Модель общей циркуляции
Модель общей циркуляции ( МОЦ ) является разновидностью климатической модели . Он использует математическую модель общей циркуляции планетарной атмосферы или океана. Он использует уравнения Навье-Стокса на вращающейся сфере с термодинамическими членами для различных источников энергии ( излучение , скрытое тепло ). Эти уравнения лежат в основе компьютерных программ, используемых для моделирования атмосферы и океанов Земли. Атмосферные и океанические МОЦ (AGCM и OGCM ) являются ключевыми компонентами наряду с компонентами морского льда и поверхности суши .
МОЦ и глобальные климатические модели используются для прогнозирования погоды , понимания климата и прогнозирования изменения климата .
Атмосферные GCM (AGCM) моделируют атмосферу и задают температуру поверхности моря в качестве граничных условий. Связанные GCM атмосфера-океан (AOGCM, например HadCM3 , EdGCM , GFDL CM2.X , ARPEGE-Climat) [2] объединить две модели. Первая модель климата общей циркуляции, сочетающая в себе как океанические, так и атмосферные процессы, была разработана в конце 1960-х годов в NOAA . Лаборатории геофизической гидродинамики [3] МОЦАО представляют собой вершину сложности климатических моделей и учитывают максимально возможное количество процессов. Однако они все еще находятся в стадии разработки, и неопределенность остается. Они могут быть связаны с моделями других процессов, таких как углеродный цикл , чтобы лучше моделировать эффекты обратной связи. Такие интегрированные мультисистемные модели иногда называют «моделями системы Земли» или «моделями глобального климата».
Версии, предназначенные для климатических приложений в масштабе времени от десятилетия до столетия, были первоначально созданы Сюкуро Манабе и Кирком Брайаном в Лаборатории геофизической гидродинамики (GFDL) в Принстоне, штат Нью-Джерси . [1] Эти модели основаны на интеграции множества гидродинамических, химических и иногда биологических уравнений.
Терминология
[ редактировать ]Аббревиатура GCM первоначально обозначала модель общего обращения . В последнее время вошло в обиход второе значение, а именно «Глобальная климатическая модель» . Хотя это не одно и то же, модели общей циркуляции обычно являются инструментами, используемыми для моделирования климата , и поэтому эти два термина иногда используются как синонимы. Однако термин «модель глобального климата» неоднозначен и может относиться к интегрированной структуре, которая включает в себя несколько компонентов, включая модель общей циркуляции, или может относиться к общему классу моделей климата, которые используют различные средства для математического представления климата.
Модели атмосферы и океана
[ редактировать ]Атмосферные (AGCM) и океанические GCM (OGCM) могут быть объединены для формирования модели общей циркуляции, связанной между атмосферой и океаном (CGCM или AOGCM). С добавлением подмоделей, таких как модель морского льда или модель суммарного испарения над сушей, МОЦАО становятся основой для полной климатической модели. [4]
Структура
[ редактировать ]Модели общей циркуляции (МОЦ) дискретизируют уравнения движения жидкости и передачи энергии и интегрируют их с течением времени. В отличие от более простых моделей, GCM делят атмосферу и/или океаны на сетки дискретных «ячеек», которые представляют собой вычислительные единицы. В отличие от более простых моделей, которые делают предположения о смешивании, процессы внутри ячейки, такие как конвекция, которые происходят в масштабах, слишком маленьких, чтобы их можно было решить напрямую, параметризуются на уровне ячейки, в то время как другие функции управляют интерфейсом между ячейками.
Трехмерные (точнее четырехмерные) МОЦ применяют дискретные уравнения движения жидкости и интегрируют их вперед во времени. Они содержат параметризацию таких процессов, как конвекция , которые происходят в масштабах, слишком малых, чтобы их можно было решить напрямую.
Простая модель общей циркуляции (SGCM) состоит из динамического ядра, которое связывает такие свойства, как температура, с другими свойствами, такими как давление и скорость. Примерами являются программы, которые решают примитивные уравнения с учетом входной энергии и рассеяния энергии в виде трения , зависящего от масштаба , так что атмосферные волны с самыми высокими волновыми числами наиболее ослабляются. Такие модели могут использоваться для изучения атмосферных процессов, но не подходят для прогнозов климата.
Атмосферные GCM (AGCM) моделируют атмосферу (и обычно содержат также модель поверхности суши) с использованием наложенных температур поверхности моря (SST). [5] Они могут включать химию атмосферы.
