ϑ 3 ( x ) ] − ϑ 3 ( x ) [ d d x θ 4 ( x ) ] = 1 4 x θ 3 ( x ) θ 4 ( x ) [ θ 3 ( x ) 4 − θ 4 ( x ) 4 ] {\displaystyle \vartheta _{4}(x){\biggl [}{\frac {\mathrm {d} }{\mathrm {d} x}}\,\vartheta _{3}(x){\biggr ]}-\vartheta _{3}(x){\biggl [}{\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{4}(x){\biggr ]}={\frac {1}{4\,x}}\,\theta _{3}(x)\,\theta _{4}(x){\bigl [}\theta _{3}(x)^{4}-\theta _{4}(x)^{4}{\bigr ]}} Производные частных двух из трех упомянутых здесь тэта-функций всегда имеют рациональное отношение к этим трем функциям:
d d x θ 2 ( x ) θ 3 ( x ) = θ 2 ( x ) θ 4 ( x ) 4 4 x θ 3 ( x ) {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {\theta _{2}(x)}{\theta _{3}(x)}}={\frac {\theta _{2}(x)\,\theta _{4}(x)^{4}}{4\,x\,\theta _{3}(x)}}} d d x θ 2 ( x ) θ 4 ( x ) = θ 2 ( x ) θ 3 ( x ) 4 4 x θ 4 ( x ) {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {\theta _{2}(x)}{\theta _{4}(x)}}={\frac {\theta _{2}(x)\,\theta _{3}(x)^{4}}{4\,x\,\theta _{4}(x)}}} d d x θ 3 ( x ) θ 4 ( x ) = θ 3 ( x ) 5 − θ 3 ( x ) θ 4 ( x ) 4 4 x θ 4 ( x ) {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {\theta _{3}(x)}{\theta _{4}(x)}}={\frac {\theta _{3}(x)^{5}-\theta _{3}(x)\,\theta _{4}(x)^{4}}{4\,x\,\theta _{4}(x)}}} Для вывода этих формул вывода см. статьи Ном (математика) и Модульная лямбда-функция !
Для тэта-функций эти интегралы [13] действительны:
∫ 0 1 θ 2 ( x ) d x = ∑ k = − ∞ ∞ 4 ( 2 k + 1 ) 2 + 4 = π tanh ( π ) ≈ 3.129881 {\displaystyle \int _{0}^{1}\theta _{2}(x)\,\mathrm {d} x=\sum _{k=-\infty }^{\infty }{\frac {4}{(2k+1)^{2}+4}}=\pi \tanh(\pi )\approx 3.129881} ∫ 0 1 θ 3 ( x ) d x = ∑ k = − ∞ ∞ 1 k 2 + 1 = π coth ( π ) ≈ 3.153348 {\displaystyle \int _{0}^{1}\theta _{3}(x)\,\mathrm {d} x=\sum _{k=-\infty }^{\infty }{\frac {1}{k^{2}+1}}=\pi \coth(\pi )\approx 3.153348} ∫ 0 1 θ 4 ( x ) d x = ∑ k = − ∞ ∞ ( − 1 ) k k 2 + 1 = π csch ( π ) ≈ 0.272029 {\displaystyle \int _{0}^{1}\theta _{4}(x)\,\mathrm {d} x=\sum _{k=-\infty }^{\infty }{\frac {(-1)^{k}}{k^{2}+1}}=\pi \,\operatorname {csch} (\pi )\approx 0.272029} Показанные окончательные результаты основаны на общих формулах сумм Коши.
Тета-функция Якоби является фундаментальным решением одномерного уравнения теплопроводности с пространственно-периодическими граничными условиями. [14] Принимая z = x вещественным и τ = it с действительным и положительным t , мы можем записать
ϑ ( x ; i t ) = 1 + 2 ∑ n = 1 ∞ exp ( − π n 2 t ) cos ( 2 π n x ) {\displaystyle \vartheta (x;it)=1+2\sum _{n=1}^{\infty }\exp \left(-\pi n^{2}t\right)\cos(2\pi nx)} которое решает уравнение теплопроводности
∂ ∂ t ϑ ( x ; i t ) = 1 4 π ∂ 2 ∂ x 2 ϑ ( x ; i t ) . {\displaystyle {\frac {\partial }{\partial t}}\vartheta (x;it)={\frac {1}{4\pi }}{\frac {\partial ^{2}}{\partial x^{2}}}\vartheta (x;it).} Это решение тэта-функции является 1-периодическим по x и при t → 0 приближается к периодической дельта-функции или гребенке Дирака в смысле распределений
lim t → 0 ϑ ( x ; i t ) = ∑ n = − ∞ ∞ δ ( x − n ) {\displaystyle \lim _{t\to 0}\vartheta (x;it)=\sum _{n=-\infty }^{\infty }\delta (x-n)} . Общие решения пространственно-периодической начальной задачи для уравнения теплопроводности можно получить путем свертки начальных данных при t = 0 с тэта-функцией.
