Список простых узлов
(Перенаправлено от Дейла Рольфсена )
В узлов теории простые узлы — это те узлы, которые неразложимы при выполнении операции суммы узлов . Здесь перечислены простые узлы с десятью или менее пересечениями для быстрого сравнения их свойств и различных схем именования.
Таблица простых узлов [ править ]
Шесть или меньше переходов [ править ]
Имя | Картина | Александр- Бриггс – Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение | список пересечений |
---|---|---|---|---|---|---|
Развязать узел | 0 1 | 0а1 | — | — | 0 | |
Узел трилистник | 3 1 | 3а1 | 4 6 2 | [3] | 123:123 | |
Узел восьмерка | 4 1 | 4а1 | 4 6 8 2 | [22] | 1234:2143 1231\4324 | |
Узел лапчатка | 5 1 | 5а2 | 6 8 10 2 4 | [5] | 12345:12345 | |
Трехвитковый узел | 5 2 | 5а1 | 4 8 10 2 6 | [32] | 12345:12543 1231\452354 | |
Стивидорный узел | 6 1 | 6а3 | 4 8 12 10 2 6 | [42] | 123456:216543 1231\45632654 | |
6 2 узла | 6 2 | 6а2 | 4 8 10 12 2 6 | [312] | 123456:234165 1231\45632456 | |
6 3 узла | 6 3 | 6а1 | 4 8 10 2 12 6 | [2112] | 123456:236145 1231\45642356 1231\45236456 |
Семь переправ [ править ]
Картина | Александр- Бриггс– Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение | список пересечений |
---|---|---|---|---|---|
7 1 | 7а7 | 8 10 12 14 2 4 6 | [7] | 1-7:1-7 | |
7 2 | 7а4 | 4 10 14 12 2 8 6 | [52] | 1-7:127-3 | |
7 3 | 7а5 | 6 10 12 14 2 4 8 | [43] | ||
7 4 | 7а6 | 6 10 12 14 4 2 8 | [313] | ||
7 5 | 7а3 | 4 10 12 14 2 8 6 | [322] | ||
7 6 | 7а2 | 4 8 12 2 14 6 10 | [2212] | ||
7 7 | 7а1 | 4 8 10 12 2 14 6 | [21112] |
Восемь переходов [ править ]
Картина | Александр- Бриггс– Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение |
---|---|---|---|---|
8 1 | 8a11 | 4 10 16 14 12 2 8 6 | [62] | |
8 2 | 8а8 | 4 10 12 14 16 2 6 8 | [512] | |
8 3 | 8a18 | 6 12 10 16 14 4 2 8 | [44] | |
8 4 | 8a17 | 6 10 12 16 14 4 2 8 | [413] | |
8 5 | 8a13 | 6 8 12 2 14 16 4 10 | [3,3,2] | |
8 6 | 8a10 | 4 10 14 16 12 2 8 6 | [332] | |
8 7 | 8а6 | 4 10 12 14 2 16 6 8 | [4112] | |
8 8 | 8а4 | 4 8 12 2 16 14 6 10 | [2312] | |
8 9 | 8a16 | 6 10 12 14 16 4 2 8 | [3113] | |
8 10 | 8а3 | 4 8 12 2 14 16 6 10 | [3,21,2] | |
8 11 | 8а9 | 4 10 12 14 16 2 8 6 | [3212] | |
8 12 | 8а5 | 4 8 14 10 2 16 6 12 | [2222] | |
8 13 | 8а7 | 4 10 12 14 2 16 8 6 | [31112] | |
8 14 | 8а1 | 4 8 10 14 2 16 6 12 | [22112] | |
8 15 | 8а2 | 4 8 12 2 14 6 16 10 | [21,21,2] | |
