Jump to content

настоящий газ

Реальные газы — это неидеальные газы, молекулы которых занимают пространство и взаимодействуют; следовательно, они не подчиняются закону идеального газа .Для понимания поведения реальных газов необходимо учитывать следующее:

Для большинства приложений такой детальный анализ не нужен, и приближение идеального газа можно использовать с разумной точностью. С другой стороны, модели реального газа приходится использовать вблизи точки конденсации газов, вблизи критических точек , при очень высоких давлениях, чтобы объяснить эффект Джоуля-Томсона , и в других менее обычных случаях. Отклонение от идеальности можно описать коэффициентом сжимаемости Z.

Модели [ править ]

Изотермы реального газа

Синие кривые – изотермы ниже критической температуры. Зеленые секции – метастабильные состояния .

Участок левее точки F – нормальная жидкость.
Точка F – точка кипения .
Линия FG – равновесие жидкой и газообразной фаз.
Секция FA – перегретая жидкость .
Участок F’A – растянутая жидкость (р<0).
Участок AC – аналитическое продолжение изотермы, физически невозможное.
Секция CG – переохлажденный пар .
Точка G – точка росы .
Участок справа от точки G – нормальный газ.
Площади FAB и GCB равны.

Красная кривая – критическая изотерма.
Точка К – критическая точка .

Голубые кривые – сверхкритические изотермы.

Модель Ван дер Ваальса [ править ]

Реальные газы часто моделируются с учетом их молярного веса и молярного объема.

или альтернативно:

Где p — давление, T — температура, R — постоянная идеального газа, а V m — молярный объем . a и b — параметры, которые определяются эмпирически для каждого газа, но иногда оцениваются по их критической температуре ( T c ) и критическому давлению ( pc ) с использованием этих соотношений:

Константы в критической точке можно выразить как функции параметров a, b:

С уменьшенными свойствами уравнение можно записать в сокращенной форме :

Модель Квонга Редлиха

Критическая изотерма для модели Редлиха-Квонга в сравнении с моделью Ван-дер-Ваальса и идеальным газом (при V 0 =RT c /p c )

Уравнение Редлиха-Квонга — еще одно двухпараметрическое уравнение, которое используется для моделирования реальных газов. Оно почти всегда более точное, чем уравнение Ван-дер-Ваальса , и часто более точное, чем некоторые уравнения с более чем двумя параметрами. Уравнение

или альтернативно:

где a и b — два эмпирических параметра, которые отличаются от параметров в уравнении Ван-дер-Ваальса. Эти параметры можно определить:

Константы в критической точке можно выразить как функции параметров a, b:

С использованием уравнение состояния можно записать в сокращенной форме :

с

и модифицированная модель Бертло Бертло

Уравнение Бертло (названо в честь Д. Бертло) [1] используется очень редко,

но модифицированная версия несколько точнее

Модель Дитеричи

Эта модель (названа в честь К. Дитеричи [2] ) в последние годы вышел из употребления

с параметрами а, б. Их можно нормализовать путем деления на состояние критической точки. [примечание 1] :

что приводит уравнение к сокращенной форме : [3]

Модель Клаузиуса [ править ]

Уравнение Клаузиуса (названное в честь Рудольфа Клаузиуса ) — это очень простое уравнение с тремя параметрами, используемое для моделирования газов.

или альтернативно:

где

где V c – критический объем.

Вириальная модель [ править ]

Уравнение Вириала выводится из пертурбативной трактовки статистической механики.

или альтернативно

где A , B , C , A ′, B ′ и C ′ — константы, зависящие от температуры.

Модель Пэна–Робинсона [ править ]

Уравнение состояния Пэна – Робинсона (названное в честь Д.-Ю. Пенга и Д.Б. Робинсона [4] ) обладает интересным свойством: его можно использовать при моделировании некоторых жидкостей, а также реальных газов.