Тета-функция Якоби инвариантна относительно действия дискретной подгруппы группы Гейзенберга . Эта инвариантность представлена в статье о тэта-представлении группы Гейзенберга.
Если F — квадратичная форма от n переменных, то тэта-функция, связанная с F, равна
θ F ( z ) = ∑ m ∈ Z n e 2 π i z F ( m ) {\displaystyle \theta _{F}(z)=\sum _{m\in \mathbb {Z} ^{n}}e^{2\pi izF(m)}} с суммой, простирающейся по решетке целых чисел Z n {\displaystyle \mathbb {Z} ^{n}} . Эта тета-функция представляет собой модульную форму веса. n / 2 (на подгруппе, определенной соответствующим образом) модулярной группы . В разложении Фурье
θ ^ F ( z ) = ∑ k = 0 ∞ R F ( k ) e 2 π i k z , {\displaystyle {\hat {\theta }}_{F}(z)=\sum _{k=0}^{\infty }R_{F}(k)e^{2\pi ikz},} числа R F ( k ) называются числами представления формы.
Для χ примитивный характер Дирихле по модулю q и ν = 1 − χ (−1) / 2 , то
θ χ ( z ) = 1 2 ∑ n = − ∞ ∞ χ ( n ) n ν e 2 i π n 2 z {\displaystyle \theta _{\chi }(z)={\frac {1}{2}}\sum _{n=-\infty }^{\infty }\chi (n)n^{\nu }e^{2i\pi n^{2}z}} это вес 1 / 2 + ν модулярная форма уровня 4 q 2 и характер
χ ( d ) ( − 1 d ) ν , {\displaystyle \chi (d)\left({\frac {-1}{d}}\right)^{\nu },} что означает [15]
θ χ ( a z + b c z + d ) = χ ( d ) ( − 1 d ) ν ( θ 1 ( a z + b c z + d ) θ 1 ( z ) ) 1 + 2 ν θ χ ( z ) {\displaystyle \theta _{\chi }\left({\frac {az+b}{cz+d}}\right)=\chi (d)\left({\frac {-1}{d}}\right)^{\nu }\left({\frac {\theta _{1}\left({\frac {az+b}{cz+d}}\right)}{\theta _{1}(z)}}\right)^{1+2\nu }\theta _{\chi }(z)} в любое время
a , b , c , d ∈ Z 4 , a d − b c = 1 , c ≡ 0 mod 4 q 2 . {\displaystyle a,b,c,d\in \mathbb {Z} ^{4},ad-bc=1,c\equiv 0{\bmod {4}}q^{2}.} Позволять
H n = { F ∈ M ( n , C ) | F = F T , Im F > 0 } {\displaystyle \mathbb {H} _{n}=\left\{F\in M(n,\mathbb {C} )\,{\big |}\,F=F^{\mathsf {T}}\,,\,\operatorname {Im} F>0\right\}} — множество симметричных квадратных матриц , мнимая часть которых положительно определена . H n {\displaystyle \mathbb {H} _{n}} называется верхним полупространством Зигеля и является многомерным аналогом верхней полуплоскости . n -мерным аналогом модулярной группы является симплектическая группа Sp(2 n , Z {\displaystyle \mathbb {Z} } ) ; для n = 1 Sp (2, Z {\displaystyle \mathbb {Z} } ) = SL(2, Z {\displaystyle \mathbb {Z} } ) . n -мерный аналог конгруэнтных подгрупп играет
ker { Sp ( 2 n , Z ) → Sp ( 2 n , Z / k Z ) } . {\displaystyle \ker {\big \{}\operatorname {Sp} (2n,\mathbb {Z} )\to \operatorname {Sp} (2n,\mathbb {Z} /k\mathbb {Z} ){\big \}}.} Тогда, учитывая τ ∈ H n {\displaystyle \mathbb {H} _{n}} тэта -функция Римана определяется как
θ ( z , τ ) = ∑ m ∈ Z n exp ( 2 π i ( 1 2 m T τ m + m T z ) ) . {\displaystyle \theta (z,\tau )=\sum _{m\in \mathbb {Z} ^{n}}\exp \left(2\pi i\left({\tfrac {1}{2}}m^{\mathsf {T}}\tau m+m^{\mathsf {T}}z\right)\right).} Здесь z ∈ C n {\displaystyle \mathbb {C} ^{n}} — n -мерный комплексный вектор, а верхний индекс T обозначает транспонирование . Тогда тэта-функция Якоби является частным случаем, когда n = 1 и τ ∈ H {\displaystyle \mathbb {H} } где H {\displaystyle \mathbb {H} } — верхняя полуплоскость . Одним из основных применений тэта-функции Римана является то, что она позволяет давать явные формулы для мероморфных функций на компактных римановых поверхностях , а также для других вспомогательных объектов, которые занимают видное место в их теории функций, взяв τ в качестве матрицы периода относительно канонический базис для своей первой группы гомологии .