8 16 | 8a15 | 6 8 14 12 4 16 2 10 | [.2.20] | |
8 17 | 8a14 | 6 8 12 14 4 16 2 10 | [.2.2] | |
8 18 | 8a12 | 6 8 10 12 14 16 2 4 | [8*] | |
8 19 | 8н3 | 4 8 -12 2 -14 -16 -6 -10 | [3,3,2-] | |
8 20 | 8n1 | 4 8 -12 2 -14 -6 -16 -10 | [3,21,2-] | |
8 21 | 8n2 | 4 8 -12 2 14 -6 16 10 | [21,21,2-] |
Девять переходов [ править ]
Картина | Александр- Бриггс– Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение |
---|---|---|---|---|
9 1 | 9a41 | 10 12 14 16 18 2 4 6 8 | [9] | |
9 2 | 9a27 | 4 12 18 16 14 2 10 8 6 | [72] | |
9 3 | 9a38 | 8 12 14 16 18 2 4 6 10 | [63] | |
9 4 | 9a35 | 6 12 14 18 16 2 4 10 8 | [54] | |
9 5 | 9a36 | 6 12 14 18 16 4 2 10 8 | [513] | |
9 6 | 9a23 | 4 12 14 16 18 2 10 6 8 | [522] | |
9 7 | 9a26 | 4 12 16 18 14 2 10 8 6 | [342] | |
9 8 | 9а8 | 4 8 14 2 18 16 6 12 10 | [2412] | |
9 9 | 9a33 | 6 12 14 16 18 2 4 10 8 | [423] | |
9 10 | 9a39 | 8 12 14 16 18 2 6 4 10 | [333] | |
9 11 | 9a20 | 4 10 14 16 12 2 18 6 8 | [4122] | |
9 12 | 9a22 | 4 10 16 14 2 18 8 6 12 | [4212] | |
9 13 | 9a34 | 6 12 14 16 18 4 2 10 8 | [3213] | |
9 14 | 9a17 | 4 10 12 16 14 2 18 8 6 | [41112] | |
9 15 | 9a10 | 4 8 14 10 2 18 16 6 12 | [2322] | |
9 16 | 9a25 | 4 12 16 18 14 2 8 10 6 | [3,3,2+] | |
9 17 | 9a14 | 4 10 12 14 16 2 6 18 8 | [21312] | |
9 18 | 9a24 | 4 12 14 16 18 2 10 8 6 | [3222] | |
9 19 | 9а3 | 4 8 10 14 2 18 16 6 12 | [23112] | |
9 20 | 9a19 | 4 10 14 16 2 18 8 6 12 | [31212] | |
9 21 | 9a21 | 4 10 14 16 12 2 18 8 6 | [31122] | |
9 22 | 9а2 | 4 8 10 14 2 16 18 6 12 | [211,3,2] | |
9 23 | 9a16 | 4 10 12 16 2 8 18 6 14 | [22122] | |
9 24 | 9а7 | 4 8 14 2 16 18 6 12 10 | [3,21,2+] | |
9 25 | 9а4 | 4 8 12 2 16 6 18 10 14 | [22,21,2] | |
9 26 | 9a15 | 4 10 12 14 16 2 18 8 6 | [311112] | |
9 27 | 9a12 | 4 10 12 14 2 18 16 6 8 | [212112] | |
9 28 | 9а5 | 4 8 12 2 16 14 6 18 10 | [21,21,2+] | |
9 29 | 9a31 | 6 10 14 18 4 16 8 2 12 | [.2.20.2] | |
9 30 | 9а1 | 4 8 10 14 2 16 6 18 12 | [211,21,2] | |
9 31 | 9a13 | 4 10 12 14 2 18 16 8 6 | [2111112] | |
9 32 | 9а6 | 4 8 12 14 2 16 18 10 6 | [.21.20] | |
9 33 | 9a11 | 4 8 14 12 2 16 18 10 6 | [.21.2] | |
9 34 | 9a28 | 6 8 10 16 14 18 4 2 12 | [8*20] | |
9 35 | 9a40 | 8 12 16 14 18 4 2 6 10 | [3,3,3] | |
9 36 | 9а9 | 4 8 14 10 2 16 18 6 12 | [22,3,2] | |
9 37 | 9a18 | 4 10 14 12 16 2 6 18 8 | [3,21,21] | |
9 38 | 9a30 | 6 10 14 18 4 16 2 8 12 | [.2.2.2] | |
