Jump to content

Проекция бабочки Уотермана

Проекция Уотермана сосредоточена на Атлантике, а Антарктида разделена.
Проекция Уотермана с Тиссо. индикатрисой деформации
Проекция Уотермана сосредоточена на Тихом океане с отделенной Антарктидой.
Кластер сфер Уотермана W5
Многогранник Уотермана w5

Карта мира Уотермана «Бабочка» — это картографическая проекция, созданная Стивом Уотерманом . Уотерман впервые опубликовал карту в таком расположении в 1996 году. Эта композиция представляет собой развёртывание многогранного глобуса в форме усечённого октаэдра , что напоминает принцип карты-бабочки, впервые разработанный Бернардом Дж. С. Кэхиллом (1866–1944) в 1909 году. Кэхилл и Уотерман Карты могут отображаться в различных профилях, обычно связанных с северной частью Тихого или северной части Атлантического океана.

Поскольку Кэхилл был архитектором , его подход имел тенденцию к формам, которые можно было продемонстрировать физически, например, с помощью его сплющенной карты из резинового шарика. Уотерман, с другой стороны, заимствовал свой дизайн из своей работы по плотной упаковке сфер . Это предполагает соединение центров сфер кубических сфер с плотной упаковкой в ​​соответствующую выпуклую оболочку, как показано на прилагаемых рисунках. Они иллюстрируют кластер сфер W5, выпуклую оболочку W5 и две проекции Уотермана из выпуклой оболочки W5.

Чтобы спроецировать сферу на многогранник, Землю разделили на восемь октантов . Каждый меридиан рисуется как три сегмента прямой линии в соответствующем октанте, каждый сегмент определяется своими конечными точками на двух из четырех «равных линий», определенных Уотерманом. Этими равными линиями обозначены Северный полюс , самый северный край многогранника, самая длинная линия, параллельная экватору, и сам экватор. Пересечения всех меридианов с любым одним обозначением равной линии расположены на одинаковом расстоянии, а пересечения всех параллелей с любым одним меридианом расположены на одинаковом расстоянии. [1] W5 Уотерман выбрал многогранник Уотермана и центральный меридиан 20 ° з.д., чтобы свести к минимуму прерывание основных массивов суши. Попко отмечает, что проекция также может быть гномонической. [2] Оба метода дают очень схожие результаты.

Подобно Бакминстера Фуллера 1943 года проекции Димаксиона , октаэдрическая карта-бабочка может показывать все континенты непрерывно, если ее октанты разделены подходящим меридианом (в данном случае 20° з.д.) и соединены, например, в Северной Атлантике, как в версия 1996 года. [3] [4]

См. также

[ редактировать ]
  1. ^ Стив Уотерман, «Метод проекции Уотермана» , веб-сайт проекта Waterman
  2. ^ Эдвард С., Попко (2012). Разделенные сферы: геодезика и упорядоченное деление сферы . Тейлор и Фрэнсис. стр. 20–21. ISBN  9781466504295 .
  3. ^ Дарвиас, Дьёрдь (2002). Симметрия: культура и наука . Симметрион. стр. 129–171. ISBN  963-214-761-8 .
  4. ^ Донго, Студия (2013). Город, который путешествовал по миру . Независимая издательская платформа CreateSpace. стр. Обложка и страница благодарности. ISBN  9781484966228 .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: e7a615e4c6986f71ae6a5c8c0a37e4b9__1673361840
URL1:https://arc.ask3.ru/arc/aa/e7/b9/e7a615e4c6986f71ae6a5c8c0a37e4b9.html
Заголовок, (Title) документа по адресу, URL1:
Waterman butterfly projection - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)