Тета Римана сходится абсолютно и равномерно на компактных подмножествах C n × H n {\displaystyle \mathbb {C} ^{n}\times \mathbb {H} _{n}} .
Функциональное уравнение
θ ( z + a + τ b , τ ) = exp ( 2 π i ( − b T z − 1 2 b T τ b ) ) θ ( z , τ ) {\displaystyle \theta (z+a+\tau b,\tau )=\exp \left(2\pi i\left(-b^{\mathsf {T}}z-{\tfrac {1}{2}}b^{\mathsf {T}}\tau b\right)\right)\theta (z,\tau )} которое справедливо для всех векторов a , b ∈ Z n {\displaystyle \mathbb {Z} ^{n}} , и для всех z ∈ C n {\displaystyle \mathbb {C} ^{n}} и τ ∈ H n {\displaystyle \mathbb {H} _{n}} .
Ряд Пуанкаре обобщает тэта-ряд до автоморфных форм относительно произвольных фуксовых групп .
Ниже в качестве примеров будут выведены три важных значения тета-функции:
Вот как бета-функция Эйлера определяется в ее сокращенной форме:
β ( x ) = Γ ( x ) 2 Γ ( 2 x ) {\displaystyle \beta (x)={\frac {\Gamma (x)^{2}}{\Gamma (2x)}}} В общем случае для всех натуральных чисел n ∈ N {\displaystyle n\in \mathbb {N} } эта формула бета-функции Эйлера действительна:
4 − 1 / ( n + 2 ) n + 2 csc ( π n + 2 ) β [ n 2 ( n + 2 ) ] = ∫ 0 ∞ 1 x n + 2 + 1 d x {\displaystyle {\frac {4^{-1/(n+2)}}{n+2}}\csc {\bigl (}{\frac {\pi }{n+2}}{\bigr )}\beta {\biggl [}{\frac {n}{2(n+2)}}{\biggr ]}=\int _{0}^{\infty }{\frac {1}{\sqrt {x^{n+2}+1}}}\,\mathrm {d} x} Ниже приведены некоторые эллиптические интегральные сингулярные значения. [16] являются производными:
А следующая функция имеет следующую эллиптическую первообразную:
1 x 8 + 1 = {\displaystyle {\frac {1}{\sqrt {x^{8}+1}}}=} = d d x 1 4 sec ( π 8 ) F { 2 arctan [ 2 cos ( π / 8 ) x x 4 + 2 x 2 + 1 − x 2 + 1 ] ; 2 2 4 sin ( π 8 ) } + 1 4 sec ( π 8 ) F { arcsin [ 2 cos ( π / 8 ) x x 2 + 1 ] ; tan ( π 8 ) } {\displaystyle ={\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}2\arctan {\biggl [}{\frac {2\cos(\pi /8)\,x}{{\sqrt {x^{4}+{\sqrt {2}}\,x^{2}+1}}-x^{2}+1}}{\biggr ]};2{\sqrt[{4}]{2}}\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}+{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}\arcsin {\biggl [}{\frac {2\cos(\pi /8)\,x}{x^{2}+1}}{\biggr ]};\tan {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}} По цене n = 6 {\displaystyle n=6} появляется следующее тождество:
1 8 2 4 csc ( π 8 ) β ( 3 8 ) = ∫ 0 ∞ 1 x 8 + 1 d x = {\displaystyle {\frac {1}{8{\sqrt[{4}]{2}}}}\csc {\bigl (}{\frac {\pi }{8}}{\bigr )}\beta {\bigl (}{\frac {3}{8}}{\bigr )}=\int _{0}^{\infty }{\frac {1}{\sqrt {x^{8}+1}}}\,\mathrm {d} x=} = ⟨ 1 4 sec ( π 8 ) F { 2 arctan [ 2 cos ( π / 8 ) x x 4 + 2 x 2 + 1 − x 2 + 1 ] ; 2 2 4 sin ( π 8 ) } + 1 4 sec ( π 8 ) F { arcsin [ 2 cos ( π / 8 ) x x 2 + 1 ] ; tan ( π 8 ) } ⟩ x = 0 x = ∞ = {\displaystyle ={\biggl \langle }{\color {blue}{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}2\arctan {\biggl [}{\frac {2\cos(\pi /8)\,x}{{\sqrt {x^{4}+{\sqrt {2}}\,x^{2}+1}}-x^{2}+1}}{\biggr ]};2{\sqrt[{4}]{2}}\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}+{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}\arcsin {\biggl [}{\frac {2\cos(\pi /8)\,x}{x^{2}+1}}{\biggr ]};\tan {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}}{\biggr \rangle }_{x=0}^{x=\infty }=} = 1 4 sec ( π 8 ) F [ π ; 2 2 4 sin ( π 8 ) ] = 1 2 sec ( π 8 ) K ( 2 2 − 2 ) = 2 sin ( π 8 ) K ( 2 − 1 ) {\displaystyle ={\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\bigl [}\pi ;2{\sqrt[{4}]{2}}\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}{\bigr ]}={\frac {1}{2}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}K({\sqrt {2{\sqrt {2}}-2}}{\bigr )}=2\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}K({\sqrt {2}}-1)} Этот результат следует из этой цепочки уравнений:
K ( 2 − 1 ) = 1 8 2 4 ( 2 + 1 ) β ( 3 8 ) {\displaystyle {\color {ForestGreen}K({\sqrt {2}}-1)={\frac {1}{8}}{\sqrt[{4}]{2}}\,({\sqrt {2}}+1)\,\beta {\bigl (}{\frac {3}{8}}{\bigr )}}}
Функция эллиптического имени имеет следующие важные значения:
q ( 1 2 2 ) = exp ( − π ) {\displaystyle q({\tfrac {1}{2}}{\sqrt {2}})=\exp(-\pi )} q [ 1 4 ( 6 − 2 ) ] = exp ( − 3 π ) {\displaystyle q[{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})]=\exp(-{\sqrt {3}}\,\pi )} q ( 2 − 1 ) = exp ( − 2 π ) {\displaystyle q({\sqrt {2}}-1)=\exp(-{\sqrt {2}}\,\pi )} Доказательство правильности этих значений номов см. в статье Ном (математика) !
На основе этих интегральных тождеств, а также приведенного выше определения и тождеств тэта-функций в том же разделе этой статьи теперь должны быть определены примерные значения тета-нуля:
θ 3 [ q ( k ) ] = 2 π − 1 K ( k ) {\displaystyle \theta _{3}[q(k)]={\sqrt {2\pi ^{-1}K(k)}}}
θ 3 [ exp ( − π ) ] = θ 3 [ q ( 1 2 2 ) ] = 2 π − 1 K ( 1 2 2 ) = 2 − 1 / 2 π − 1 / 2 β ( 1 4 ) 1 / 2 = 2 − 1 / 4 π 4 Γ ( 3 4 ) − 1 {\displaystyle \theta _{3}[\exp(-\pi )]=\theta _{3}[q({\tfrac {1}{2}}{\sqrt {2}})]={\sqrt {2\pi ^{-1}K({\tfrac {1}{2}}{\sqrt {2}})}}=2^{-1/2}\pi ^{-1/2}\beta ({\tfrac {1}{4}})^{1/2}=2^{-1/4}{\sqrt[{4}]{\pi }}\,{\Gamma {\bigl (}{\tfrac {3}{4}}{\bigr )}}^{-1}} θ 3 [ exp ( − 3 π ) ] = θ 3 { q [ 1 4 ( 6 − 2 ) ] } = 2 π − 1 K [ 1 4 ( 6 − 2 ) ] = 2 − 1 / 6 3 − 1 / 8 π − 1 / 2 β ( 1 3 ) 1 / 2 {\displaystyle \theta _{3}[\exp(-{\sqrt {3}}\,\pi )]=\theta _{3}{\bigl \{}q{\bigl [}{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}}){\bigr ]}{\bigr \}}={\sqrt {2\pi ^{-1}K{\bigl [}{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}}){\bigr ]}}}=2^{-1/6}3^{-1/8}\pi ^{-1/2}\beta ({\tfrac {1}{3}})^{1/2}} θ 3 [ exp ( − 2 π ) ] = θ 3 [ q ( 2 − 1 ) ] = 2 π − 1 K ( 2 − 1 ) = 2 − 1 / 8 cos ( 1 8 π ) π − 1 / 2 β ( 3 8 ) 1 / 2 {\displaystyle \theta _{3}[\exp(-{\sqrt {2}}\,\pi )]=\theta _{3}[q({\sqrt {2}}-1)]={\sqrt {2\pi ^{-1}K({\sqrt {2}}-1)}}=2^{-1/8}\cos({\tfrac {1}{8}}\pi )\,\pi ^{-1/2}\beta ({\tfrac {3}{8}})^{1/2}} θ 4 [ q ( k ) ] = 1 − k 2 4 2 π − 1 K ( k ) {\displaystyle \theta _{4}[q(k)]={\sqrt[{4}]{1-k^{2}}}\,{\sqrt {2\pi ^{-1}K(k)}}}