9 39 | 9a32 | 6 10 14 18 16 2 8 4 12 | [2:2:20] | |
9 40 | 9a27 | 6 16 14 12 4 2 18 10 8 | [9*] | |
9 41 | 9a29 | 6 10 14 12 16 2 18 4 8 | [20:20:20] | |
9 42 | 9n4 | 4 8 10 −14 2 −16 −18 −6 −12 | [22,3,2−] | |
9 43 | 9n3 | 4 8 10 14 2 −16 6 −18 −12 | [211,3,2−] | |
9 44 | 9n1 | 4 8 10 −14 2 −16 −6 −18 −12 | [22,21,2−] | |
9 45 | 9n2 | 4 8 10 −14 2 16 −6 18 12 | [211,21,2−] | |
9 46 | 9n5 | 4 10 −14 −12 −16 2 −6 −18 −8 | [3,3,21−] | |
9 47 | 9n7 | 6 8 10 16 14 −18 4 2 −12 | [8*-20] | |
9 48 | 9n6 | 4 10 −14 −12 16 2 −6 18 8 | [21,21,21−] | |
9 49 | 9n8 | 6 -10 −14 12 −16 −2 18 −4 −8 | [−20:−20:−20] |
Десять переходов [ править ]
Картина | Александр- Бриггс– Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение |
---|---|---|---|---|
10 1 | 10a75 | 4 12 20 18 16 14 2 10 8 6 | [82] | |
10 2 | 10a59 | 4 12 14 16 18 20 2 6 8 10 | [712] | |
10 3 | 10a117 | 6 14 12 20 18 16 4 2 10 8 | [64] | |
10 4 | 10a113 | 6 12 14 20 18 16 4 2 10 8 | [613] | |
10 5 | 10a56 | 4 12 14 16 18 2 20 6 8 10 | [6112] | |
10 6 | 10a70 | 4 12 16 18 20 14 2 10 6 8 | [532] | |
10 7 | 10a65 | 4 12 14 18 16 20 2 10 8 6 | [5212] | |
10 8 | 10a114 | 6 14 12 16 18 20 4 2 8 10 | [514] | |
10 9 | 10a110 | 6 12 14 16 18 20 4 2 8 10 | [5113] | |
10 10 | 10a64 | 4 12 14 18 16 2 20 10 8 6 | [51112] | |
10 11 | 10a116 | 6 14 12 18 20 16 4 2 10 8 | [433] | |
10 12 | 10a43 | 4 10 14 16 2 20 18 6 8 12 | [4312] | |
10 13 | 10a54 | 4 10 18 16 12 2 20 8 6 14 | [4222] | |
10 14 | 10a33 | 4 10 12 16 18 2 20 6 8 14 | [42112] | |
10 15 | 10a68 | 4 12 16 18 14 2 10 20 6 8 | [4132] | |
10 16 | 10a115 | 6 14 12 16 18 20 4 2 10 8 | [4123] | |
10 17 | 10a107 | 6 12 14 16 18 2 4 20 8 10 | [4114] | |
10 18 | 10a63 | 4 12 14 18 16 2 10 20 8 6 | [41122] | |
10 19 | 10a108 | 6 12 14 16 18 2 4 20 10 8 | [41113] | |
10 20 | 10a74 | 4 12 18 20 16 14 2 10 8 6 | [352] | |
10 21 | 10a60 | 4 12 14 16 18 20 2 6 10 8 | [3412] | |
10 22 | 10a112 | 6 12 14 18 20 16 4 2 10 8 | [3313] | |
10 23 | 10a57 | 4 12 14 16 18 2 20 6 10 8 | [33112] | |
10 24 | 10a71 | 4 12 16 18 20 14 2 10 8 6 | [3232] | |
10 25 | 10a61 | 4 12 14 16 18 20 2 10 8 6 | [32212] | |
10 26 | 10a111 | 6 12 14 16 18 20 4 2 10 8 | [32113] | |
10 27 | 10a58 | 4 12 14 16 18 2 20 10 8 6 | [321112] | |
10 28 | 10a44 | 4 10 14 16 2 20 18 8 6 12 | [31312] | |
10 29 | 10a53 | 4 10 16 18 12 2 20 8 6 14 | [31222] | |
10 30 | 10a34 | 4 10 12 16 18 2 20 8 6 14 | [312112] | |
