Инактивированная вакцина
Инактивированная вакцина | |
---|---|
Другие имена | Убитая вакцина |
Специальность | Общественное здравоохранение , Иммунология , Семейная медицина , Общая практика |
Использование | профилактика инфекционных заболеваний |
Частота | от рождения до совершеннолетия |
Результаты | развитие активного иммунитета у людей; вклад в коллективный иммунитет |
Инактивированная вакцина (или убитая вакцина ) — это вакцина, состоящая из вирусных частиц, бактерий или других патогенов , выращенных в культуре , а затем убитых для уничтожения способности вызывать болезни. Напротив, в живых вакцинах используются еще живые патогены (но почти всегда аттенуированные , то есть ослабленные). Возбудители инактивированных вакцин выращиваются в контролируемых условиях и уничтожаются, чтобы снизить инфекционность и, таким образом, предотвратить заражение вакциной. [1]
Инактивированные вакцины были впервые разработаны в конце 1800-х и начале 1900-х годов для лечения холеры , чумы и брюшного тифа . [2] Сегодня существуют инактивированные вакцины против многих возбудителей, включая грипп , полиомиелит (ИПВ), бешенство , гепатит А и коклюш . [3]
Поскольку инактивированные патогены имеют тенденцию вызывать более слабый ответ иммунной системы, чем живые патогены, иммунологические адъюванты и множественные « ревакцинации » для обеспечения эффективного иммунного ответа против патогена. в некоторых вакцинах могут потребоваться [1] [4] [5] Аттенуированные вакцины часто предпочтительнее для в целом здоровых людей, поскольку однократная доза зачастую безопасна и очень эффективна. Однако некоторые люди не могут принимать аттенуированные вакцины, поскольку возбудитель представляет для них слишком большой риск (например, пожилые люди или люди с иммунодефицитом ). Для этих пациентов инактивированная вакцина может обеспечить защиту. [ нужна ссылка ]
Механизм [ править ]
Частицы патогена разрушаются и не могут делиться, но патогены сохраняют некоторую часть своей целостности, чтобы распознаваться иммунной системой и вызывать адаптивный иммунный ответ. [6] [7] При правильном изготовлении вакцина не заразна, но неправильная инактивация может привести к образованию неповрежденных и инфекционных частиц. [ нужна ссылка ]
При введении вакцины антиген захватывается антигенпрезентирующей клеткой (АПК) и транспортируется в дренирующий лимфатический узел у вакцинированных людей. APC поместит на свою поверхность часть антигена, эпитоп , вместе с молекулой главного комплекса гистосовместимости (MHC). Теперь он может взаимодействовать и активировать Т-клетки. Полученные в результате Т-хелперные клетки будут затем стимулировать антитело-опосредованный или клеточно-опосредованный иммунный ответ и развивать антиген-специфический адаптивный ответ. [8] [9] Этот процесс создает иммунологическую память против конкретного патогена и позволяет иммунной системе реагировать более эффективно и быстро после последующих встреч с этим патогеном. [6] [8] [9]
Инактивированные вакцины имеют тенденцию вызывать иммунный ответ, который в первую очередь опосредован антителами. [3] [10] Однако целенаправленный выбор адъювантов позволяет инактивированным вакцинам стимулировать более устойчивый клеточно-опосредованный иммунный ответ. [1] [7]
Типы [ править ]
Инактивированные вакцины можно разделить по методу уничтожения возбудителя. [4] [1]
- Вакцины, инактивированные цельным патогеном, производятся, когда весь патоген «убивается» с помощью тепла, химикатов или радиации. [5] хотя формальдегида и бета-пропиолактона . в вакцинах для человека широко используются только воздействия [11] [12]
- Сплит-вирусные вакцины производятся с использованием детергента, разрушающего вирусную оболочку . [4] [13] Этот метод используется при разработке многих вакцин против гриппа . [14]
Меньшая часть источников использует термин «инактивированные вакцины» для широкого обозначения неживых вакцин. Согласно этому определению, инактивированные вакцины также включают субъединичные вакцины и анатоксинные вакцины. [3] [8]
Примеры [ править ]
Типы включают в себя: [15]
- Популярный :
- Инъекционная полиомиелитная вакцина ( вакцина Солка )
- Вакцина против гепатита А
- Вакцина против бешенства
- Большинство вакцин против гриппа
- Вакцина против клещевого энцефалита
- Некоторые вакцины против COVID-19 : CoronaVac , Covaxin , QazVac , Sinopharm BIBP , Sinopharm WIBP , TURKOVAC , CoviVac.