AGCM состоят из динамического ядра, которое интегрирует уравнения движения жидкости, обычно для:
- поверхностное давление
- горизонтальные составляющие скорости в слоях
- температура и водяной пар в слоях
- излучение, разделенное на солнечное/коротковолновое и земное/ инфракрасное /длинноволновое
- параметры для:
- конвекция
- процессы на поверхности земли
- альбедо
- гидрология
- облачный покров
GCM содержит прогностические уравнения , которые являются функцией времени (обычно ветра, температуры, влажности и приземного давления), а также диагностические уравнения , которые оцениваются на их основе для определенного периода времени. Например, давление на любой высоте можно диагностировать, применив уравнение гидростатики к прогнозируемому поверхностному давлению и прогнозируемым значениям температуры между поверхностью и интересующей высотой. Давление используется для расчета силы градиента давления в зависящем от времени уравнении ветра.
OGCM моделируют океан (с учетом потоков из атмосферы) и могут содержать модель морского льда . Например, стандартное разрешение HadOM3 составляет 1,25 градуса по широте и долготе с 20 уровнями по вертикали, что дает примерно 1 500 000 переменных.
AOGCM (например, HadCM3 , GFDL CM2.X ) объединяют две подмодели. Они устраняют необходимость указывать потоки через границу поверхности океана. Эти модели являются основой для модельных прогнозов будущего климата, подобных тем, которые обсуждаются МГЭИК . МОЦАО интернализируют как можно больше процессов. Они использовались для предоставления прогнозов в региональном масштабе. В то время как более простые модели, как правило, поддаются анализу, и их результаты легче понять, МОЦАО может быть почти так же сложно анализировать, как и сам климат.
Сетка
[ редактировать ]Уравнения жидкости для AGCM дискретизируются с использованием либо метода конечных разностей , либо спектрального метода . Для конечных разностей на атмосферу накладывается сетка. В самой простой сетке используется постоянный угловой интервал сетки (т. е. сетка широты/долготы). Однако непрямоугольные сетки (например, икосаэдрические) и сетки переменного разрешения [6] используются чаще. [7] Модель LMDz может быть настроена так, чтобы обеспечивать высокое разрешение по любому участку планеты. HadGEM1 (и другие модели океана) используют океаническую сетку с более высоким разрешением в тропиках, чтобы помочь разрешить процессы, которые считаются важными для Южного колебания Эль-Ниньо (ENSO). Спектральные модели обычно используют гауссову сетку из-за математического преобразования между спектральным пространством и пространством точек сетки. Типичное разрешение AGCM составляет от 1 до 5 градусов по широте или долготе: HadCM3, например, использует 3,75 по долготе и 2,5 градуса по широте, что дает сетку 96 на 73 точки (96 x 72 для некоторых переменных); и имеет 19 вертикальных уровней. В результате получается примерно 500 000 «базовых» переменных, поскольку каждая точка сетки имеет четыре переменные ( u , v , T , Q ), хотя полный подсчет даст больше (облака; уровни почвы). HadGEM1 использует сетку 1,875 градусов по долготе и 1,25 по широте в атмосфере; HiGEM, вариант с высоким разрешением, использует 1,25 x 0,83 градуса соответственно. [8] Это разрешение ниже, чем обычно используется для прогнозирования погоды. [9] Разрешение океана, как правило, выше, например HadCM3 имеет 6 точек сетки океана на каждую точку сетки атмосферы по горизонтали.
