Факторная группа
Алгебраическая структура → Теория групп Теория групп |
---|
Факторгруппа полученная или факторгруппа — это математическая группа, путем агрегирования аналогичных элементов более крупной группы с использованием отношения эквивалентности , которое сохраняет часть структуры группы (остальная часть структуры «выбрасывается»). Например, циклическую группу сложения по модулю n можно получить из складываемой группы целых чисел путем идентификации элементов, которые отличаются кратно и определение групповой структуры, которая работает с каждым таким классом (известным как класс конгруэнтности ) как с единым объектом. Это часть математической области, известной как теория групп .
Для отношения конгруэнции в группе класс эквивалентности единичного элемента всегда является нормальной подгруппой исходной группы, а другие классы эквивалентности являются в точности смежными классами этой нормальной подгруппы. Полученное частное записывается , где это исходная группа и это нормальная подгруппа. Это читается как ' ', где это сокращение от modulo . (Обозначение следует интерпретировать с осторожностью, поскольку некоторые авторы (например, Винберг [ 1 ] ) используйте его для представления левых смежных классов в для любой подгруппы , хотя эти смежные классы не образуют группу, если это не нормально в . Другие (например, Даммит и Фут [ 2 ] ) используют это обозначение только для обозначения факторгруппы, причем появление этого обозначения подразумевает нормальность в .)
Большая часть важности факторгрупп вытекает из их связи с гомоморфизмами . Первая теорема об изоморфизме утверждает, что образ любой группы G при гомоморфизме всегда изоморфен фактору . В частности, образ при гомоморфизме изоморфен где обозначает ядро .
Двойственное , и это два основных понятие факторгруппы — это подгруппа способа образования меньшей группы из большей. Любая нормальная подгруппа имеет соответствующую факторгруппу, образованную из большей группы путем устранения различия между элементами подгруппы. В теории категорий факторгруппы являются примерами , которые двойственны подобъектам факторобъектов .
Определение и иллюстрация
[ редактировать ]Учитывая группу и подгруппа и фиксированный элемент , можно рассмотреть соответствующий левый смежный класс : . Классы смежности — это естественный класс подмножеств группы; например, рассмотрим абелеву группу G целых чисел с операцией , определяемой обычным сложением, и подгруппу из четных целых чисел. Тогда существует ровно два смежных класса: , которые являются четными целыми числами, и , которые являются нечетными целыми числами (здесь мы используем аддитивную запись для бинарной операции вместо мультипликативной записи).
Для общей подгруппы желательно определить совместимую групповую операцию на множестве всех возможных смежных классов, . Это возможно именно тогда, когда является нормальной подгруппой, см. ниже. Подгруппа группы нормально тогда и только тогда, когда выполнено равенство смежных классов справедливо для всех . Обычная подгруппа обозначается .
Определение
[ редактировать ]Позволять быть нормальной подгруппой группы . Определите набор быть множеством всех левых смежных классов в . То есть .
Поскольку единичный элемент , . Определите бинарную операцию на множестве смежных классов, следующим образом. Для каждого и в , произведение и , , это . Это работает только потому, что не зависит от выбора представителей, и каждого левого смежного класса, и . Чтобы доказать это, предположим и для некоторых . Затем
- .
Это зависит от того, что — нормальная подгруппа. Осталось показать, что это условие не только достаточно, но и необходимо для определения операции над .
Чтобы показать, что это необходимо, рассмотрим, что для подгруппы из нам дано, что операция корректно определена. То есть для всех и для .
Позволять и . Поскольку , у нас есть .
Сейчас, и .
Следовательно является нормальной подгруппой .
Также можно проверить, что эта операция на всегда ассоциативен, имеет идентификационный элемент и обратный элемент всегда можно представить как . Следовательно, набор вместе с операцией, определенной образует группу, факторгруппу автор .
Ввиду нормальности , левые и правые классы в одинаковы, и поэтому, можно было бы определить как набор правых смежных классов в .
Пример: Сложение по модулю 6.
[ редактировать ]Например, рассмотрим группу со сложением по модулю 6: . Рассмотрим подгруппу , что нормально, потому что является абелевым . Тогда набор (левых) смежных классов имеет размер три:
- .