- Бактериальный :
- Инъекционная брюшнотифозная вакцина
- Вакцина против холеры
- Чумная вакцина
- Цельноклеточная вакцина против коклюша
Преимущества и недостатки [ править ]
Преимущества [ править ]
- Инактивированные патогены более стабильны, чем живые патогены. Повышенная стабильность облегчает хранение и транспортировку инактивированных вакцин. [8] [16] [17]
- В отличие от живых аттенуированных вакцин , инактивированные вакцины не могут вернуться в вирулентную форму и вызвать заболевание. [6] [10] Например, были редкие случаи, когда живая аттенуированная форма полиовируса, присутствующая в оральной полиомиелитной вакцине (ОПВ), становилась вирулентной, что приводило к тому, что инактивированная полиовакцина (ИПВ) заменяла ОПВ во многих странах с контролируемой передачей полиомиелита дикого типа. [6] [9]
- В отличие от живых аттенуированных вакцин, инактивированные вакцины не реплицируются и не противопоказаны лицам с ослабленным иммунитетом . [6] [7] [8]
Недостатки [ править ]
- Инактивированные вакцины обладают пониженной способностью вызывать сильный иммунный ответ, обеспечивающий длительный иммунитет, по сравнению с живыми аттенуированными вакцинами. [3] адъюванты и бустеры . Для создания и поддержания защитного иммунитета часто требуются [10] [16]
- Для создания убитых цельноорганических вакцин патогены необходимо культивировать и инактивировать. [6] [9] Этот процесс замедляет производство вакцин по сравнению с генетическими вакцинами . [8]
Ссылки [ править ]
- ↑ Перейти обратно: Перейти обратно: а б с д Петровский Н., Агилар Дж.К. (октябрь 2004 г.). «Вакцинные адъюванты: современное состояние и будущие тенденции». Иммунология и клеточная биология . 82 (5): 488–496. дои : 10.1111/j.0818-9641.2004.01272.x . ПМИД 15479434 . S2CID 154670 .
- ^ Плоткин С.А., Плоткин С.Л. (октябрь 2011 г.). «Разработка вакцин: как прошлое привело к будущему» . Обзоры природы. Микробиология . 9 (12) (опубликовано 3 октября 2011 г.): 889–893. дои : 10.1038/nrmicro2668 . ПМИД 21963800 . S2CID 32506969 .
- ↑ Перейти обратно: Перейти обратно: а б с д Води А.П., Морелли В. (2021 г.). «Глава 1: Принципы вакцинации» (PDF) . В зале E: Води А.П., Хамборски Дж., Морелли В., Шиллли С. (ред.). Эпидемиология и профилактика болезней, предупреждаемых с помощью вакцин (14-е изд.). Вашингтон, округ Колумбия: Фонд общественного здравоохранения, Центры по контролю и профилактике заболеваний.
- ↑ Перейти обратно: Перейти обратно: а б с Комитет экспертов ВОЗ по биологической стандартизации (19 июня 2019 г.). «Грипп» . Всемирная организация здравоохранения (ВОЗ) . Проверено 22 октября 2021 г.
- ↑ Перейти обратно: Перейти обратно: а б «Виды вакцин» . Вакцины.gov . Министерство здравоохранения и социальных служб США. 23 июля 2013 года. Архивировано из оригинала 9 июня 2013 года . Проверено 16 мая 2016 г.
