Электрическое сопротивление и проводимость
Статьи о |
Электромагнетизм |
---|
Электрическое сопротивление | |
---|---|
Общие символы | Р |
И объединились | Ом (Ом) |
В базовых единицах СИ | kg⋅m 2 ⋅s −3 ⋅A −2 |
Измерение |
Электрическая проводимость | |
---|---|
Общие символы | Г |
И объединились | Сименс (С) |
В базовых единицах СИ | кг −1 ⋅m −2 ⋅s 3 ⋅A 2 |
Измерение |
Электрическое сопротивление объекта является мерой его сопротивления потоку электрического тока . Его обратная величина равна электрическая проводимость , измеряющая легкость прохождения электрического тока. Электрическое сопротивление имеет некоторые концептуальные параллели с механическим трением . Единицей системе СИ электрического сопротивления в является ом ( Ом ), а электропроводность измеряется в сименсах (См) (ранее называвшихся «мо», а затем обозначавшихся ℧ ).
Сопротивление объекта во многом зависит от материала, из которого он изготовлен. Объекты, изготовленные из электрических изоляторов, таких как резина, имеют тенденцию иметь очень высокое сопротивление и низкую проводимость, в то время как объекты, изготовленные из электрических проводников, таких как металлы, имеют очень низкое сопротивление и высокую проводимость. Эта связь количественно определяется удельным сопротивлением или проводимостью . Однако природа материала не является единственным фактором сопротивления и проводимости; это также зависит от размера и формы объекта, поскольку эти свойства скорее экстенсивны, чем интенсивны . Например, сопротивление провода выше, если он длинный и тонкий, и ниже, если он короткий и толстый. Все объекты сопротивляются электрическому току, за исключением сверхпроводников , сопротивление которых равно нулю.
Сопротивление R объекта определяется как отношение напряжения V на нем к току I, протекающему через него, а проводимость G является обратной величиной:
Для самых разных материалов и условий V и I прямо пропорциональны друг другу, и поэтому R и G являются константами (хотя они будут зависеть от размера и формы объекта, материала, из которого он изготовлен, и других факторов). например, температура или напряжение ). Эта пропорциональность называется законом Ома , а материалы, удовлетворяющие ему, называются омическими материалами.
В других случаях, например, в трансформаторе , диоде или батарее , V и I не прямо пропорциональны. Соотношение V / I иногда все еще полезен и называется хордальным сопротивлением или статическим сопротивлением . [1] [2] он соответствует обратному наклону хорды между и ВАХ координат поскольку началом . В других ситуациях производная может быть наиболее полезным; это называется дифференциальным сопротивлением .
Введение
[ редактировать ]В гидравлической аналогии ток, текущий по проводу (или резистору ), подобен воде, текущей по трубе, а падение напряжения на проводе похоже на перепад давления , который проталкивает воду через трубу. Проводимость пропорциональна величине потока при данном давлении, а сопротивление пропорционально тому, какое давление требуется для достижения данного потока.
Падение напряжения (т. е. разница между напряжениями на одной стороне резистора и другой), а не само напряжение , обеспечивает движущую силу, проталкивающую ток через резистор. В гидравлике аналогично: расход через нее определяет не само давление, а разница давлений между двумя сторонами трубы. Например, над трубой может находиться большое давление воды, которое пытается протолкнуть воду вниз по трубе. Но под трубой может быть такое же большое давление воды, которое пытается вытолкнуть воду обратно через трубу. Если эти давления равны, вода не течет. (На изображении справа давление воды под трубой равно нулю.)
Сопротивление и проводимость провода, резистора или другого элемента в основном определяются двумя свойствами:
- геометрия (форма) и
- материал
Геометрия важна, поскольку протолкнуть воду через длинную узкую трубу труднее, чем через широкую короткую трубу. Точно так же длинный и тонкий медный провод имеет более высокое сопротивление (меньшую проводимость), чем короткий и толстый медный провод.