10 31 | 10a69 | 4 12 16 18 14 2 10 20 8 6 | [31132] | |
10 32 | 10a55 | 4 12 14 16 18 2 10 20 8 6 | [311122] | |
10 33 | 10a109 | 6 12 14 16 18 4 2 20 10 8 | [311113] | |
10 34 | 10a19 | 4 8 14 2 20 18 16 6 12 10 | [2512] | |
10 35 | 10a23 | 4 8 16 10 2 20 18 6 14 12 | [2422] | |
10 36 | 10а5 | 4 8 10 16 2 20 18 6 14 12 | [24112] | |
10 37 | 10a49 | 4 10 16 12 2 8 20 18 6 14 | [2332] | |
10 38 | 10a29 | 4 10 12 16 2 8 20 18 6 14 | [23122] | |
10 39 | 10a26 | 4 10 12 14 18 2 6 20 8 16 | [22312] | |
10 40 | 10a30 | 4 10 12 16 2 20 6 18 8 14 | [222112] | |
10 41 | 10a35 | 4 10 12 16 20 2 8 18 6 14 | [221212] | |
10 42 | 10a31 | 4 10 12 16 2 20 8 18 6 14 | [2211112] | |
10 43 | 10a52 | 4 10 16 14 2 20 8 18 6 12 | [212212] | |
10 44 | 10a32 | 4 10 12 16 14 2 20 18 8 6 | [2121112] | |
10 45 | 10a25 | 4 10 12 14 16 2 20 18 8 6 | [21111112] | |
10 46 | 10a81 | 6 8 14 2 16 18 20 4 10 12 | [5,3,2] | |
10 47 | 10a15 | 4 8 14 2 16 18 20 6 10 12 | [5,21,2] | |
10 48 | 10a79 | 6 8 14 2 16 18 4 20 10 12 | [41,3,2] | |
10 49 | 10a13 | 4 8 14 2 16 18 6 20 10 12 | [41,21,2] | |
10 50 | 10a82 | 6 8 14 2 16 18 20 4 12 10 | [32,3,2] | |
10 51 | 10a16 | 4 8 14 2 16 18 20 6 12 10 | [32,21,2] | |
10 52 | 10a80 | 6 8 14 2 16 18 4 20 12 10 | [311,3,2] | |
10 53 | 10a14 | 4 8 14 2 16 18 6 20 12 10 | [311,21,2] | |
10 54 | 10a48 | 4 10 16 12 2 8 18 20 6 14 | [23,3,2] | |
10 55 | 10а9 | 4 8 12 2 16 6 20 18 10 14 | [23,21,2] | |
10 56 | 10a28 | 4 10 12 16 2 8 18 20 6 14 | [221,3,2] | |
10 57 | 10а6 | 4 8 12 2 14 18 6 20 10 16 | [221,21,2] | |
10 58 | 10a20 | 4 8 14 10 2 18 6 20 12 16 | [22,22,2] | |
10 59 | 10а2 | 4 8 10 14 2 18 6 20 12 16 | [22,211,2] | |
10 60 | 10а1 | 4 8 10 14 2 16 18 6 20 12 | [211,211,2] | |
10 61 | 10a123 | 8 10 16 14 2 18 20 6 4 12 | [4,3,3] | |
10 62 | 10a41 | 4 10 14 16 2 18 20 6 8 12 | [4,3,21] | |
10 63 | 10a51 | 4 10 16 14 2 18 8 6 20 12 | [4,21,21] | |
10 64 | 10a122 | 8 10 14 16 2 18 20 6 4 12 | [31,3,3] | |
10 65 | 10a42 | 4 10 14 16 2 18 20 8 6 12 | [31,3,21] | |
10 66 | 10a40 | 4 10 14 16 2 18 8 6 20 12 | [31,21,21] | |
10 67 | 10a37 | 4 10 14 12 18 2 6 20 8 16 | [22,3,21] | |
10 68 | 10a67 | 4 12 16 14 18 2 20 6 10 8 | [211,3,3] | |
10 69 | 10a38 | 4 10 14 12 18 2 16 6 20 8 | [211,21,21] | |
10 70 | 10a22 | 4 8 16 10 2 18 20 6 14 12 | [22,3,2+] | |
10 71 | 10a10 | 4 8 12 2 18 14 6 20 10 16 | [22,21,2+] | |