- ↑ Перейти обратно: Перейти обратно: а б с д и ж Веттер В., Денизер Г., Фридланд Л.Р., Кришнан Дж., Шапиро М. (март 2018 г.). «Понимание современных вакцин: что вам нужно знать» . Анналы медицины . 50 (2): 110–120. дои : 10.1080/07853890.2017.1407035 . ПМИД 29172780 . S2CID 25514266 .
- ↑ Перейти обратно: Перейти обратно: а б с Слифка МК, Аманна I (май 2014 г.). «Как достижения иммунологии позволяют понять, как повысить эффективность вакцин» . Вакцина . 32 (25): 2948–2957. doi : 10.1016/j.vaccine.2014.03.078 . ПМК 4096845 . ПМИД 24709587 .
- ↑ Перейти обратно: Перейти обратно: а б с д и ж Поллард А.Дж., Бийкер Э.М. (февраль 2021 г.). «Руководство по вакцинологии: от основных принципов к новым разработкам» . Обзоры природы. Иммунология . 21 (2): 83–100. дои : 10.1038/s41577-020-00479-7 . ПМЦ 7754704 . ПМИД 33353987 .
- ↑ Перейти обратно: Перейти обратно: а б с д Карч К.П., Буркхард П. (ноябрь 2016 г.). «Вакцинные технологии: от целых организмов к рационально спроектированным белковым комплексам» . Биохимическая фармакология . 120 : 1–14. дои : 10.1016/j.bcp.2016.05.001 . ПМК 5079805 . ПМИД 27157411 .
- ↑ Перейти обратно: Перейти обратно: а б с Плоткин С., Оренштейн В.А., Оффит П.А., ред. (2018). «Технологии создания новых вакцин». Вакцины Плоткина (7-е изд.). Филадельфия, Пенсильвания: Эльзевир. ISBN 978-0-323-39302-7 . OCLC 989157433 .
- ^ Сандерс Б., Колдейк М., Шуйтемейкер Х. (2015). «Инактивированные вирусные вакцины». Анализ вакцин: стратегии, принципы и контроль . стр. 45–80. дои : 10.1007/978-3-662-45024-6_2 . ISBN 978-3-662-45023-9 . ПМЦ 7189890 . S2CID 81212732 .
- ^ Хотез, Питер Дж.; Боттацци, Мария Елена (27 января 2022 г.). «Цельноинактивированные вирусные и белковые вакцины против COVID-19» . Ежегодный обзор медицины . 73 (1): 55–64. doi : 10.1146/annurev-med-042420-113212 . ISSN 0066-4219 . PMID 34637324 . S2CID 238747462 .
- ^ Чен Дж, Ван Дж, Чжан Дж, Ли Х (2021). «Достижения в разработке и применении вакцин против гриппа» . Границы в иммунологии . 12 : 711997. дои : 10.3389/fimmu.2021.711997 . ПМЦ 8313855 . ПМИД 34326849 .
- ^ Национальный консультативный комитет по иммунизации (NACI) (май 2018 г.). Обзор литературы NACI по сравнительной эффективности и иммуногенности субъединичных и сплит-инактивированных вакцин против гриппа у взрослых в возрасте 65 лет и старше . ISBN 9780660264387 . Кат.: HP40-213/2018E-PDF; Публикация: 180039.
{{cite book}}
:|website=
игнорируется ( помогите ) - ^ Гаффар А., Хакки Т. «Иммунизация» . Иммунология . Попечительский совет Университета Южной Каролины. Архивировано из оригинала 26 февраля 2014 года . Проверено 10 марта 2009 г.
- ↑ Перейти обратно: Перейти обратно: а б Клем А.С. (январь 2011 г.). «Основы вакцинной иммунологии» . Журнал глобальных инфекционных заболеваний . 3 (1): 73–78. дои : 10.4103/0974-777X.77299 . ПМК 3068582 . ПМИД 21572612 .
- ^ «Инактивированные цельноклеточные (с убитым антигеном) вакцины – Основы безопасности вакцин ВОЗ» . сайт вакцинации-безопасности-training.org . Всемирная организация здравоохранения (ВОЗ) . Проверено 11 ноября 2021 г.