Для стандартной конечно-разностной модели однородные линии сетки сходятся к полюсам. Это приведет к вычислительной нестабильности (см. условие CFL ), поэтому переменные модели необходимо фильтровать по линиям широты, близким к полюсам. Модели океана также страдают от этой проблемы, если только не используется повернутая сетка, в которой Северный полюс смещается на близлежащий участок суши. Спектральные модели не страдают от этой проблемы. В некоторых экспериментах используются геодезические сетки. [10] и икосаэдрические сетки, которые (будучи более однородными) не имеют проблем с полюсами. Другой подход к решению проблемы шага сетки — деформировать декартов куб так, чтобы он покрывал поверхность сферы. [11]
Буферизация потока
[ редактировать ]Некоторые ранние версии МОЦАО требовали специального процесса « коррекции потока » для достижения стабильного климата. Это стало результатом отдельно подготовленных моделей океана и атмосферы, каждая из которых использовала неявный поток от другого компонента, отличный от того, который мог создать этот компонент. Такая модель не соответствовала наблюдениям. Однако если потоки были «скорректированы», факторы, которые привели к этим нереалистичным потокам, могли бы остаться нераспознанными, что могло бы повлиять на чувствительность модели. В результате подавляющее большинство моделей, использованных в текущем раунде докладов МГЭИК, не используют их. Улучшения модели, которые теперь делают ненужными поправки на потоки, включают улучшенную физику океана, улучшенное разрешение как в атмосфере, так и в океане, а также более физически согласованную связь между подмоделями атмосферы и океана. Улучшенные модели теперь поддерживают стабильные модели приземного климата на протяжении нескольких столетий, которые считаются достаточно качественными, чтобы их можно было использовать для прогнозов климата. [12]
Конвекция
[ редактировать ]Влажная конвекция высвобождает скрытое тепло и играет важную роль в энергетическом балансе Земли. Конвекция происходит в слишком маленьком масштабе, чтобы ее можно было разрешить с помощью климатических моделей, и, следовательно, ее необходимо учитывать с помощью параметров. Это делается с 1950-х годов. Акио Аракава проделал большую часть ранних работ, и варианты его схемы используются до сих пор. [13] хотя сейчас используется множество различных схем. [14] [15] [16] Облака также обычно обрабатываются с помощью параметра из-за аналогичного недостатка масштаба. Ограниченное понимание облаков ограничило успех этой стратегии, но не из-за какого-то внутреннего недостатка метода. [17]
Программное обеспечение
[ редактировать ]Большинство моделей включают программное обеспечение для диагностики широкого спектра переменных для сравнения с наблюдениями или изучения атмосферных процессов . Примером может служить двухметровая температура, которая является стандартной высотой для приземных наблюдений за температурой воздуха. Эта температура не прогнозируется напрямую из модели, а выводится из температур поверхности и самого нижнего слоя модели. Другое программное обеспечение используется для создания сюжетов и анимации.
Прогнозы
[ редактировать ]Связанные МОЦАО используют моделирование переходного климата для прогнозирования изменений климата при различных сценариях. Это могут быть идеализированные сценарии (чаще всего выбросы CO 2 увеличиваются на 1% в год) или основанные на недавней истории (обычно сценарии «IS92a» или, в последнее время, сценарии SRES ). Какие сценарии наиболее реалистичны, остается неясным.
2001 года третьего оценочного отчета МГЭИК На рисунке 9.3 показана глобальная средняя реакция 19 различных связанных моделей на идеализированный эксперимент, в котором выбросы увеличивались на 1% в год. [19] На рис. 9.5 показана реакция меньшего числа моделей на более поздние тенденции. Для 7 показанных здесь климатических моделей изменение температуры к 2100 году варьируется от 2 до 4,5 °C со средним значением около 3 °C.
Сценарии будущего не включают неизвестные события – например, извержения вулканов или изменения в солнечном воздействии. Считается, что эти эффекты невелики по сравнению с воздействием парниковых газов (ПГ) в долгосрочной перспективе, но, например, крупные извержения вулканов могут оказывать существенный временный охлаждающий эффект.
Выбросы парниковых газов от человека являются входными данными модели, хотя для их получения также можно включить экономическую/технологическую подмодель. Уровни выбросов парниковых газов в атмосфере обычно предоставляются в качестве входных данных, хотя для расчета таких уровней можно включить модель углеродного цикла, которая отражает растительные и океанические процессы.
Сценарии выбросов
[ редактировать ]Для шести сценариев-маркеров SRES IPCC (2007:7–8) дала «наилучшую оценку» повышения глобальной средней температуры (2090–2099 гг. По сравнению с периодом 1980–1999 гг.) На уровне от 1,8 °C до 4,0 °C. [20] За тот же период «вероятный» диапазон (вероятность более 66%, по оценкам экспертов) для этих сценариев составлял повышение средней глобальной температуры на 1,1–6,4 °C. [20]
В 2008 году в исследовании были сделаны климатические прогнозы с использованием нескольких сценариев выбросов. [21] В сценарии, в котором глобальные выбросы начнут снижаться к 2010 году, а затем будут снижаться устойчивыми темпами 3% в год, прогнозируется, что к 2050 году вероятное повышение глобальной средней температуры будет на 1,7 °C выше доиндустриального уровня, увеличившись примерно до 2 °C. C к 2100 году. В прогнозе, разработанном для моделирования будущего, в котором не будет предприниматься никаких усилий по сокращению глобальных выбросов, прогнозировалось, что вероятное повышение средней глобальной температуры составит 5,5 °C к 2100 году. Считалось возможным повышение до 7 °C. , хотя и менее вероятно.