10 72 | 10а4 | 4 8 10 16 2 18 20 6 14 12 | [211,3,2+] | |
10 73 | 10а3 | 4 8 10 14 2 18 16 6 20 12 | [211,21,2+] | |
10 74 | 10a62 | 4 12 14 16 20 18 2 8 6 10 | [3,3,21+] | |
10 75 | 10a27 | 4 10 12 14 18 2 16 6 20 8 | [21,21,21+] | |
10 76 | 10a73 | 4 12 18 20 14 16 2 10 8 6 | [3,3,2++] | |
10 77 | 10a18 | 4 8 14 2 18 20 16 6 12 10 | [3,21,2++] | |
10 78 | 10a17 | 4 8 14 2 18 16 6 12 20 10 | [21,21,2++] | |
10 79 | 10a78 | 6 8 12 2 16 4 18 20 10 14 | [(3,2)(3,2)] | |
10 80 | 10а8 | 4 8 12 2 16 6 18 20 10 14 | [(3,2)(21,2)] | |
10 81 | 10а7 | 4 8 12 2 16 6 18 10 20 14 | [(21,2)(21,2)] | |
10 82 | 10a83 | 6 8 14 16 4 18 20 2 10 12 | [.4.2] | |
10 83 | 10a84 | 6 8 16 14 4 18 20 2 12 10 | [.31.20] | |
10 84 | 10a50 | 4 10 16 14 2 8 18 20 12 6 | [.22.2] | |
10 85 | 10a86 | 6 8 16 14 4 18 20 2 10 12 | [.4.20] | |
10 86 | 10a87 | 6 8 14 16 4 18 20 2 12 10 | [.31.2] | |
10 87 | 10a39 | 4 10 14 16 2 8 18 20 12 6 | [.22.20] | |
10 88 | 10a11 | 4 8 12 14 2 16 20 18 10 6 | [.21.21] | |
10 89 | 10a21 | 4 8 14 12 2 16 20 18 10 6 | [.21.210] | |
10 90 | 10a92 | 6 10 14 2 16 20 18 8 4 12 | [.3.2.2] | |
10 91 | 10a106 | 6 10 20 14 16 18 4 8 2 12 | [.3.2.20] | |
10 92 | 10a46 | 4 10 14 18 2 16 8 20 12 6 | [.21.2.20] | |
10 93 | 10a101 | 6 10 16 20 14 4 18 2 12 8 | [.3.20.2] | |
10 94 | 10a91 | 6 10 14 2 16 18 20 8 4 12 | [.30.2.2] | |
10 95 | 10a47 | 4 10 14 18 2 16 20 8 12 6 | [.210.2.2] | |
10 96 | 10a24 | 4 8 18 12 2 16 20 6 10 14 | [.2.21.2] | |
10 97 | 10a12 | 4 8 12 18 2 16 20 6 10 14 | [.2.210.2] | |
10 98 | 10a96 | 6 10 14 18 2 16 20 4 8 12 | [.2.2.2.20] | |
10 99 | 10a103 | 6 10 18 14 2 16 20 8 4 12 | [.2.2.20.20] | |
10 100 | 10a104 | 6 10 18 14 16 4 20 8 2 12 | [3:2:2] | |
10 101 | 10a45 | 4 10 14 18 2 16 6 20 8 12 | [21:2:2] | |
10 102 | 10a97 | 6 10 14 18 16 4 20 2 8 12 | [3:2:20] | |
10 103 | 10a105 | 6 10 18 16 14 4 20 8 2 12 | [30:2:2] | |
10 104 | 10a118 | 6 16 12 14 18 4 20 2 8 10 | [3:20:20] | |
10 105 | 10a72 | 4 12 16 20 18 2 8 6 10 14 | [21:20:20] | |
10 106 | 10a95 | 6 10 14 16 18 4 20 2 8 12 | [30:2:20] | |
10 107 | 10a66 | 4 12 16 14 18 2 8 20 10 6 | [210:2:20] | |
10 108 | 10a119 | 6 16 12 14 18 4 20 2 10 8 | [30:20:20] | |
10 109 | 10a93 | 6 10 14 16 2 18 4 20 8 12 | [2.2.2.2] | |
10 110 | 10a100 | 6 10 16 20 14 2 18 4 8 12 | [2.2.2.20] | |
10 111 | 10a98 | 6 10 16 14 2 18 8 20 4 12 | [2.2.20.2] | |