θ 4 [ exp ( − 2 π ) ] = θ 4 [ q ( 2 − 1 ) ] = 2 2 − 2 4 2 π − 1 K ( 2 − 1 ) = 2 − 1 / 4 cos ( 1 8 π ) 1 / 2 π − 1 / 2 β ( 3 8 ) 1 / 2 {\displaystyle \theta _{4}[\exp(-{\sqrt {2}}\,\pi )]=\theta _{4}[q({\sqrt {2}}-1)]={\sqrt[{4}]{2{\sqrt {2}}-2}}\,{\sqrt {2\pi ^{-1}K({\sqrt {2}}-1)}}=2^{-1/4}\cos({\tfrac {1}{8}}\pi )^{1/2}\,\pi ^{-1/2}\beta ({\tfrac {3}{8}})^{1/2}} Последовательности разбиения и произведения Поххаммера [ редактировать ] Обычная последовательность разделов P ( n ) {\displaystyle P(n)} само по себе указывает количество способов, которыми положительное целое число n {\displaystyle n} можно разбить на положительные целые слагаемые. Для чисел n = 1 {\displaystyle n=1} к n = 5 {\displaystyle n=5} , соответствующие номера разделов P {\displaystyle P} со всеми связанными номерными разделами перечислены в следующей таблице:
Примеры значений P(n) и связанных с ними числовых разделов н П (п) платные разделы 0 1 () пустой раздел/ пустая сумма 1 1 (1) 2 2 (1+1), (2) 3 3 (1+1+1), (1+2), (3) 4 5 (1+1+1+1), (1+1+2), (2+2), (1+3), (4) 5 7 (1+1+1+1+1), (1+1+1+2), (1+2+2), (1+1+3), (2+3), (1+4), (5)
Производящую функцию регулярной числовой последовательности разделов можно представить через произведение Поххаммера следующим образом:
∑ k = 0 ∞ P ( k ) x k = 1 ( x ; x ) ∞ = θ 3 ( x ) − 1 / 6 θ 4 ( x ) − 2 / 3 [ θ 3 ( x ) 4 − θ 4 ( x ) 4 16 x ] − 1 / 24 {\displaystyle \sum _{k=0}^{\infty }P(k)x^{k}={\frac {1}{(x;x)_{\infty }}}=\theta _{3}(x)^{-1/6}\theta _{4}(x)^{-2/3}{\biggl [}{\frac {\theta _{3}(x)^{4}-\theta _{4}(x)^{4}}{16\,x}}{\biggr ]}^{-1/24}} Суммирование уже упомянутого произведения Похгаммера описывается теоремой о пятиугольных числах следующим образом:
( x ; x ) ∞ = 1 + ∑ n = 1 ∞ [ − x Fn ( 2 n − 1 ) − x Kr ( 2 n − 1 ) + x Fn ( 2 n ) + x Kr ( 2 n ) ] {\displaystyle (x;x)_{\infty }=1+\sum _{n=1}^{\infty }{\bigl [}-x^{{\text{Fn}}(2n-1)}-x^{{\text{Kr}}(2n-1)}+x^{{\text{Fn}}(2n)}+x^{{\text{Kr}}(2n)}{\bigr ]}} Следующие основные определения применимы к пятиугольным числам и номерам карточных домиков:
Fn ( z ) = 1 2 z ( 3 z − 1 ) {\displaystyle {\text{Fn}}(z)={\tfrac {1}{2}}z(3z-1)} Kr ( z ) = 1 2 z ( 3 z + 1 ) {\displaystyle {\text{Kr}}(z)={\tfrac {1}{2}}z(3z+1)} В качестве дальнейшего применения [17] получается формула третьей степени произведения Эйлера:
( x ; x ) 3 = ∏ n = 1 ∞ ( 1 − x n ) 3 = ∑ m = 0 ∞ ( − 1 ) m ( 2 m + 1 ) x m ( m + 1 ) / 2 {\displaystyle (x;x)^{3}=\prod _{n=1}^{\infty }(1-x^{n})^{3}=\sum _{m=0}^{\infty }(-1)^{m}(2m+1)x^{m(m+1)/2}} И строгая последовательность разделов Q ( n ) {\displaystyle Q(n)} указывает количество способов, которыми такое положительное целое число n {\displaystyle n} можно разбить на положительные целые слагаемые так, чтобы каждое слагаемое появлялось не более одного раза. [18] и никакое значение слагаемого не встречается повторно. Точно такая же последовательность [19] также генерируется, если в раздел включены только нечетные слагаемые, но эти нечетные слагаемые могут встречаться более одного раза. Оба представления строгой последовательности номеров разделов сравниваются в следующей таблице:
Примеры значений Q(n) и связанных с ними числовых разделов н Q(n) Числовые разделы без повторяющихся слагаемых Числовые разделы только с нечетными слагаемыми 0 1 () пустой раздел/ пустая сумма () пустой раздел/ пустая сумма 1 1 (1) (1) 2 1 (2) (1+1) 3 2 (1+2), (3) (1+1+1), (3) 4 2 (1+3), (4) (1+1+1+1), (1+3) 5 3 (2+3), (1+4), (5) (1+1+1+1+1), (1+1+3), (5) 6 4 (1+2+3), (2+4), (1+5), (6) (1+1+1+1+1+1), (1+1+1+3), (3+3), (1+5) 7 5 (1+2+4), (3+4), (2+5), (1+6), (7) (1+1+1+1+1+1+1), (1+1+1+1+3), (1+3+3), (1+1+5), (7) 8 6 (1+3+4), (1+2+5), (3+5), (2+6), (1+7), (8) (1+1+1+1+1+1+1+1), (1+1+1+1+1+3), (1+1+3+3), (1+1+1+ 5), (3+5), (1+7)
Производящую функцию строгой числовой последовательности разделов можно представить с помощью произведения Поххаммера:
∑ k = 0 ∞ Q ( k ) x k = 1 ( x ; x 2 ) ∞ = θ 3 ( x ) 1 / 6 θ 4 ( x ) − 1 / 3 [ θ 3 ( x ) 4 − θ 4 ( x ) 4 16 x ] 1 / 24 {\displaystyle \sum _{k=0}^{\infty }Q(k)x^{k}={\frac {1}{(x;x^{2})_{\infty }}}=\theta _{3}(x)^{1/6}\theta _{4}(x)^{-1/3}{\biggl [}{\frac {\theta _{3}(x)^{4}-\theta _{4}(x)^{4}}{16\,x}}{\biggr ]}^{1/24}} Ряд Маклорена для обратной функции ϑ 01 имеет номера последовательности разбиения в качестве коэффициентов с положительным знаком: [20]
1 θ 4 ( x ) = ∏ n = 1 ∞ 1 + x n 1 − x n = ∑ k = 0 ∞ P ¯ ( k ) x k {\displaystyle {\frac {1}{\theta _{4}(x)}}=\prod _{n=1}^{\infty }{\frac {1+x^{n}}{1-x^{n}}}=\sum _{k=0}^{\infty }{\overline {P}}(k)x^{k}} 1 θ 4 ( x ) = 1 + 2 x + 4 x 2 + 8 x 3 + 14 x 4 + 24 x 5 + 40 x 6 + 64 x 7 + 100 x 8 + 154 x 9 + 232 x 10 + … {\displaystyle {\frac {1}{\theta _{4}(x)}}=1+2x+4x^{2}+8x^{3}+14x^{4}+24x^{5}+40x^{6}+64x^{7}+100x^{8}+154x^{9}+232x^{10}+\dots } Если для данного числа k {\displaystyle k} , все разделы настроены таким образом, что размер слагаемого никогда не увеличивается, и все те слагаемые, которые не имеют слагаемого того же размера слева от себя, могут быть помечены для каждого раздела этого типа, тогда это будет результирующее число [21] отмеченных разделов в зависимости от k {\displaystyle k} с помощью функции перераспределения P ¯ ( k ) {\displaystyle {\overline {P}}(k)} .
Первый пример:
P ¯ ( 4 ) = 14 {\displaystyle {\overline {P}}(4)=14} Эти 14 возможностей разметки разделов существуют для суммы 4:
(4), ( 4 ), (3+1), ( 3 +1), (3+ 1 ), ( 3 + 1 ), (2+2), ( 2 +2), (2+1+1), ( 2 +1+1), (2+ 1 +1), ( 2 + 1 +1), (1+1+1+1), ( 1 +1+1+1)
Второй пример:
P ¯ ( 5 ) = 24 {\displaystyle {\overline {P}}(5)=24} Для суммы 5 существуют 24 возможности разметки разделов:
(5), ( 5 ), (4+1), ( 4 +1), (4+ 1 ), ( 4 + 1 ), (3+2), ( 3 +2), (3+ 2 ), ( 3 + 2 ), (3+1+1), ( 3 +1+1), (3+ 1 +1), ( 3 + 1 +1), (2+2+1), ( 2 +2+1), (2+2+ 1 ), ( 2 +2+ 1 ), (2+1+1+1), ( 2 +1+1+1), (2+ 1 +1+1), ( 2 + 1 +1+1), (1+1+1+1+1), ( 1 +1+1+1+1)
Отношения последовательностей номеров разделов друг к другу [ редактировать ] В Онлайн-энциклопедии целочисленных последовательностей (OEIS) последовательность обычных номеров разделов. P ( n ) {\displaystyle P(n)} находится под кодом A000041, последовательность строгих разделов следующая. Q ( n ) {\displaystyle Q(n)} под кодом А000009 и последовательность суперразделов P ¯ ( n ) {\displaystyle {\overline {P}}(n)} под кодом А015128. Все родительские разделы из индекса n = 1 {\displaystyle n=1} четные.