Другой сценарий без сокращения привел к среднему потеплению над сушей (2090–99 годы по сравнению с периодом 1980–99 годов) на 5,1 °C. При том же сценарии выбросов, но с использованием другой модели, прогнозируемое медианное потепление составило 4,1 °C. [22]
Точность модели
[ редактировать ]Этот раздел необходимо обновить . ( август 2015 г. ) |
МОЦАО интернализируют столько процессов, сколько достаточно изучено. Однако они все еще находятся в стадии разработки и остаются значительные неопределенности. Они могут быть связаны с моделями других процессов в моделях системы Земли , таких как углеродный цикл , чтобы лучше моделировать обратную связь. Самые последние моделирования показывают «правдоподобное» согласие с измеренными температурными аномалиями за последние 150 лет, вызванными наблюдаемыми изменениями в парниковых газах и аэрозолях. Соглашение улучшается за счет включения как естественных, так и антропогенных воздействий. [23] [24] [25]
Тем не менее несовершенные модели могут давать полезные результаты. МОЦ способны воспроизводить общие особенности наблюдаемой глобальной температуры за последнее столетие. [23]
Дебаты о том, как согласовать прогнозы климатической модели о том, что потепление верхних слоев атмосферы (тропосферы) должно быть больше, чем наблюдаемое приземное потепление, некоторые из которых, по-видимому, показывают обратное, [26] был решен в пользу моделей после пересмотра данных.
Эффекты облаков представляют собой значительную область неопределенности в климатических моделях. Облака оказывают конкурирующее воздействие на климат. Они охлаждают поверхность, отражая солнечный свет в космос; они нагревают его, увеличивая количество инфракрасного излучения, передаваемого из атмосферы на поверхность. [27] В отчете МГЭИК 2001 года возможные изменения облачного покрова были отмечены как серьезная неопределенность в прогнозировании климата. [28] [29]
Исследователи климата во всем мире используют климатические модели, чтобы понять климатическую систему. Были опубликованы тысячи статей об исследованиях на основе моделей. Частью этого исследования является улучшение моделей.
В 2000 году сравнение измерений и десятков моделей GCM тропических осадков, водяного пара, температуры и уходящей длинноволновой радиации, вызванных ЭНСО, выявило сходство между измерениями и моделированием большинства факторов. Однако смоделированное изменение количества осадков было примерно на четверть меньше наблюдаемого. Ошибки в моделировании осадков влекут за собой ошибки в других процессах, например, ошибки в скорости испарения, которая обеспечивает влажность, вызывающую образование осадков. Другая возможность заключается в том, что спутниковые измерения ошибочны. Любой из них указывает на то, что необходим прогресс для мониторинга и прогнозирования таких изменений. [30]
Точные масштабы будущих изменений климата все еще неясны; [31] на конец 21-го века (2071–2100 гг.) для сценария A2 СДСВ изменение глобального среднего изменения SAT от МОЦАО по сравнению с 1961–1990 гг. составляет +3,0 °C (5,4 °F) и диапазон от +1,3 до + 4,5 °C (от +2,3 до 8,1 °F).
МГЭИК В Пятом оценочном докладе утверждается «с очень высокой степенью уверенности в том, что модели воспроизводят общие характеристики среднегодового повышения приземной температуры в глобальном масштабе за исторический период». Однако в отчете также отмечается, что скорость потепления за период 1998–2012 годов была ниже, чем прогнозировалось 111 из 114 климатических моделей Проекта по взаимному сравнению связанных моделей . [32]
Связь с прогнозированием погоды
[ редактировать ]Глобальные климатические модели, используемые для климатических прогнозов, по структуре похожи на числовые модели прогнозирования погоды (и часто имеют общий с ними компьютерный код) , но, тем не менее, логически различны.
Большинство прогнозов погоды делается на основе интерпретации результатов числовых моделей. Поскольку прогнозы обычно рассчитаны на несколько дней или неделю, а температура поверхности моря меняется относительно медленно, такие модели обычно не содержат модель океана, а основаны на навязанных ТПМ. Для начала прогноза им также требуются точные начальные условия – обычно они берутся из результатов предыдущего прогноза, смешанных с наблюдениями. Прогнозы погоды требуются с более высоким временным разрешением, чем прогнозы климата, часто с точностью до часа по сравнению со средними значениями климата за месяц или год. Однако, поскольку прогнозы погоды охватывают только около 10 дней, модели также можно запускать с более высоким вертикальным и горизонтальным разрешением, чем в климатическом режиме. В настоящее время ECMWF работает с разрешением 9 км (5,6 миль). [33] в отличие от масштаба от 100 до 200 км (от 62 до 124 миль), используемого при прогоне типичных климатических моделей. Часто локальные модели запускаются с использованием результатов глобальной модели граничных условий для достижения более высокого локального разрешения: например, Метеорологическое бюро запускает мезомасштабную модель с разрешением 11 км (6,8 миль). [34] охватывающих Великобританию, и различные агентства в США используют такие модели, как модели NGM и NAM. Как и большинство глобальных моделей численного прогнозирования погоды, таких как GFS , глобальные климатические модели часто представляют собой спектральные модели. [35] вместо сеточных моделей. Спектральные модели часто используются для глобальных моделей, поскольку некоторые вычисления при моделировании могут выполняться быстрее, что сокращает время выполнения.