Материалы также важны. Труба, наполненная волосами, ограничивает поток воды больше, чем чистая труба той же формы и размера. Точно так же электроны могут свободно и легко течь через медный провод, но не могут так же легко течь через стальной провод той же формы и размера, и они, по сути, вообще не могут течь через изолятор , такой как резина , независимо от его формы. Разница между медью, сталью и резиной связана с их микроскопической структурой и электронной конфигурацией и количественно определяется свойством, называемым удельным сопротивлением .
Помимо геометрии и материала, существуют и другие факторы, влияющие на сопротивление и проводимость, например температура; см . ниже .
Проводники и резисторы
[ редактировать ]Вещества, в которых может течь электрический ток, называются проводниками . Кусок проводящего материала определенного сопротивления, предназначенный для использования в цепи, называется резистором . Проводники изготавливаются из материалов с высокой проводимостью , таких как металлы, в частности медь и алюминий. С другой стороны, резисторы изготавливаются из самых разных материалов в зависимости от таких факторов, как желаемое сопротивление, количество энергии, которую необходимо рассеять, точность и стоимость.
Закон Ома
[ редактировать ]Для многих материалов ток I через материал пропорционален напряжению V приложенному к нему : в широком диапазоне напряжений и токов. Следовательно, сопротивление и проводимость объектов или электронных компонентов, изготовленных из этих материалов, постоянны. Это соотношение называется законом Ома , а материалы, подчиняющиеся ему, называются омическими материалами. Примерами омических компонентов являются провода и резисторы . График тока-напряжения омического устройства представляет собой прямую линию, проходящую через начало координат, с положительным наклоном .
Другие компоненты и материалы, используемые в электронике, не подчиняются закону Ома; ток не пропорционален напряжению, поэтому сопротивление меняется в зависимости от напряжения и тока через них. Их называют нелинейными или неомическими . Примеры включают диоды и люминесцентные лампы .
Связь с удельным сопротивлением и проводимостью
[ редактировать ]Сопротивление данного объекта зависит прежде всего от двух факторов: из какого материала он изготовлен и его формы. Для данного материала сопротивление обратно пропорционально площади поперечного сечения; например, толстая медная проволока имеет более низкое сопротивление, чем идентичная в остальном тонкая медная проволока. Кроме того, для данного материала сопротивление пропорционально длине; например, длинный медный провод имеет более высокое сопротивление, чем идентичный в остальном медный провод. Таким образом, сопротивление R и проводимость G проводника однородного поперечного сечения можно вычислить как
где — длина проводника, измеряемая в метрах (м), А — площадь поперечного сечения проводника, измеряемая в квадратных метрах (м). 2 ), σ ( сигма ) — электропроводность , измеряемая в сименсах на метр (См·м −1 ), а ρ ( rho ) — электрическое сопротивление (также называемое удельным электрическим сопротивлением ) материала, измеряемое в ом-метрах (Ом·м). Удельное сопротивление и проводимость являются константами пропорциональности и, следовательно, зависят только от материала, из которого изготовлен провод, а не от геометрии провода. Удельное сопротивление и проводимость обратные величины : . Удельное сопротивление — это мера способности материала противостоять электрическому току.
Эта формула не точна, поскольку предполагает, что плотность тока в проводнике полностью однородна, что не всегда верно в практических ситуациях. Однако эта формула по-прежнему обеспечивает хорошее приближение для длинных тонких проводников, таких как провода.
Другая ситуация, для которой эта формула неточна, — это переменный ток (AC), поскольку скин-эффект препятствует протеканию тока вблизи центра проводника. По этой причине геометрическое сечение отличается от эффективного сечения, в котором фактически протекает ток, поэтому сопротивление выше ожидаемого. Аналогично, если два проводника, находящиеся рядом друг с другом, несут переменный ток, их сопротивления увеличиваются из-за эффекта близости . На коммерческой частоте эти эффекты существенны для толстых проводников, по которым проходят большие токи, таких как шины на электрической подстанции . [3] или большие силовые кабели с силой тока более нескольких сотен ампер.
