Столько же, сколько притворщик
Квантовые симуляторы позволяют изучать квантовую систему программируемым способом. В данном случае симуляторы представляют собой устройства специального назначения, предназначенные для понимания конкретных физических проблем. [1] [2] [3] Квантовые симуляторы можно противопоставить обычно программируемым «цифровым» квантовым компьютерам , которые способны решать более широкий класс квантовых задач.
Универсальный квантовый симулятор — квантовый компьютер , предложенный Юрием Маниным в 1980 году. [4] и Ричард Фейнман в 1982 году. [5]
Квантовую систему из многих частиц можно смоделировать с помощью квантового компьютера, используя количество квантовых битов, аналогичное количеству частиц в исходной системе. [5] Это было распространено на гораздо более широкие классы квантовых систем. [6] [7] [8] [9]
Квантовые симуляторы реализованы на ряде экспериментальных платформ, включая системы ультрахолодных квантовых газов , полярных молекул, захваченных ионов, фотонных систем, квантовых точек и сверхпроводящих схем. [10]
Решение задач по физике [ править ]
Многие важные проблемы физики, особенно физика низких температур и физика многих тел , остаются плохо изученными, поскольку лежащая в их основе квантовая механика чрезвычайно сложна. Обычные компьютеры, включая суперкомпьютеры, не подходят для моделирования квантовых систем, содержащих всего лишь 30 частиц, поскольку размерность гильбертова пространства растет экспоненциально с увеличением числа частиц. [11] Для понимания и рационального проектирования материалов, свойства которых, как полагают, зависят от коллективного квантового поведения сотен частиц, необходимы более совершенные вычислительные инструменты. [2] [3] Квантовые симуляторы предоставляют альтернативный путь к пониманию свойств этих систем. Эти симуляторы создают чистую реализацию конкретных интересующих систем, что позволяет точно реализовать их свойства. Точный контроль и широкие возможности настройки параметров системы позволяют четко выявить влияние различных параметров.
Квантовые симуляторы могут решать проблемы, которые трудно смоделировать на классических компьютерах, поскольку они напрямую используют квантовые свойства реальных частиц. В частности, они используют свойство квантовой механики, называемое суперпозицией , при котором квантовая частица находится в двух различных состояниях одновременно, например, в выравнивании и антивыравнивании с внешним магнитным полем. Важно отметить, что симуляторы также используют второе квантовое свойство, называемое запутанностью , позволяющее коррелировать поведение даже физически хорошо разделенных частиц. [2] [3] [12]
Недавно квантовые симуляторы стали использовать для получения кристаллов времени. [13] [14] и квантово-спиновые жидкости . [15] [16]
ионов захваченных Симуляторы
Система на основе ионных ловушек представляет собой идеальную среду для моделирования взаимодействий в квантовых спиновых моделях. [17] Симулятор захваченных ионов , созданный командой, в которую входит NIST, может проектировать и контролировать взаимодействия между сотнями квантовых битов (кубитов). [18] Предыдущие попытки не смогли выйти за пределы 30 квантовых битов. Возможности этого симулятора в 10 раз больше, чем у предыдущих устройств. Он прошел серию важных контрольных тестов, которые указывают на способность решать проблемы материаловедения, которые невозможно смоделировать на обычных компьютерах.
Симулятор захваченных ионов состоит из крошечного одноплоскостного кристалла сотен ионов бериллия диаметром менее 1 миллиметра, парящего внутри устройства, называемого ловушкой Пеннинга . Самый внешний электрон каждого иона действует как крошечный квантовый магнит и используется как кубит, квантовый эквивалент «1» или «0» в обычном компьютере. В тестовом эксперименте физики использовали лазерные лучи для охлаждения ионов почти до абсолютного нуля. Затем тщательно рассчитанные микроволновые и лазерные импульсы заставляли кубиты взаимодействовать, имитируя квантовое поведение материалов, которые в противном случае было бы очень трудно изучать в лаборатории. Хотя эти две системы внешне могут показаться разными, их поведение математически идентично. Таким образом, симуляторы позволяют исследователям изменять параметры, которые невозможно изменить в естественных твердых телах, такие как расстояние между атомными решетками и геометрия.