Модель скважины [ править ]

Изотерма (V/V 0 ->p_r) при критической температуре для модели Воля, модели Ван дер Ваальса и модели идеального газа (при V 0 =RT c /p c )
Исследования по уравнению состояния, стр. 9,10, Журнал. е. Физический. Химия 87

Уравнение Воля (названо в честь А.Воля [5] ) формулируется в терминах критических значений, что делает его полезным, когда реальные газовые постоянные недоступны, но его нельзя использовать для высоких плотностей, как, например, критическая изотерма показывает резкое снижение давления, когда объем сокращается сверх критического объема. .

или:

или, альтернативно:

где

с
, где являются (соответственно) молярным объемом, давлением и температурой в критической точке .

И с пониженными свойствами можно записать первое уравнение в сокращенной форме :

- Бриджмена Битти Модель

[6] Это уравнение основано на пяти экспериментально определенных константах. Это выражается как

где

Известно, что это уравнение достаточно точное для плотностей примерно до 0,8 , ρcr где ρcr плотность вещества в критической точке. Константы, входящие в приведенное выше уравнение, доступны в следующей таблице, когда p выражено в кПа, v — в , T находится в K и R = 8,314 [7]

Газ А 0 а Б 0 б с
Воздух 131.8441 0.01931 0.04611 −0.001101 4.34×10 4
Аргон, Ар 130.7802 0.02328 0.03931 0.0 5.99×10 4
Углекислый газ, CO 2 507.2836 0.07132 0.10476 0.07235 6.60×10 5
Этан, C 2 H 6 595.791 0.05861 0.09400 0.01915 90.00×10 4
Гелий, Он 2.1886 0.05984 0.01400 0.0 40
Водород, Н 2 20.0117 −0.00506 0.02096 −0.04359 504
Метан, СН 4 230.7069 0.01855 0.05587 -0.01587 12.83×10 4
Азот, N 2 136.2315 0.02617 0.05046 −0.00691 4.20×10 4
Кислород, О 2 151.0857 0.02562 0.04624 0.004208 4.80×10 4

Модель Бенедикта-Уэбба-Рубина [ править ]

Уравнение BWR,

где d — молярная плотность и где a , b , c , A , B , C , α и γ — эмпирические константы. Обратите внимание, что константа γ является производной константы α и, следовательно, почти идентична 1.

расширения термодинамического Работа

Работа расширения реального газа отличается от работы расширения идеального газа на величину .

См. также [ править ]

Ссылки [ править ]

  1. ^ Д. Бертло в трудах и мемуарах Международного бюро мер и весов - Том XIII (Париж: Готье-Виллар, 1907)
  2. ^ К. Дитеричи, Энн. Физ. Хим. Видеманс Энн. 69, 685 (1899)
  3. ^ Пиппард, Альфред Б. (1981). Элементы классической термодинамики: для продвинутых студентов-физиков (Ред.). Кембридж: Univ. Пр. п. 74. ИСБН  978-0-521-09101-5 .
  4. ^ Пэн, Д.Ю. и Робинсон, Д.Б. (1976). «Новое двухконстантное уравнение состояния». Промышленная и техническая химия: Основы . 15 : 59–64. дои : 10.1021/i160057a011 . S2CID   98225845 .
  5. ^ А. Воль (1914). «Исследование уравнения состояния». Журнал физической химии . 87 :1–39. дои : 10.1515/zpch-1914-8702 . S2CID   92940790 .
  6. ^ Юнус А. Ценгель и Майкл А. Боулс, Термодинамика: инженерный подход, 7-е издание, McGraw-Hill, 2010, ISBN   007-352932-Х
  7. ^ Гордан Дж. Ван Вайлен и Ричард Э. Зоннтедж, Основы классической термодинамики , 3-е изд., Нью-Йорк, John Wiley & Sons, 1986, стр. 46, таблица 3.3.
  1. ^ Критическое состояние можно рассчитать, начиная с и взяв производную по . Уравнение представляет собой квадратное уравнение относительно , и оно имеет двойной корень именно тогда, когда .

Дальнейшее чтение [ править ]

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b84636fe651a0a847a49ec4f4a0f1ab0__1708740000
URL1:https://arc.ask3.ru/arc/aa/b8/b0/b84636fe651a0a847a49ec4f4a0f1ab0.html
Заголовок, (Title) документа по адресу, URL1:
Real gas - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)