Удельное сопротивление разных материалов сильно различается: например, проводимость тефлона составляет около 10 30 раз ниже проводимости меди. Грубо говоря, это связано с тем, что металлы имеют большое количество «делокализованных» электронов, которые не застряли в каком-либо одном месте, поэтому они могут свободно перемещаться на большие расстояния. В изоляторе, таком как тефлон, каждый электрон прочно связан с отдельной молекулой, поэтому для его отрыва требуется большая сила. Полупроводники находятся между этими двумя крайностями. Подробнее можно прочитать в статье: Удельное электросопротивление и проводимость . О растворах электролитов см. статью: Проводимость (электролитическая) .
Сопротивление меняется в зависимости от температуры. В полупроводниках удельное сопротивление также меняется под воздействием света. См . ниже .
Измерение
[ редактировать ]Прибор для измерения сопротивления называется омметром . Простые омметры не могут точно измерять низкие сопротивления, поскольку сопротивление их измерительных проводов вызывает падение напряжения, которое мешает измерению, поэтому в более точных устройствах используется четырехконтактное считывание .
Типичные значения
[ редактировать ]Компонент | Сопротивление (Ом) |
---|---|
1 метр медного провода диаметром 1 мм. | 0.02 [а] |
1 км Воздушная линия электропередачи длиной ( типовая ) | 0.03 [5] |
Батарея АА ( типичное внутреннее сопротивление ) | 0.1 [б] |
Нить лампы накаливания ( типовая ) | 200–1000 [с] |
Человеческое тело | 1000–100,000 [д] |
Статическое и дифференциальное сопротивление
[ редактировать ]Многие электрические элементы, такие как диоды и аккумуляторы, удовлетворяют не закону Ома . Их называют неомическими или нелинейными , и их кривые ток-напряжение являются не прямыми линиями, проходящими через начало координат.
Сопротивление и проводимость все еще можно определить для неомических элементов. Однако, в отличие от омического сопротивления, нелинейное сопротивление не является постоянным, а меняется в зависимости от напряжения или тока, проходящего через устройство; т. е. его рабочая точка . Существует два типа сопротивления: [1] [2]
- Статическое сопротивление
- Это соответствует обычному определению сопротивления; напряжение, деленное на ток Это наклон линии ( хорды ) от начала координат до точки кривой. Статическое сопротивление определяет рассеиваемую мощность в электрическом компоненте. Точки на вольт-амперной кривой, расположенные во 2-м или 4-м квадрантах, для которых наклон хордальной линии отрицательный, обладают отрицательным статическим сопротивлением . Пассивные устройства, не имеющие источника энергии, не могут иметь отрицательное статическое сопротивление. Однако активные устройства, такие как транзисторы или операционные усилители, могут синтезировать отрицательное статическое сопротивление с обратной связью, и оно используется в некоторых схемах, таких как гираторы .
- Дифференциальное сопротивление
- Это производная напряжения по току; наклон точке кривой ток-напряжение в Если кривая ток-напряжение немонотонна ( с пиками и впадинами), в некоторых областях кривая имеет отрицательный наклон, поэтому в этих областях устройство имеет отрицательное дифференциальное сопротивление . Устройства с отрицательным дифференциальным сопротивлением могут усиливать подаваемый на них сигнал и используются для изготовления усилителей и генераторов. К ним относятся туннельные диоды , диоды Ганна , диоды IMPATT , магнетронные трубки и однопереходные транзисторы .
Цепи переменного тока
[ редактировать ]Импеданс и адмиттанс
[ редактировать ]При протекании переменного тока по цепи соотношение между током и напряжением на элементе цепи характеризуется не только соотношением их величин, но и разностью их фаз . Например, в идеальном резисторе в момент, когда напряжение достигает максимума, ток также достигает максимума (ток и напряжение колеблются синфазно). Но для конденсатора или катушки индуктивности максимальный ток возникает, когда напряжение проходит через ноль и наоборот (ток и напряжение колеблются на 90° не по фазе, см. изображение ниже). Комплексные числа используются для отслеживания фазы и величины тока и напряжения:
где:
- т – время;
- u ( t ) и i ( t ) — напряжение и ток как функция времени соответственно;
- U 0 и I 0 обозначают амплитуду напряжения и тока соответственно;
- – угловая частота переменного тока;
- – угол смещения;
- U и I — комплексные напряжение и ток соответственно;
- Z и Y — комплексный импеданс и адмиттанс соответственно;
- указывает действительную часть комплексного числа ; и
- это мнимая единица .