Фриденауэр и др. Адиабатически манипулировали двумя спинами, показав их разделение на ферромагнитное и антиферромагнитное состояния. [19] Ким и др. расширили квантовый симулятор захваченных ионов до трех спинов, включив в него глобальные антиферромагнитные взаимодействия Изинга, демонстрирующие фрустрацию и показывающие связь между фрустрацией и запутанностью. [20] и Ислам и др. использовали адиабатическое квантовое моделирование, чтобы продемонстрировать усиление фазового перехода между парамагнитным и ферромагнитным упорядочением по мере увеличения числа спинов с 2 до 9. [21] Баррейро и др. создал цифровой квантовый симулятор взаимодействующих спинов с до 5 захваченными ионами путем соединения с открытым резервуаром [22] иЛаньон и др. продемонстрировал цифровое квантовое моделирование с участием до 6 ионов. [23] Ислам и др. продемонстрировали адиабатическое квантовое моделирование поперечной модели Изинга с переменными (дальнодействующими) взаимодействиями с числом захваченных ионных спинов до 18, демонстрируя контроль уровня спиновой фрустрации путем регулирования диапазона антиферромагнитного взаимодействия. [24] Бриттон и др. из НИСТ экспериментально проверил взаимодействия Изинга в системе из сотен кубитов для изучения квантового магнетизма. [18] Пагано и др. сообщили о новой криогенной системе захвата ионов, предназначенной для длительного хранения больших ионных цепочек, демонстрирующей когерентные одно- и двухкубитные операции для цепочек, содержащих до 44 ионов. [25] Джоши и др. исследовали квантовую динамику 51 индивидуально контролируемого иона, реализовав дальнодействующую взаимодействующую спиновую цепочку. [26]
атома ультрахолодного Симуляторы
Многие эксперименты с ультрахолодными атомами являются примерами квантовых симуляторов. К ним относятся эксперименты по изучению бозонов или фермионов в оптических решетках , унитарного ферми-газа, ридберговских атомов массивов в оптических пинцетах . Общей нитью этих экспериментов является возможность реализации общих гамильтонианов, таких как гамильтониан Хаббарда или гамильтониан Изинга поперечного поля . Основные цели этих экспериментов включают выявление низкотемпературных фаз или отслеживание неравновесной динамики для различных моделей - проблемы, которые теоретически и численно неразрешимы. [27] [28] Другие эксперименты реализовали модели конденсированного состояния в режимах, которые трудно или невозможно реализовать с помощью обычных материалов, таких как модель Холдейна и модель Харпера-Хофштадтера . [29] [30] [31] [32] [33]
Сверхпроводящие кубиты [ править ]
Квантовые симуляторы, использующие сверхпроводящие кубиты, делятся на две основные категории. Во-первых, так называемые квантовые отжигатели определяют основные состояния некоторых гамильтонианов после адиабатического нарастания. Этот подход иногда называют адиабатическим квантовым вычислением . Во-вторых, многие системы эмулируют определенные гамильтонианы и изучают свойства их основного состояния, квантовые фазовые переходы или динамику времени. [34] Несколько важных недавних результатов включают реализацию изолятора Мотта в диссипативной системе Бозе-Хаббарда и исследование фазовых переходов в решетках сверхпроводящих резонаторов, связанных с кубитами. [35] [36]
См. также [ править ]
Ссылки [ править ]
- ^ Джонсон, Томи Х.; Кларк, Стивен Р.; Якш, Дитер (2014). «Что такое квантовый симулятор?». Квантовые технологии EPJ . 1 (10). arXiv : 1405.2831 . дои : 10.1140/epjqt10 . S2CID 120250321 .
- ↑ Перейти обратно: Перейти обратно: а б с В этой статье использованы общедоступные материалы из Майкл Э. Ньюман. Физики NIST протестировали квантовый симулятор с сотнями кубитов . Национальный институт стандартов и технологий . Проверено 22 февраля 2013 г.
- ↑ Перейти обратно: Перейти обратно: а б с Бриттон, Джозеф В.; Сойер, Брайан С.; Кейт, Адам С.; Ван, К.-К. Джозеф; Фририкс, Джеймс К.; Уйс, Герман; Берчук, Майкл Дж.; Боллинджер, Джон Дж. (2012). «Спроектированные двумерные взаимодействия Изинга в квантовом симуляторе захваченных ионов с сотнями спинов» (PDF) . Природа . 484 (7395): 489–92. arXiv : 1204.5789 . Бибкод : 2012Natur.484..489B . дои : 10.1038/nature10981 . ПМИД 22538611 . S2CID 4370334 . Примечание. Эта рукопись является вкладом Национального института стандартов и технологий США и не защищена авторскими правами США.
- ^ Манин, Ю. И. (1980). и Вычислимое невычислимое . Сов.Радио. стр. 13–15. Архивировано из оригинала 10 мая 2013 г. Проверено 4 марта 2013 г.
- ↑ Перейти обратно: Перейти обратно: а б Фейнман, Ричард (1982). «Моделирование физики с помощью компьютеров». Международный журнал теоретической физики . 21 (6–7): 467–488. Бибкод : 1982IJTP...21..467F . CiteSeerX 10.1.1.45.9310 . дои : 10.1007/BF02650179 . S2CID 124545445 .
- ^ Дорит Ахаронов; Амнон Та-Шма (2003). «Генерация адиабатического квантового состояния и статистическое нулевое знание». arXiv : Quant-ph/0301023 .