Вычисления
[ редактировать ]Климатические модели используют количественные методы для моделирования взаимодействия атмосферы , океанов, поверхности суши и льда .
Все климатические модели учитывают поступающую энергию в виде коротковолнового электромагнитного излучения , главным образом видимого и коротковолнового (ближнего) инфракрасного диапазона , а также исходящую энергию в виде длинноволнового (дальнего) инфракрасного электромагнитного излучения Земли. Любой дисбаланс приводит к изменению температуры .
Самые обсуждаемые модели последних лет связывают температуру с выбросами газов парниковых . Эти модели прогнозируют тенденцию к увеличению рекордной температуры на поверхности , а также более быстрое повышение температуры на больших высотах. [36]
Трехмерные (или, точнее, четырехмерные, поскольку время также учитывается) МОЦ дискретизируют уравнения движения жидкости и передачи энергии и интегрируют их с течением времени. Они также содержат параметризацию таких процессов, как конвекция, которые происходят в масштабах, слишком малых, чтобы их можно было решить напрямую.
Атмосферные GCM (AGCM) моделируют атмосферу и задают температуру поверхности моря в качестве граничных условий. Связанные GCM атмосфера-океан (AOGCM, например HadCM3 , EdGCM , GFDL CM2.X, ARPEGE-Climat [37] ) объединить две модели.
Модели различаются по сложности:
- Простая модель лучистой теплопередачи рассматривает Землю как одну точку и усредняет исходящую энергию.
- Его можно расширить вертикально (радиационно-конвективные модели) или горизонтально.
- Наконец, (связанные) модели глобального климата атмосфера-океан-морской лед дискретизируют и решают полные уравнения переноса массы и энергии, а также радиационного обмена.
- Боксовые модели рассматривают потоки через океанские бассейны и внутри них.
Другие подмодели, например землепользование , могут быть взаимосвязаны, что позволяет исследователям прогнозировать взаимодействие между климатом и экосистемами.
Сравнение с другими климатическими моделями
[ редактировать ]Модели системы Земли средней сложности (EMIC)
[ редактировать ]Модель Climber-3 использует 2,5-мерную статистико-динамическую модель с разрешением 7,5° × 22,5° и шагом по времени 1/2 дня. Океаническая подмодель — MOM-3 ( Модульная модель океана ) с сеткой 3,75 × 3,75 ° и 24 вертикальными уровнями. [38]
Радиационно-конвективные модели (РКМ)
[ редактировать ]Одномерные радиационно-конвективные модели использовались для проверки основных климатических предположений в 1980-х и 1990-х годах. [39]
Модели системы Земли
[ редактировать ]МОЦ могут составлять часть моделей системы Земли , например, путем объединения моделей ледникового покрова для динамики Гренландии и ледяных щитов Антарктики , а также одной или нескольких моделей переноса химических веществ (СТМ) для видов, важных для климата. Таким образом, модель переноса химии углерода может позволить МОЦ лучше прогнозировать антропогенные изменения концентрации углекислого газа . Кроме того, этот подход позволяет учитывать межсистемную обратную связь: например, химико-климатические модели позволяют влияние изменения климата на озоновую дыру . изучать [40]
История
[ редактировать ]В 1956 году Норман Филлипс разработал математическую модель, которая могла реалистично отображать ежемесячные и сезонные закономерности в тропосфере . Это стала первая успешная климатическая модель. [41] [42] После работы Филлипса несколько групп начали работу над созданием GCM. [43] Первый метод, сочетающий океанические и атмосферные процессы, был разработан в конце 1960-х годов в NOAA Лаборатории геофизической гидродинамики . [1] США К началу 1980-х годов Национальный центр атмосферных исследований разработал Модель общественной атмосферы; эта модель постоянно совершенствуется. [44] В 1996 году начались попытки моделирования типов почвы и растительности. [45] Позже Центра прогнозирования климата и исследований Хэдли были в модели HadCM3 объединены элементы океана и атмосферы. [43] Роль гравитационных волн добавилась в середине 1980-х годов. Гравитационные волны необходимы для точного моделирования циркуляции регионального и глобального масштаба. [46]
См. также
[ редактировать ]- Проект взаимного сравнения моделей атмосферы (AMIP)
- Измерение атмосферной радиации (ARM) (в США)
- Симулятор Земли
- Глобальная экологическая многомасштабная модель
- Модель ледникового покрова
- Промежуточная модель общей циркуляции
- НКАР
- Прогностическая переменная
Ссылки
[ редактировать ]- ^ Jump up to: а б с «Первая климатическая модель» . Празднование 200-летия NOAA. 2007.