Определенная выше бинарная операция превращает этот набор в группу, известную как факторгруппа, которая в данном случае изоморфна циклической группе порядка 3.
Мотивация названия «частное».
[ редактировать ]Причина называется факторгруппой, происходит от деления целых чисел . При делении 12 на 3 получается ответ 4, поскольку можно перегруппировать 12 объектов в 4 подколлекции по 3 объекта. Факторгруппа — та же идея, хотя в итоге мы получаем группу для окончательного ответа вместо числа, поскольку группы имеют большую структуру, чем произвольный набор объектов. [ нужна ссылка ]
Чтобы уточнить, при взгляде на с нормальная подгруппа структура группы используется для формирования естественной «перегруппировки». Это смежные классы в . Поскольку мы начали с группы и нормальной подгруппы, итоговое частное содержит больше информации, чем просто количество смежных классов (что дает регулярное деление), но вместо этого имеет саму групповую структуру.
Примеры
[ редактировать ]Четные и нечетные целые числа
[ редактировать ]Рассмотрим группу целых чисел (в дополнении) и подгруппа состоящее из всех четных целых чисел. Это нормальная подгруппа, потому что является абелевым . Есть только два смежных класса: набор четных целых чисел и набор нечетных целых чисел, и, следовательно, факторгруппа — циклическая группа из двух элементов. Эта факторгруппа изоморфна множеству со сложением по модулю 2; неофициально иногда говорят, что равно множеству со сложением по модулю 2.
Пример далее объяснен...
- Позволять быть остатками при делении на . Затем, когда четный и когда странно.
- По определению , ядро , — это набор всех четных целых чисел.
- Пусть . Затем, является подгруппой, поскольку тождество в , то есть , находится в сумма двух четных целых чисел четна и, следовательно, если и находятся в , находится в (закрытие) и если даже, тоже четно и так содержит свои обратные.
- Определять как для и – факторгруппа левых смежных классов; .
- Обратите внимание, что мы определили , является если это странно и если четный.
- Таким образом, является изоморфизмом из до .
Остатки целочисленного деления
[ редактировать ]Небольшое обобщение последнего примера. Еще раз рассмотрим группу целых чисел под дополнением. Пусть — любое положительное целое число. Мы рассмотрим подгруппу из состоящий из всех кратных . Снова это нормально в потому что является абелевым. Смежные классы — это коллекция . Целое число принадлежит смежному классу , где это остаток при делении автор . Частное можно рассматривать как группу «остатков» по модулю . Это циклическая группа порядка .
Комплексные целые корни из 1
[ редактировать ]Корни двенадцатой степени из единицы , которые являются точками на комплексной единичной окружности , образуют мультипликативную абелеву группу , показанные на рисунке справа в виде цветных шариков с номером в каждой точке, обозначающим его комплексный аргумент. Рассмотрим его подгруппу состоят из четвертых корней из единицы, показанных в виде красных шариков. Эта нормальная подгруппа разбивает группу на три смежных класса, показанных красным, зеленым и синим цветом. Можно проверить, что смежные классы образуют группу из трех элементов (произведение красного элемента на синий — синий, инверсия синего элемента — зеленый и т. д.). Таким образом, факторгруппа — это группа трех цветов, которая оказывается циклической группой из трех элементов.
Действительные числа по модулю целых чисел
[ редактировать ]Рассмотрим группу действительных чисел в дополнении и подгруппа целых чисел. Каждый смежный класс в представляет собой множество вида , где это действительное число. С и являются идентичными множествами, когда части нецелые и равны, можно наложить ограничение без изменения смысла. Добавление таких смежных классов осуществляется путем сложения соответствующих действительных чисел и вычитания 1, если результат больше или равен 1. Факторгруппа изоморфна группе кругов , группе комплексных чисел с абсолютным значением 1 при умножении или, соответственно, группе вращений в 2D вокруг начала координат, то есть специальной ортогональной группе . Изоморфизм задается формулой (см. тождество Эйлера ).
Матрицы действительных чисел
[ редактировать ]Если это группа обратимых действительные матрицы и является подгруппой действительные матрицы с определителем 1, тогда это нормально в (поскольку оно является ядром детерминантного гомоморфизма ). Классы являются множествами матриц с данным определителем и, следовательно, изоморфна мультипликативной группе ненулевых действительных чисел. Группа известна как специальная линейная группа .