- ^ Берри, Доминик В.; Грэм Ахокас; Ричард Клив; Сандерс, Барри К. (2007). «Эффективные квантовые алгоритмы моделирования разреженных гамильтонианов». Связь в математической физике . 270 (2): 359–371. arXiv : Quant-ph/0508139 . Бибкод : 2007CMaPh.270..359B . дои : 10.1007/s00220-006-0150-x . S2CID 37923044 .
- ^ Чайлдс, Эндрю М. (2010). «О взаимосвязи между квантовым блужданием в непрерывном и дискретном времени». Связь в математической физике . 294 (2): 581–603. arXiv : 0810.0312 . Бибкод : 2010CMaPh.294..581C . дои : 10.1007/s00220-009-0930-1 . S2CID 14801066 .
- ^ Клиш, М.; Бартель, Т.; Гоголин, С.; Касторияно, М.; Эйсерт, Дж. (12 сентября 2011 г.). «Диссипативная квантовая теорема Чёрча-Тьюринга». Письма о физических отзывах . 107 (12): 120501. arXiv : 1105.3986 . Бибкод : 2011PhRvL.107l0501K . doi : 10.1103/PhysRevLett.107.120501 . ПМИД 22026760 . S2CID 11322270 .
- ^ Понимание физики природы - квантовое моделирование . Nature.com. Апрель 2012.
- ^ Ллойд, С. (1996). «Универсальные квантовые симуляторы». Наука . 273 (5278): 1073–8. Бибкод : 1996Sci...273.1073L . дои : 10.1126/science.273.5278.1073 . ПМИД 8688088 . S2CID 43496899 .
- ^ Сирак, Дж. Игнасио; Золлер, Питер (2012). «Цели и возможности квантового моделирования» (PDF) . Физика природы . 8 (4): 264–266. Бибкод : 2012NatPh...8..264C . дои : 10.1038/nphys2275 . S2CID 109930964 . [ постоянная мертвая ссылка ]
- ^ Киприанидис, А.; Мачадо, Ф.; Моронг, В.; Беккер, П.; Коллинз, Канзас; В противном случае, ДВ; Фэн, Л.; Хесс, П.В.; Наяк, К.; Пагано, Дж.; Яо, Нью-Йорк (11 июня 2021 г.). «Наблюдение дотеплового кристалла дискретного времени» . Наука . 372 (6547): 1192–1196. arXiv : 2102.01695 . Бибкод : 2021Sci...372.1192K . дои : 10.1126/science.abg8102 . ISSN 0036-8075 . ПМИД 34112691 . S2CID 231786633 .
- ^ С, Роберт; эр; Беркли, Калифорнийский университет (10 ноября 2021 г.). «Создание кристаллов времени с использованием новых архитектур квантовых вычислений» . СайТехДейли . Проверено 27 декабря 2021 г.
- ^ Семегини, Г.; Левин, Х.; Кислинг, А.; Эбади, С.; Ван, ТТ; Блювштейн, Д.; Верресен, Р.; Пихлер, Х.; Калиновский, М.; Самайдар, Р.; Омран, А. (3 декабря 2021 г.). «Исследование топологических спиновых жидкостей на программируемом квантовом симуляторе» . Наука . 374 (6572): 1242–1247. arXiv : 2104.04119 . Бибкод : 2021Sci...374.1242S . дои : 10.1126/science.abi8794 . ПМИД 34855494 . S2CID 233204440 .
- ^ Вуд, Чарли (2 декабря 2021 г.). «Квантовые симуляторы создают совершенно новую фазу материи» . Журнал Кванта . Проверено 11 марта 2022 г.
- ^ Монро, К; и др. (2021). «Программируемое квантовое моделирование спиновых систем с захваченными ионами». Преподобный Мод. Физ . 93 (4): 025001. arXiv : 1912.07845 . Бибкод : 2021РвМП...93б5001М . doi : 10.1103/RevModPhys.93.025001 . ISSN 0034-6861 . S2CID 209386771 .
- ↑ Перейти обратно: Перейти обратно: а б Бриттон, Джозеф В.; Сойер, Брайан С.; Кейт, Адам С.; Ван, К.-К. Джозеф; Фририкс, Джеймс К.; Уйс, Герман; Берчук, Майкл Дж.; Боллинджер, Джон Дж. (25 апреля 2012 г.). «Спроектированные двумерные взаимодействия Изинга в квантовом симуляторе захваченных ионов с сотнями спинов». Природа . 484 (7395): 489–492. arXiv : 1204.5789 . Бибкод : 2012Natur.484..489B . дои : 10.1038/nature10981 . ПМИД 22538611 . S2CID 4370334 .