- ^ [1] Архивировано 27 сентября 2007 г. в Wayback Machine.
- ^ «200-е место в десятке лучших по версии NOAA: прорывы: первая климатическая модель» . noaa.gov .
- ^ «Pubs.GISS: Sun and Hansen 2003: Моделирование климата на 1951-2050 годы с использованием совместной модели атмосферы и океана» . pubs.giss.nasa.gov . 2003 . Проверено 25 августа 2015 г.
- ^ «Проект взаимного сравнения моделей атмосферы» . Программа диагностики и взаимного сравнения климатических моделей, Ливерморская национальная лаборатория имени Лоуренса. Архивировано из оригинала 22 августа 2017 года . Проверено 21 апреля 2010 г.
- ^ Яблоновский, К.; Херцог, М.; Пеннер, Дж. Э.; Оемке, RC; Стаут, QF; ван Леер, Б. (2004). «Адаптивные сетки для моделей погоды и климата». CiteSeerX 10.1.1.60.5091 .
{{cite journal}}
: Для цитирования журнала требуется|journal=
( помощь ) См. также Яблоновски, Кристиана. «Адаптивное уточнение сетки (AMR) для моделей погоды и климата» . Архивировано из оригинала 28 августа 2016 года . Проверено 24 июля 2010 г. - ↑ Документация по командному языку NCAR: Неоднородные сетки, которые NCL может контурировать. Архивировано 3 марта 2016 г. на Wayback Machine (проверено 24 июля 2010 г.).
- ^ «Домашняя страница глобального экологического моделирования высокого разрешения (HiGEM)» . Совет по исследованию природной среды и метеорологическое бюро. 18 мая 2004 г.
- ^ «Мезомасштабное моделирование» . Архивировано из оригинала 29 декабря 2010 года . Проверено 5 октября 2010 г.
- ^ «Модель климата будет первой, использующей геодезическую сетку» . Новости науки Университета Дейли. 24 сентября 2001 г.
- ^ «Сетка сферы» . MIT GCM . Проверено 9 сентября 2010 г.
- ^ «Третий оценочный отчет МГЭИК – Изменение климата, 2001 г. – Полные онлайн-версии» . МГЭИК. Архивировано из оригинала 12 января 2014 года . Проверено 12 января 2014 г.
- ^ «Вычислительное устройство Аракавы» . Айп.орг. Архивировано из оригинала 15 июня 2006 года . Проверено 18 февраля 2012 г.
- ^ «Отчет COLA 27» . Grads.iges.org. 1 июля 1996 года. Архивировано из оригинала 6 февраля 2012 года . Проверено 18 февраля 2012 г.
- ^ «Таблица 2-10» . Pcmdi.llnl.gov . Проверено 18 февраля 2012 г.
- ^ «Таблица элементарных функций модели CMIP» . Rainbow.llnl.gov. 2 декабря 2004 г. Архивировано из оригинала 15 мая 2006 г. Проверено 18 февраля 2012 г.
- ^ «Модели общей циркуляции атмосферы» . Айп.орг. Архивировано из оригинала 30 июля 2012 года . Проверено 18 февраля 2012 г.
- ^ Jump up to: а б Лаборатория геофизической гидродинамики NOAA (GFDL) (9 октября 2012 г.), NOAA GFDL: основные моменты климатических исследований Галерея изображений: закономерности парникового потепления , NOAA GFDL
- ^ «Изменение климата 2001: Научная основа» . Грида.но. Архивировано из оригинала 18 февраля 2012 года . Проверено 18 февраля 2012 г.
- ^ Jump up to: а б «Глава 3: Прогнозируемое изменение климата и его последствия» . Четвертый оценочный доклад МГЭИК: Изменение климата, 2007 г.: Сводный доклад: Краткое изложение сводного доклада для политиков . Архивировано из оригинала 9 марта 2013 года . Проверено 3 декабря 2013 г. , в IPCC AR4 SYR 2007 г.
- ^ Поуп, В. (2008). «Метеорологическое бюро: научные данные для ранних действий по изменению климата» . Сайт Метеорологического бюро. Архивировано из оригинала 29 декабря 2010 года.