Целочисленная модульная арифметика
[ редактировать ]Рассмотрим абелеву группу (то есть набор со сложением по модулю 4) и ее подгруппа . Факторгруппа это . Это группа с единичным элементом и групповые операции, такие как . Обе подгруппы и факторгруппа изоморфны .
Целочисленное умножение
[ редактировать ]Рассмотрим мультипликативную группу . Набор из th остатков — мультипликативная подгруппа, изоморфная . Затем это нормально в и группа факторов имеет смежные классы . Криптосистема Пайе основана на гипотезе о том, что трудно определить класс случайного элемента не зная факторизации .
Характеристики
[ редактировать ]Факторгруппа изоморфна и ( тривиальной группе группе с одним элементом) изоморфен .
Порядок , по определению количество элементов, равно , индекс в . Если конечен, индекс также равен порядку разделить на порядок . Набор может быть конечным, хотя оба и бесконечны (например, ).
Существует «естественный» гомоморфизм сюръективной группы , отправка каждого элемента из к смежному классу к которому принадлежит, то есть: . Отображение иногда называют канонической проекцией на . Его ядро .
Между подгруппами группы существует биективное соответствие. которые содержат и подгруппы ; если является подгруппой содержащий , то соответствующая подгруппа это . Это соответствие справедливо для нормальных подгрупп группы и а также формализована в решеточной теореме .
Некоторые важные свойства факторгрупп записаны в фундаментальной теореме о гомоморфизмах и теоремах об изоморфизме .
Если абелева разрешима , нильпотентна , , циклична или конечно порождена то и , .
Если — подгруппа в конечной группе и порядок составляет половину порядка , тогда гарантированно будет нормальной подгруппой, поэтому существует и изоморфен . Этот результат также можно сформулировать как «любая подгруппа индекса 2 нормальна», и в этой форме он применим и к бесконечным группам. Кроме того, если - наименьшее простое число, делящее порядок конечной группы, , то если есть порядок , должна быть нормальной подгруппой . [ 3 ]
Данный и нормальная подгруппа , тогда является групповым расширением автор . Можно задаться вопросом, является ли это расширение тривиальным или расщепленным; другими словами, можно было бы спросить, является ли является прямым или полупрямым продуктом и . Это частный случай проблемы расширения . Пример, когда расширение не разбивается, выглядит следующим образом: Пусть и , который изоморфен . Затем также изоморфен . Но имеет только тривиальный автоморфизм , поэтому единственное полупрямое произведение и является прямым продуктом. С отличается от , делаем вывод, что не является полупрямым продуктом и .
Частные групп Ли
[ редактировать ]Если является группой Ли и — нормальная и замкнутая (в топологическом, а не в алгебраическом смысле слова) подгруппа Ли группы , частное также является группой Ли. В этом случае исходная группа имеет структуру расслоения ( в частности, принципала -bundle ), с базовым пространством и волокно . Размерность равно . [ 4 ]
Обратите внимание, что условие, закрыто необходимо. Действительно, если не замкнуто, то фактор-пространство не является T1-пространством (поскольку в фактор-пространстве существует смежный класс, который не может быть отделен от единицы открытым множеством) и, следовательно, не является хаусдорфовым пространством .
Для ненормальной подгруппы Ли , пространство левых смежных классов не является группой, а просто дифференцируемым многообразием , на котором действует. Результат известен как однородное пространство .
См. также
[ редактировать ]Примечания
[ редактировать ]- ^ Винберг, Ė Б. (2003). Курс алгебры . Аспирантура по математике. Провиденс, Род-Айленд: Американское математическое общество. п. 157. ИСБН 978-0-8218-3318-6 .
- ^ Даммит и Фут (2003 , стр. 95)
- ^ Даммит и Фут (2003 , стр. 120)
- ^ Джон М. Ли, Введение в гладкие многообразия, второе издание, теорема 21.17
Ссылки
[ редактировать ]- Даммит, Дэвид С.; Фут, Ричард М. (2003), Абстрактная алгебра (3-е изд.), Нью-Йорк: Wiley , ISBN 978-0-471-43334-7
- Херштейн, Индиана (1975), Темы алгебры (2-е изд.), Нью-Йорк: Wiley , ISBN 0-471-02371-Х