Импеданс и адмиттанс можно выразить в виде комплексных чисел, которые можно разбить на действительную и мнимую части:
где R — сопротивление, G — проводимость, X — реактивное сопротивление , а B — проводимость . Это приводит к комплексных чисел тождествам которые верны во всех случаях, тогда как справедливо только в особых случаях постоянного тока или тока без реактивного сопротивления.
Сложный угол — это разность фаз между напряжением и током, проходящим через компонент с Z. сопротивлением Для конденсаторов и катушек индуктивности этот угол равен ровно -90° или +90° соответственно, а X и B не равны нулю. Идеальные резисторы имеют угол 0°, поскольку X равен нулю (а значит, и B ), а Z и Y уменьшаются до R и G соответственно. Как правило, системы переменного тока проектируются так, чтобы фазовый угол был максимально близок к 0°, поскольку это снижает реактивную мощность , которая не совершает полезной работы при нагрузке. В простом случае с индуктивной нагрузкой (вызывающей увеличение фазы) для компенсации на одной частоте можно добавить конденсатор, поскольку фазовый сдвиг конденсатора отрицательный, что снова приближает фазу общего импеданса к 0 °.
Y является обратной величиной Z ( ) для всех цепей, так же, как для цепей постоянного тока, содержащих только резисторы, или цепей переменного тока, для которых либо реактивное сопротивление, либо резистивность равны нулю ( X или B = 0 соответственно) (если один из них равен нулю, то для реалистичных систем оба должны быть равны нулю).
Частотная зависимость
[ редактировать ]Ключевой особенностью цепей переменного тока является то, что сопротивление и проводимость могут зависеть от частоты — явление, известное как универсальный диэлектрический отклик . [8] Одной из причин, упомянутой выше, является скин-эффект (и связанный с ним эффект близости ). Другая причина в том, что само удельное сопротивление может зависеть от частоты (см. Модель Друде , ловушки глубоких уровней , резонансная частота , соотношения Крамерса–Кронига и т. д.).
Рассеяние энергии и джоулевый нагрев
[ редактировать ]Резисторы (и другие элементы с сопротивлением) противодействуют прохождению электрического тока; следовательно, для пропускания тока через сопротивление требуется электрическая энергия. Эта электрическая энергия рассеивается, нагревая при этом резистор. Это называется джоулевым нагревом (в честь Джеймса Прескотта Джоуля ), также называемым омическим нагревом или резистивным нагревом .
Рассеяние электрической энергии часто нежелательно, особенно в случае потерь при передаче в линиях электропередачи . Передача высокого напряжения помогает снизить потери за счет уменьшения тока при заданной мощности.
С другой стороны, иногда бывает полезен джоулевый нагрев, например, в электроплитах и других электронагревателях (также называемых резистивными нагревателями ). Другой пример: лампы накаливания основаны на джоулевом нагреве: нить накаливания нагревается до такой высокой температуры, что она раскаляется добела тепловым излучением (также называемым накалом ).
Формула джоулева нагрева: где P — мощность (энергия в единицу времени), преобразованная из электрической энергии в тепловую, R — сопротивление, а I — ток через резистор.
Зависимость от других условий
[ редактировать ]Температурная зависимость
[ редактировать ]При комнатной температуре удельное сопротивление металлов обычно увеличивается с повышением температуры, тогда как удельное сопротивление полупроводников обычно уменьшается с повышением температуры. Удельное сопротивление изоляторов и электролитов может увеличиваться или уменьшаться в зависимости от системы. Подробное описание поведения и объяснение см. в разделе «Электрическое сопротивление и проводимость» .
Как следствие, сопротивление проводов, резисторов и других компонентов часто меняется в зависимости от температуры. Этот эффект может быть нежелательным, вызывая сбой в работе электронной схемы при экстремальных температурах. Однако в некоторых случаях эффект находит хорошее применение. Когда целенаправленно используется сопротивление компонента, зависящее от температуры, этот компонент называется термометром сопротивления или термистором . (Термометр сопротивления изготавливается из металла, обычно платины, а термистор — из керамики или полимера.)