Последовательность суперразделов P ¯ ( n ) {\displaystyle {\overline {P}}(n)} можно записать с помощью регулярной последовательности разбиения P [22] и строгая последовательность разбиений Q [23] можно сгенерировать следующим образом:
P ¯ ( n ) = ∑ k = 0 n P ( n − k ) Q ( k ) {\displaystyle {\overline {P}}(n)=\sum _{k=0}^{n}P(n-k)Q(k)} В следующей таблице последовательностей чисел эту формулу следует использовать в качестве примера:
н П (п) Q(n) P ¯ ( n ) {\displaystyle {\overline {P}}(n)} 0 1 1 1 = 1*1 1 1 1 2 = 1 * 1 + 1 * 1 2 2 1 4 = 2 * 1 + 1 * 1 + 1 * 1 3 3 2 8 = 3 * 1 + 2 * 1 + 1 * 1 + 1 * 2 4 5 2 14 = 5 * 1 + 3 * 1 + 2 * 1 + 1 * 2 + 1 * 2 5 7 3 24 = 7 * 1 + 5 * 1 + 3 * 1 + 2 * 2 + 1 * 2 + 1 * 3
также можно составить следующую комбинацию двух рядов сумм В связи с этим свойством с помощью функции ϑ 01 :
θ 4 ( x ) = [ ∑ k = 0 ∞ P ( k ) x k ] − 1 [ ∑ k = 0 ∞ Q ( k ) x k ] − 1 {\displaystyle \theta _{4}(x)={\biggl [}\sum _{k=0}^{\infty }P(k)x^{k}{\biggr ]}^{-1}{\biggl [}\sum _{k=0}^{\infty }Q(k)x^{k}{\biggr ]}^{-1}} ^ См., например, https://dlmf.nist.gov/20.1 . Обратите внимание, что это, вообще говоря, не эквивалентно обычной интерпретации. ( e z ) α = e α Log e z {\displaystyle (e^{z})^{\alpha }=e^{\alpha \operatorname {Log} e^{z}}} когда z {\displaystyle z} находится за пределами полосы − π < Im z ≤ π {\displaystyle -\pi <\operatorname {Im} z\leq \pi } . Здесь, Log {\displaystyle \operatorname {Log} } обозначает главную ветвь комплексного логарифма . ^ θ 1 ( q ) = 0 {\displaystyle \theta _{1}(q)=0} для всех q ∈ C {\displaystyle q\in \mathbb {C} } с | q | < 1 {\displaystyle |q|<1} . ^ Тюрин, Андрей Н. (30 октября 2002 г.). «Квантование, классическая и квантовая теория поля и тэта-функции». arXiv : math/0210466v1 . ^ Чанг, Дер-Чен (2011). Тепловые ядра для эллиптических и субэллиптических операторов . Биркхойзер. п. 7. ^ Тата-лекции по Тэте I. Современная классика Биркхойзера. Бостон, Массачусетс: Биркхойзер Бостон. 2007. с. 4. дои : 10.1007/978-0-8176-4577-9 . ISBN 978-0-8176-4572-4 . ^ Йи, Джинхи (2004). «Тождества тэта-функции и явные формулы для тета-функции и их приложения» . Журнал математического анализа и приложений . 292 (2): 381–400. дои : 10.1016/j.jmaa.2003.12.009 . ^ Берндт, Брюс С; Ребак, Орс (9 января 2022 г.). «Явные значения тета-функции Рамануджана φ(q)» . Журнал Харди-Рамануджана . 44 : 8923. arXiv : 2112.11882 . дои : 10.46298/hrj.2022.8923 . S2CID 245851672 . ^ Йи, Джинхи (15 апреля 2004 г.). «Тождества тэта-функции и явные формулы для тета-функции и их приложения» . Журнал математического анализа и приложений . 292 (2): 381–400. дои : 10.1016/j.jmaa.2003.12.009 . ^ Андреас Дикманн: Таблица бесконечных произведений. Бесконечные суммы. Бесконечные серии, эллиптическая тета. Физический институт Боннского университета, по состоянию на 1 октября 2021 г. ^ Ландау (1899), цитата из Борвейна , стр. 94, упражнение 3. ^ «Теоретико-числовые, комбинаторные и целочисленные функции – документация mpmath 1.1.0» . Проверено 18 июля 2021 г. ^ -тригонометрические функции Госпера Мезё, Иштван (2013), «Формулы дублирования, включающие тета-функции Якоби и q », Proceedings of the American Mathematical Society , 141 (7): 2401–2410, doi : 10.1090/s0002-9939-2013-11576- 5 ^ Мезё, Иштван (2012). « Формула q -Раабе и интеграл четвертой тэта-функции Якоби» . Журнал теории чисел . 