10 112 | 10a76 | 6 8 10 14 16 18 20 2 4 12 | [8*3] | |
10 113 | 10a36 | 4 10 14 12 2 16 18 20 8 6 | [8*21] | |
10 114 | 10a77 | 6 8 10 14 16 20 18 2 4 12 | [8*30] | |
10 115 | 10a94 | 6 10 14 16 4 18 2 20 12 8 | [8*20.20] | |
10 116 | 10a120 | 6 16 18 14 2 4 20 8 10 12 | [8*2:2] | |
10 117 | 10a99 | 6 10 16 14 18 4 20 2 12 8 | [8*2:20] | |
10 118 | 10a88 | 6 8 18 14 16 4 20 2 10 12 | [8*2:.2] | |
10 119 | 10a85 | 6 8 14 18 16 4 20 10 2 12 | [8*2:.20] | |
10 120 | 10a102 | 6 10 18 12 4 16 20 8 2 14 | [8*20::20] | |
10 121 | 10a90 | 6 10 12 20 18 16 8 2 4 14 | [9*20] | |
10 122 | 10a89 | 6 10 12 14 18 16 20 2 4 8 | [9*.20] | |
10 123 | 10a121 | 8 10 12 14 16 18 20 2 4 6 | [10*] | |
10 124 | 10n21 | 4 8 -14 2 -16 -18 -20 -6 -10 -12 | [5,3,2-] | |
10 125 | 10n15 | 4 8 14 2 -16 -18 6 -20 -10 -12 | [5,21,2-] | |
10 126 | 10n17 | 4 8 -14 2 -16 -18 -6 -20 -10 -12 | [41,3,2-] | |
10 127 | 10n16 | 4 8 -14 2 16 18 -6 20 10 12 | [41,21,2-] | |
10 128 | 10n22 | 4 8 -14 2 -16 -18 -20 -6 -12 -10 | [32,3,2-] | |
10 129 | 10n18 | 4 8 14 2 -16 -18 6 -20 -12 -10 | [32,21,-2] | |
10 130 | 10n20 | 4 8 -14 2 -16 -18 -6 -20 -12 -10 | [311,3,2-] | |
10 131 | 10n19 | 4 8 -14 2 16 18 -6 20 12 10 | [311,21,2-] | |
10 132 | 10n13 | 4 8 -12 2 -16 -6 -20 -18 -10 -14 | [23,3,2-] | |
10 133 | 10n4 | 4 8 12 2 -14 -18 6 -20 -10 -16 | [23,21,2-] | |
10 134 | 10n6 | 4 8 -12 2 -14 -18 -6 -20 -10 -16 | [221,3,2-] | |
10 135 | 10n5 | 4 8 -12 2 14 18 -6 20 10 16 | [221,21,2-] | |
10 136 | 10n3 | 4 8 10 -14 2 -18 -6 -20 -12 -16 | [22,22,2-] | |
10 137 | 10n2 | 4 8 10 -14 2 -16 -18 -6 -20 -12 | [22,211,2-] | |
10 138 | 10n1 | 4 8 10 -14 2 16 18 -6 20 12 | [211,211,2-] | |
10 139 | 10n27 | 4 10 -14 -16 2 -18 -20 -6 -8 -12 | [4,3,3-] | |
10 140 | 10n29 | 4 10 -14 -16 2 18 20 -8 -6 12 | [4,3,21-] | |
10 141 | 10n25 | 4 10 -14 -16 2 18 -8 -6 20 12 | [4,21,21-] | |
10 142 | 10n30 | 4 10 -14 -16 2 -18 -20 -8 -6 -12 | [31,3,3-] | |
10 143 | 10n26 | 4 10 -14 -16 2 -18 -8 -6 -20 -12 | [31,3,21-] | |
10 144 | 10n28 | 4 10 14 16 2 -18 -20 8 6 -12 | [31,21,21-] | |
10 145 | 10n14 | 4 8 -12 -18 2 -16 -20 -6 -10 -14 | [22,3,3-] | |
10 146 | 10n23 | 4 8 -18 -12 2 -16 -20 -6 -10 -14 | [22,21,21-] | |
10 147 | 10n24 | 4 10 -14 12 2 16 18 -20 8 -6 | [211,3,21-] | |
10 148 | 10n12 | 4 8 -12 2 -16 -6 -18 -20 -10 -14 | [(3,2)(3,2-)] | |
10 149 | 10n11 | 4 8 -12 2 16 -6 18 20 10 14 | [(3,2)(21,2-)] | |