Термометры сопротивления и термисторы обычно используются двумя способами. Во-первых, их можно использовать в качестве термометров : измеряя сопротивление, можно определить температуру окружающей среды. Во-вторых, их можно использовать в сочетании с джоулевым нагревом (также называемым самонагревом): если через резистор протекает большой ток, температура резистора повышается и, следовательно, изменяется его сопротивление. Следовательно, эти компоненты могут использоваться для защиты цепей, подобно предохранителям , или для обратной связи в цепях, или для многих других целей. В общем, самонагрев может превратить резистор в нелинейный и гистерезисный элемент схемы. Более подробную информацию см. в разделе Термистор#Эффекты самонагревания .
Если температура T не меняется слишком сильно, линейное приближение обычно используется : где называется температурным коэффициентом сопротивления , — фиксированная эталонная температура (обычно комнатная температура), а сопротивление при температуре . Параметр — эмпирический параметр, подобранный на основе данных измерений. Поскольку линейное приближение — это всего лишь приближение, различна для разных эталонных температур. По этой причине обычно указывают температуру, измерялся с суффиксом, например , и это соотношение сохраняется только в диапазоне температур около эталонного. [9]
Температурный коэффициент обычно +3 × 10 −3 K−1 равен +6 × 10 −3 К-1 для металлов при температуре около комнатной. Обычно он отрицателен для полупроводников и изоляторов и имеет сильно переменную величину. [и]
Зависимость от деформации
[ редактировать ]Точно так же, как сопротивление проводника зависит от температуры, сопротивление проводника зависит от деформации . [10] При помещении проводника под напряжение (вид напряжения , приводящий к деформации в виде растяжения проводника) длина натянутого участка проводника увеличивается, а площадь его поперечного сечения уменьшается. Оба этих эффекта способствуют увеличению сопротивления напряжённого участка проводника. При сжатии (деформации в противоположном направлении) сопротивление натянутого участка проводника уменьшается. см. в обсуждении тензорезисторов Подробную информацию об устройствах, созданных для использования этого эффекта, .
Зависимость освещенности от света
[ редактировать ]Некоторые резисторы, особенно сделанные из полупроводников , обладают фотопроводимостью , то есть их сопротивление изменяется, когда на них падает свет. Поэтому их называют фоторезисторами (или светозависимыми резисторами ). Это распространенный тип детектора света .
Сверхпроводимость
[ редактировать ]Сверхпроводники — это материалы, которые имеют ровно нулевое сопротивление и бесконечную проводимость, потому что они могут иметь V = 0 и I ≠ 0 . Это также означает отсутствие джоулевого нагрева или, другими словами, рассеяния электрической энергии. Следовательно, если сверхпроводящий провод превратить в замкнутый контур, ток будет течь по контуру вечно. Сверхпроводники требуют охлаждения до температуры около 4 К жидким гелием для большинства металлических сверхпроводников, таких как сплавы ниобий-олово , или охлаждения до температуры около 77 К жидким азотом для дорогих, хрупких и деликатных керамических высокотемпературных сверхпроводников .Тем не менее, существует множество технологических применений сверхпроводимости , включая сверхпроводящие магниты .
См. также
[ редактировать ]- Квант проводимости
- Константа фон Клитцинга (обратная ей величина)
- Электрические измерения
- Контактное сопротивление
- Электрическое сопротивление и проводимость для получения дополнительной информации о физических механизмах проводимости материалов.
- Шум Джонсона – Найквиста
- Квантовый эффект Холла — стандарт высокоточных измерений сопротивления.