133 (2): 692–704. дои : 10.1016/j.jnt.2012.08.025 . hdl : 2437/166217 . ^ Вайсштейн, Эрик В. «Эллиптическая альфа-функция» . Математический мир . ^ «Интегрирование — Любопытные интегралы для тэта-функций Якоби $\int_0^1 \vartheta_n(0,q)dq$» . 13 августа 2022 г. ^ Охяма, Юске (1995). «Дифференциальные отношения тэта-функций» . Осакский математический журнал . 32 (2): 431–450. ISSN 0030-6126 . ^ Шимура, О модульных формах полуцелого веса. ^ «Эллиптический интеграл сингулярного значения» . msu.edu . Проверено 7 апреля 2023 г. ^ Тета-функциональные тождества Рамануджана с участием рядов Ламберта ^ «Код гольфа — Строгие разбиения положительного целого числа» . Проверено 9 марта 2022 г. ^ «А000009 - ОЭИС» . 09.03.2022. ^ Мальбург, Карл (2004). «Функция перераспределения по модулю малых степеней 2». Дискретная математика . 286 (3): 263–267. дои : 10.1016/j.disc.2004.03.014 . ^ Ким, Бёнчан (28 апреля 2009 г.). «Расширенная программа чтения Elsevier» . Дискретная математика . 309 (8): 2528–2532. дои : 10.1016/j.disc.2008.05.007 . ^ Эрик В. Вайсштейн (11 марта 2022 г.). «Функция разделения P» . ^ Эрик В. Вайсштейн (11 марта 2022 г.). «Функция разделения Q» . Абрамовиц, Милтон ; Стегун, Ирен А. (1964). Справочник по математическим функциям . Нью-Йорк: Dover Publications . сек. 16.27 и далее. ISBN 978-0-486-61272-0 . Ахиезер, Наум Ильич (1990) [1970]. Элементы теории эллиптических функций . AMS Переводы математических монографий. Том. 79. Провиденс, Род-Айленд: AMS . ISBN 978-0-8218-4532-5 . Фаркас, Гершель М .; Кра, Ирвин (1980). Римановы поверхности . Нью-Йорк: Springer-Verlag . гл. 6. ISBN 978-0-387-90465-8 . . (для лечения теты Римана) Харди, штат Джорджия ; Райт, Э.М. (1959). Введение в теорию чисел (4-е изд.). Оксфорд: Кларендон Пресс . Мамфорд, Дэвид (1983). Тата-лекции по Тэте I. Бостон: Биркхаузер . ISBN 978-3-7643-3109-2 . Пирпон, Джеймс (1959). Функции комплексной переменной . Нью-Йорк: Dover Publications . Раух, Гарри Э .; Фаркас, Гершель М. (1974). Тета-функции с приложениями к римановым поверхностям . Балтимор: Уильямс и Уилкинс . ISBN 978-0-683-07196-2 . Рейнхардт, Уильям П.; Уокер, Питер Л. (2010), «Тэта-функции» , в Олвере, Фрэнке У.Дж .; Лозье, Дэниел М.; Буасверт, Рональд Ф.; Кларк, Чарльз В. (ред.), Справочник NIST по математическим функциям , издательство Кембриджского университета, ISBN 978-0-521-19225-5 , МР 2723248 . Уиттакер, ET ; Уотсон, Дж.Н. (1927). Курс современного анализа (4-е изд.). Кембридж: Издательство Кембриджского университета . гл. 21. -функций Якоби (история θ ) Гарри Раух с Гершелем М. Фаркасом: Тета-функции с применением к римановым поверхностям, Уильямс и Уилкинс, Балтимор, Мэриленд, 1974, ISBN 0-683-07196-3 .
Чарльз Эрмит: О разрешении отчетов об уравнениях пятой степени, CR Acad. наук. Париж, № 11 марта 1858 г. Эта статья включает в себя материал из интегральных представлений тета-функций Якоби на платформе PlanetMath , которая распространяется под лицензией Creative Commons Attribution/Share-Alike License .