- ^ Соколов А.П.; и др. (2009). «Вероятностный прогноз климата XXI века на основе неопределенностей в выбросах (без политики) и климатических параметрах» (PDF) . Журнал климата . 22 (19): 5175–5204. Бибкод : 2009JCli...22.5175S . дои : 10.1175/2009JCLI2863.1 . hdl : 1721.1/54833 . S2CID 17270176 .
- ^ Jump up to: а б МГЭИК, Резюме для политиков. Архивировано 7 марта 2016 г. на Wayback Machine , рис. 4. Архивировано 21 октября 2016 г. на Wayback Machine , в IPCC TAR WG1 (2001), Хоутон, Дж.Т.; Дин, Ю.; Григгс, диджей; Ногер, М.; ван дер Линден, П.Дж.; Дай, X.; Маскелл, К.; Джонсон, Калифорния (ред.), Изменение климата, 2001 г.: Научная основа , Вклад Рабочей группы I в третий оценочный отчет Межправительственной группы экспертов по изменению климата, Cambridge University Press, ISBN 978-0-521-80767-8 , заархивировано из оригинала 15 декабря 2019 г.
{{citation}}
: CS1 maint: numeric names: authors list (link) (pb: 0-521-01495-6 ). - ^ «Моделирование глобального потепления 1860–2000 гг.» . Архивировано из оригинала 27 мая 2006 года.
- ^ «Прогноз на десятилетие 2013» . Метеорологическое бюро . Январь 2014.
- ↑ Пресс-релиз сайта National Academies Press, 12 января 2000 г.: Согласование наблюдений за глобальным изменением температуры .
- ^ Взлет НАСА к веб-сайту космических исследований: Парниковый эффект . Архив.com. Обнаружен 1 октября 2012 г.
- ^ «Изменение климата, 2001 г.: Научная основа» (PDF) . МГЭИК. п. 90.
- ^ Соден, Брайан Дж.; Хелд, Исаак М. (2006). «Оценка климатических обратных связей в связанных моделях океана и атмосферы» . Дж. Климат . 19 (14): 3354–3360. Бибкод : 2006JCli...19.3354S . дои : 10.1175/JCLI3799.1 .
- ^ Соден, Брайан Дж. (февраль 2000 г.). «Чувствительность тропического гидрологического цикла к ЭНСО» . Журнал климата . 13 (3): 538–549. Бибкод : 2000JCli...13..538S . doi : 10.1175/1520-0442(2000)013<0538:TSOTTH>2.0.CO;2 . S2CID 14615540 .
- ^ Кубас и др. , Глава 9: Прогнозы будущего изменения климата. Архивировано 16 апреля 2016 г. в Wayback Machine , Краткое изложение. [ мертвая ссылка ] , в IPCC TAR WG1 (2001), Хоутон, Дж.Т.; Дин, Ю.; Григгс, диджей; Ногер, М.; ван дер Линден, П.Дж.; Дай, X.; Маскелл, К.; Джонсон, Калифорния (ред.), Изменение климата, 2001 г.: Научная основа , Вклад Рабочей группы I в третий оценочный отчет Межправительственной группы экспертов по изменению климата, Cambridge University Press, ISBN 978-0-521-80767-8 , заархивировано из оригинала 15 декабря 2019 г.
{{citation}}
: CS1 maint: numeric names: authors list (link) (pb: 0-521-01495-6 ). - ^ Флато, Грегори (2013). «Оценка климатических моделей» (PDF) . МГЭИК . стр. 768–769.
- ^ «ЕЦСПП» . Архивировано из оригинала 3 мая 2008 года . Проверено 7 февраля 2016 г. Информационный бюллетень ЕЦСПП, весна 2016 г.
- ^ «Оперативное численное моделирование» . Метеорологическое бюро . Архивировано из оригинала 7 марта 2005 года . Проверено 28 марта 2005 г.
{{cite web}}
: CS1 maint: bot: исходный статус URL неизвестен ( ссылка ) - ^ «Что такое модели общей циркуляции (МОЦ)?» . Das.uwyo.edu . Проверено 18 февраля 2012 г.
- ^ Мил и др. , Изменение климата, 2007 г. Глава 10: Глобальные климатические прогнозы. Архивировано 15 апреля 2016 г. в Wayback Machine , [ нужна страница ] в IPCC AR4 WG1 (2007), Соломон, С.; Цинь, Д.; Мэннинг, М.; Чен, З.; Маркиз, М.; Аверит, КБ; Тиньор, М.; Миллер, Х.Л. (ред.), Изменение климата, 2007: Основы физических наук , Вклад Рабочей группы I в четвертый оценочный отчет Межправительственной группы экспертов по изменению климата, Cambridge University Press, ISBN 978-0-521-88009-1
{{citation}}
: CS1 maint: numeric names: authors list (link) (pb: 978-0-521-70596-7 ) - ^ Домашняя страница ARPEGE-Climat, версия 5.1. Архивировано 4 января 2016 г. на Wayback Machine , 3 сентября 2009 г. Проверено 1 октября 2012 г. Домашняя страница ARPEGE-Climat . Архивировано 19 февраля 2014 г. на Wayback Machine , 6 августа 2009 г. Проверено 1 октября 2012 г.