- Резистор
- Код РКМ
- Последовательные и параллельные цепи
- Листовое сопротивление
- Единицы электромагнетизма СИ
- Термическое сопротивление
- Делитель напряжения
- Падение напряжения
Сноски
[ редактировать ]- ^ Удельное сопротивление меди составляет около 1,7 × 10. −8 Ω⋅m . [4]
- ^ Для новой щелочной батареи Energizer E91 AA внутреннее сопротивление варьируется от 0,9 Ом при −40 °C до 0,1 Ом при +40 °C . [6]
- ^ Лампочка мощностью 60 Вт (в США с 120 В напряжением сети ) потребляет среднеквадратичный ток. 60 Вт / 120 В = 500 мА , поэтому его сопротивление равно 120 В / 500 мА = 240 Ом . Сопротивление лампочки мощностью 60 Вт в Европе ( 230 В сеть ) составляет 900 Ом . Сопротивление нити зависит от температуры; эти значения относятся к случаям, когда нить накаливания уже нагрета и свет уже светится.
- ^ 100 кОм при контакте с сухой кожей, 1 кОм при контакте с влажной или нарушенной кожей. Высокое напряжение разрушает кожу, снижая сопротивление до 500 Ом . Другие факторы и условия также имеют значение. Более подробную информацию см. в статье о поражении электрическим током и в NIOSH 98-131. [7]
- ^ см . в разделе «Электрическое сопротивление и проводимость» Таблицу . Температурный коэффициент удельного сопротивления аналогичен, но не идентичен температурному коэффициенту сопротивления. Небольшая разница связана с тепловым расширением, изменяющим размеры резистора.
Ссылки
[ редактировать ]- ^ Jump up to: а б Браун, Форбс Т. (2006). Динамика инженерных систем: унифицированный графоцентрированный подход (2-е изд.). Бока-Ратон, Флорида: CRC Press. п. 43. ИСБН 978-0-8493-9648-9 .
- ^ Jump up to: а б Кайзер, Кеннет Л. (2004). Справочник по электромагнитной совместимости . Бока-Ратон, Флорида: CRC Press. стр. 13–52. ISBN 978-0-8493-2087-3 .
- ^ Финк и Бити (1923). «Стандартный справочник для инженеров-электриков». Природа . 111 (2788) (11-е изд.): 17–19. Бибкод : 1923Natur.111..458R . дои : 10.1038/111458a0 . hdl : 2027/mdp.39015065357108 . S2CID 26358546 .
- ^ Катнелл, Джон Д.; Джонсон, Кеннет В. (1992). Физика (2-е изд.). Нью-Йорк: Уайли. п. 559. ИСБН 978-0-471-52919-4 .
- ^ Макдональд, Джон Д. (2016). Проектирование электрических подстанций (2-е изд.). Бока-Ратон, Флорида: CRC Press. стр. 363 и далее. ISBN 978-1-4200-0731-2 .
- ^ Внутреннее сопротивление аккумулятора (PDF) (Отчет). Energizer Corp. Архивировано из оригинала (PDF) 11 января 2012 года . Проверено 13 декабря 2011 г.
- ^ «Смерть рабочих от поражения электрическим током» (PDF) . Национальный институт безопасности и гигиены труда . Публикация № 98-131 . Проверено 2 ноября 2014 г.
- ^ Чжай, Чонгпу; Ган, Исян; Ханаор, Дориан; Пруст, Гвеналь (2018). «Стресс-зависимый электрический транспорт и его универсальное масштабирование в сыпучих материалах». Письма по экстремальной механике . 22 : 83–88. arXiv : 1712.05938 . Бибкод : 2018ExML...22...83Z . дои : 10.1016/j.eml.2018.05.005 . S2CID 51912472 .
- ^ Уорд, MR (1971). Электротехнические науки . МакГроу-Хилл. стр. 36–40.
- ^ Мейер, Себастьян; и др. (2022), «Характеристика деформационного состояния магния по электрическому сопротивлению», том 215 , Scripta Materialia, vol. 215, с. 114712, doi : 10.1016/j.scriptamat.2022.114712 , S2CID 247959452
Внешние ссылки
[ редактировать ]- «Калькулятор сопротивления» . Лаборатория автомобильной электроники. Клемсонский университет. Архивировано из оригинала 11 июля 2010 года.
- «Модели электронной проводимости с использованием случайных блужданий с максимальной энтропией» . www.wolfram.com . Демонстрационный проект Wolfram.