Jump to content

Кантик 7-кубовый

Усеченный семикуб
Кантик 7-кубовый

D 7 плоскости Кокстера Проекция
Тип однородный 7-многогранник
Символ Шлефли т{3,3 4,1 }
ч 2 {4,3,3,3,3,3}
Диаграмма Кокстера
6-гранный 142
5-гранный 1428
4-ликий 5656
Клетки 11760
Лица 13440
Края 7392
Вершины 1344
Вершинная фигура ( )v{ }x{3,3,3}
Группы Кокстера D 7 , [3 4,1,1 ]
Характеристики выпуклый

В семимерной геометрии кантический 7-куб или усеченный 7-мерный полукуб как однородный 7-мерный многогранник , являющийся усечением полукуба 7-мерного .

Однородный 7-многогранник является вершинно-транзитивным и построен из однородных 6-многогранников и может быть представлен диаграммой Кокстера с кольцевыми узлами, представляющими активные зеркала. Демигиперкуб ​​это чередование гиперкуба .

Его трехмерным аналогом будет усеченный тетраэдр (усеченный трехмерный полукуб) и диаграмма Коксетера. или как кантический куб .

Альтернативные названия

[ редактировать ]
  • Усеченный полугептеракт
  • Усеченный полугептеракт (теза) (Джонатан Бауэрс) [1]

Декартовы координаты

[ редактировать ]

Декартовы координаты 1344 вершин усеченного 7-мерного куба с центром в начале координат и длиной ребра 6 2 являются перестановками координат:

(±1,±1,±3,±3,±3,±3,±3)

с нечетным количеством знаков плюс.

Изображения

[ редактировать ]

Его можно визуализировать как двумерные ортогональные проекции, например, D7 плоскость Кокстера , содержащую 12-угольную симметрию. Большинство визуализаций в симметричных проекциях будут содержать перекрывающиеся вершины, поэтому цвета вершин изменяются в зависимости от того, сколько вершин находится в каждой проекционной позиции, здесь показано красным цветом для отсутствия перекрытия.

орфографические проекции
Коксетер
самолет
Б 7 D 7 Д 6
График
двугранный
симметрия
[14/2] [12] [10]
Самолет Коксетера Д 5 Д 4 Д 3
График
двугранный
симметрия
[8] [6] [4]
Коксетер
самолет
AА5 AА3
График
двугранный
симметрия
[6] [4]
[ редактировать ]
Размерное семейство кантических n-кубов
н 3 4 5 6 7 8
Симметрия
[1 + ,4,3 n-2 ]
[1 + ,4,3]
= [3,3]
[1 + ,4,3 2 ]
= [3,3 1,1 ]
[1 + ,4,3 3 ]
= [3,3 2,1 ]
[1 + ,4,3 4 ]
= [3,3 3,1 ]
[1 + ,4,3 5 ]
= [3,3 4,1 ]
[1 + ,4,3 6 ]
= [3,3 5,1 ]
Кантик
фигура
Коксетер
=

=

=

=

=

=
Шлефли ч 2 {4,3} ч 2 {4,3 2 } ч 2 {4,3 3 } ч 2 {4,3 4 } ч 2 {4,3 5 } ч 2 {4,3 6 }

Существует 95 однородных многогранников с симметрией D 6 , 63 имеют общую симметрию B 6 и 32 уникальны:

Многогранники D7

t0(141)

t0,1(141)

t0,2(141)

t0,3(141)

t0,4(141)

t0,5(141)

t0,1,2(141)

t0,1,3(141)

t0,1,4(141)

t0,1,5(141)

t0,2,3(141)

t0,2,4(141)

t0,2,5(141)

t0,3,4(141)

t0,3,5(141)

t0,4,5(141)

t0,1,2,3(141)

t0,1,2,4(141)

t0,1,2,5(141)

t0,1,3,4(141)

t0,1,3,5(141)

t0,1,4,5(141)

t0,2,3,4(141)

t0,2,3,5(141)

t0,2,4,5(141)

t0,3,4,5(141)

t0,1,2,3,4(141)

t0,1,2,3,5(141)

t0,1,2,4,5(141)

t0,1,3,4,5(141)

t0,2,3,4,5(141)

t0,1,2,3,4,5(141)

Примечания

[ редактировать ]
  1. ^ Клитцинг, (x3x3o *b3o3o3o3o - thesa)
  • ХСМ Коксетер :
    • HSM Coxeter, Правильные многогранники , 3-е издание, Дувр, Нью-Йорк, 1973 г.
    • Калейдоскопы: Избранные сочинения HSM Коксетера , под редакцией Ф. Артура Шерка, Питера Макмаллена, Энтони К. Томпсона, Азии Ивик Вайс, Wiley-Interscience Publication, 1995, ISBN   978-0-471-01003-6 [1]
      • (Документ 22) HSM Коксетер, Правильные и полуправильные многогранники I , [Math. Зейт. 46 (1940) 380–407, МР 2,10]
      • (Документ 23) HSM Коксетер, Правильные и полуправильные многогранники II , [Math. Зейт. 188 (1985) 559–591]
      • (Документ 24) HSM Коксетер, Правильные и полуправильные многогранники III , [Math. Зейт. 200 (1988) 3–45]
  • Нормана Джонсона Равномерные многогранники , Рукопись (1991)
    • Н. В. Джонсон: Теория однородных многогранников и сот , доктор философии.
  • Клитцинг, Ричард. «7D однородные многогранники (polyexa) x3x3o *b3o3o3o3o – thesa» .
[ редактировать ]
Семья н Б н И 2 (п) / Д н Е 6 / Е 7 / Е 8 / Ж 4 / Г 2 Ч н
Правильный многоугольник Треугольник Квадрат п-гон Шестиугольник Пентагон
Однородный многогранник Тетраэдр Октаэдр Куб Демикуб Додекаэдр Икосаэдр
Равномерный полихорон Пентахорон 16 ячеек Тессеракт Демитессеракт 24-ячеечный 120 ячеек 600 ячеек
Равномерный 5-многогранник 5-симплекс 5-ортоплекс 5-куб 5-демикуб
Равномерный 6-многогранник 6-симплекс 6-ортоплекс 6-куб 6-демикуб 1 22 2 21
Равномерный 7-многогранник 7-симплекс 7-ортоплекс 7-куб 7-демикуб 1 32 2 31 3 21
Равномерный 8-многогранник 8-симплекс 8-ортоплекс 8-куб 8-демикуб 1 42 2 41 4 21
Равномерный 9-многогранник 9-симплекс 9-ортоплекс 9-куб 9-демикуб
Равномерный 10-многогранник 10-симплекс 10-ортоплекс 10-куб 10-демикуб
Равномерный n - многогранник n - симплекс n - ортоплекс n - куб n - демикуб 1 лиц 2 2 лиц 1 лиц 21 n - пятиугольный многогранник
Темы: Семейства многогранников Правильный многогранник Список правильных многогранников и соединений.
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: ddae49eb52732590347bb762172a62af__1525255680
URL1:https://arc.ask3.ru/arc/aa/dd/af/ddae49eb52732590347bb762172a62af.html
Заголовок, (Title) документа по адресу, URL1:
Cantic 7-cube - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)