10 150 | 10n9 | 4 8 -12 2 -16 -6 -18 -10 -20 -14 | [(21,2)(3,2-)] | |
10 151 | 10n8 | 4 8 -12 2 16 -6 18 10 20 14 | [(21,2)(21,2-)] | |
10 152 | 10n36 | 6 8 12 2 -16 4 -18 -20 -10 -14 | [(3,2)-(3,2)] | |
10 153 | 10n10 | 4 8 12 2 -16 6 -18 -20 -10 -14 | [(3,2)-(21,2)] | |
10 154 | 10n7 | 4 8 12 2 -16 6 -18 -10 -20 -14 | [(21,2)-(21,2)] | |
10 155 | 10n39 | 6 10 14 16 18 4 -20 2 8 -12 | [-3:2:2] | |
10 156 | 10n32 | 4 12 16 -14 18 2 -8 20 10 6 | [-3:2:20] | |
10 157 | 10n42 | 6 -10 -18 14 -2 -16 20 8 -4 12 | [-3:20:20] | |
10 158 | 10n41 | 6 -10 -16 14 -2 -18 8 20 -4 -12 | [-30:2:2] | |
10 159 | 10n34 | 6 8 10 14 16 -18 -20 2 4 -12 | [-30:2:20] | |
10 160 | 10n33 | 4 12 -16 -14 -18 2 -8 -20 -10 -6 | [-30:20:20] | |
10 161 [а] | 10n31 | 4 12 -16 14 -18 2 8 -20 -10 -6 | [3:-20:-20] | |
10 162 [б] | 10n40 | 6 10 14 18 16 4 -20 2 8 -12 | [-30:-20:-20] | |
10 163 [с] | 10n35 | 6 8 10 14 16 -20 -18 2 4 -12 | [8*-30] | |
10 164 [д] | 10n38 | 6 -10 -12 14 -18 -16 20 -2 -4 -8 | [8*2:-20] | |
10 165 [и] | 10n37 | 6 8 14 18 16 4 -20 10 2 -12 | [8*2:.-20] |
Высшее [ править ]
- Узел Конвея 11н34
- Узел Киносита–Терасака 11н42
Таблица первичных ссылок [ править ]
Семь или меньше переходов [ править ]
Имя | Картина | Александр- Бриггс – Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение |
---|---|---|---|---|---|
Отсоединить | 0 2 1 | — | — | — | |
Ссылка Хопфа | 2 2 1 | Л2а1 | — | [2] | |
Соломона узел | 4 2 1 | L4a1 | — | [4] | |
Уайтхед связь | 5 2 1 | Л5а1 | — | [212] | |
Л6а1 | 6 2 3 | Л6а1 | — | — | |
Л6а2 | 6 2 2 | Л6а2 | — | — | |
Л6а3 | 6 2 1 | Л6а3 | — | — | |
Борромео кольца | 6 3 2 | Л6а4 | — | [.1] | |
Л6а5 | 6 3 1 | Л6а5 | — | — | |
L6n1 | 6 3 3 | L6n1 | — | — | |
L7a1 | 7 2 6 | L7a1 | — | — | |
Л7а2 | 7 2 5 | Л7а2 | — | — | |
Л7а3 | 7 2 4 | Л7а3 | — | — | |
Л7а4 | 7 2 3 | Л7а4 | — | — | |
Л7а5 | 7 2 2 | Л7а5 | — | — | |
Л7а6 | 7 2 1 | Л7а6 | — | — | |
Л7а7 | 7 3 1 | Л7а7 | — | — | |
L7n1 | 7 2 7 | L7n1 | — | — | |
L7n2 | 7 2 8 | L7n2 | (6,-8|-10,12,-14,2,-4) | — |
Высшее [ править ]
Картина | Александр- Бриггс– Рольфсен | Даукер– Тистлтуэйт | Даукер обозначение | Конвей обозначение |
---|---|---|---|---|
8 2 1 | Л8а14 | — | — | |
— | Л10а140 | — | [.3:30] |
См. также [ править ]
Примечания [ править ]
Внешние ссылки [ править ]
- « Таблица узлов Рольфсена », Атлас узлов .
- « KnotInfo », Indiana.edu .