- ^ "Эмикс1" . www.pik-potsdam.de . Проверено 25 августа 2015 г.
- ^ Ван, туалет; П.Х. Стоун (1980). «Влияние обратной связи альбедо льда на глобальную чувствительность в одномерной радиационно-конвективной модели климата» . Дж. Атмос. Наука . 37 (3): 545–52. Бибкод : 1980JAtS...37..545W . doi : 10.1175/1520-0469(1980)037<0545:EOIAFO>2.0.CO;2 .
- ^ Аллен, Джинни (февраль 2004 г.). «Танго в атмосфере: озон и изменение климата» . Земная обсерватория НАСА. Архивировано из оригинала 11 октября 2019 года . Проверено 1 сентября 2005 г.
- ^ Филлипс, Норман А. (апрель 1956 г.). «Общая циркуляция атмосферы: численный эксперимент». Ежеквартальный журнал Королевского метеорологического общества . 82 (352): 123–154. Бибкод : 1956QJRMS..82..123P . дои : 10.1002/qj.49708235202 .
- ^ Кокс, Джон Д. (2002). Наблюдатели за штормом . John Wiley & Sons, Inc. с. 210 . ISBN 978-0-471-38108-2 .
- ^ Jump up to: а б Линч, Питер (2006). «Интеграция ENIAC». Появление численного прогноза погоды . Издательство Кембриджского университета . стр. 206–208. ISBN 978-0-521-85729-1 .
- ^ Коллинз, Уильям Д.; и др. (июнь 2004 г.). «Описание модели атмосферы сообщества NCAR (CAM 3.0)» (PDF) . Университетская корпорация по исследованию атмосферы .
- ^ Сюэ, Юнкан и Майкл Дж. Феннесси (20 марта 1996 г.). «Влияние свойств растительности на прогноз летней погоды в США». Журнал геофизических исследований . 101 (Д3). Американский геофизический союз : 7419. Бибкод : 1996JGR...101.7419X . CiteSeerX 10.1.1.453.551 . дои : 10.1029/95JD02169 .
- ^ Макгаффи, К. и А. Хендерсон-Селлерс (2005). Учебник по моделированию климата . Джон Уайли и сыновья. п. 188. ИСБН 978-0-470-85751-9 .
- IPCC AR4 SYR (2007), Основная группа авторов; Пачаури, РК; Райзингер, А. (ред.), Изменение климата 2007: Сводный отчет (SYR) , Вклад рабочих групп I, II и III в Четвертый оценочный отчет (AR4) Межправительственной группы экспертов по изменению климата, Женева , Швейцария: IPCC, ISBN 978-92-9169-122-7
{{citation}}
: CS1 maint: числовые имена: список авторов ( ссылка ) .
Дальнейшее чтение
[ редактировать ]- Ян Рулстон и Джон Норбери (2013). Невидимый во время шторма: роль математики в понимании погоды . Издательство Принстонского университета. ISBN 978-0691152721 .
Внешние ссылки
[ редактировать ]- МГЭИК ДО5, Оценка климатических моделей
- «Моделирование климата в высоком разрешении» . – со средствами массовой информации, включая видео, анимацию, подкасты и стенограммы климатических моделей.
- «Гибкая система моделирования (FMS)» . Лаборатория геофизической гидродинамики . – Гибкая система моделирования GFDL, содержащая код для моделей климата.
- Программа диагностики и взаимного сравнения климатических моделей (PCMDI/CMIP)
- Национальная система архивирования и распространения операционных моделей (NOMADS). Архивировано 30 января 2016 г. на Wayback Machine.
- Центр Хэдли по прогнозированию климата и исследованиям – информация о модели
- Модель климатической системы сообщества NCAR/UCAR (CESM)
- Прогнозирование климата, моделирование сообществ
- НАСА/GISS, модель GCM для первичных исследований
- EDGCM/NASA: Образовательное моделирование глобального климата. Архивировано 23 марта 2015 г. в Wayback Machine.
- NOAA/GFDL. Архивировано 4 марта 2016 г. в Wayback Machine.
- МАОАМ: Наблюдение и моделирование марсианской атмосферы / MPI и МФТИ