- ^ Фриденауэр, А.; Шмитц, Х.; Глюкерт, Дж. Т.; Поррас, Д.; Шаец, Т. (27 июля 2008 г.). «Моделирование квантового магнита с захваченными ионами» . Физика природы . 4 (10): 757–761. Бибкод : 2008NatPh...4..757F . дои : 10.1038/nphys1032 .
- ^ Ким, К.; Чанг, М.-С.; Коренблит, С.; Ислам, Р.; Эдвардс, EE ; Фририкс, Дж. К.; Лин, Г.-Д.; Дуань, Л.-М.; Монро, К. (июнь 2010 г.). «Квантовое моделирование расстроенных спинов Изинга с захваченными ионами». Природа . 465 (7298): 590–593. Бибкод : 2010Natur.465..590K . дои : 10.1038/nature09071 . ПМИД 20520708 . S2CID 2479652 .
- ^ Ислам, Р.; Эдвардс, EE ; Ким, К.; Коренблит, С.; Нох, К.; Кармайкл, Х.; Лин, Г.-Д.; Дуань, Л.-М.; Джозеф Ван, CC; Фририкс, Дж. К.; Монро, К. (5 июля 2011 г.). «Начало квантового фазового перехода с помощью квантового симулятора захваченных ионов». Природные коммуникации . 2 (1): 377. arXiv : 1103.2400 . Бибкод : 2011NatCo...2..377I . дои : 10.1038/ncomms1374 . ПМИД 21730958 . S2CID 33407 .
- ^ Баррейро, Хулио Т.; Мюллер, Маркус; Шиндлер, Филипп; Нигг, Дэниел; Монц, Томас; Чвалла, Майкл; Генрих, Маркус; Роос, Кристиан Ф.; Золлер, Питер; Блатт, Райнер (23 февраля 2011 г.). «Квантовый симулятор открытой системы с захваченными ионами». Природа . 470 (7335): 486–491. arXiv : 1104.1146 . Бибкод : 2011Natur.470..486B . дои : 10.1038/nature09801 . ПМИД 21350481 . S2CID 4359894 .
- ^ Ланьон, BP; Хемпель, К.; Нигг, Д.; Мюллер, М.; Герритсма, Р.; Зарингер, Ф.; Шиндлер, П.; Баррейро, Джей Ти; Рамбах, М.; Кирхмайр, Г.; Генрих, М.; Золлер, П.; Блатт, Р.; Роос, CF (1 сентября 2011 г.). «Универсальное цифровое квантовое моделирование с захваченными ионами». Наука . 334 (6052): 57–61. arXiv : 1109.1512 . Бибкод : 2011Sci...334...57L . дои : 10.1126/science.1208001 . ПМИД 21885735 . S2CID 206535076 .
- ^ Ислам, Р.; Сенко, К.; Кэмпбелл, туалет; Коренблит, С.; Смит, Дж.; Ли, А.; Эдвардс, EE ; Ван, К.-С.Дж.; Фририкс, Дж. К.; Монро, К. (2 мая 2013 г.). «Появление и разрушение магнетизма с взаимодействиями с переменным диапазоном в квантовом симуляторе». Наука . 340 (6132): 583–587. arXiv : 1210.0142 . Бибкод : 2013Sci...340..583I . дои : 10.1126/science.1232296 . ПМИД 23641112 . S2CID 14692151 .
- ^ Пагано, Дж; Хесс, П.В.; Каплан, Х.Б.; Тан, В.Л.; Ришерм, П; Беккер, П; Киприанидис, А; Чжан, Дж; Биркельбо, Э; Эрнандес, MR; Ву, Ю; Монро, К. (9 октября 2018 г.). «Криогенная система с захваченными ионами для крупномасштабного квантового моделирования». Квантовая наука и технология . 4 (1): 014004. arXiv : 1802.03118 . дои : 10.1088/2058-9565/aae0fe . S2CID 54518534 .
- ^ Джоши, МК; Кранцль, Ф.; Шукерт, А.; Ловас, И.; Майер, К.; Блатт, Р.; Кнап, М.; Роос, CF (13 мая 2022 г.). «Наблюдение возникающей гидродинамики в квантовом магните дальнего действия» . Наука . 6594 (376): 720–724. arXiv : 2107.00033 . Бибкод : 2022Sci...376..720J . дои : 10.1126/science.abk2400 . ПМИД 35549407 . S2CID 235694285 . Проверено 13 мая 2022 г.
- ^ Блох, Иммануэль; Далибар, Жан; Насимбене, Сильвен (2012). «Квантовое моделирование с ультрахолодными квантовыми газами». Физика природы . 8 (4): 267–276. Бибкод : 2012NatPh...8..267B . дои : 10.1038/nphys2259 . S2CID 17023076 .
- ^ Гросс, Кристиан; Блох, Иммануил (8 сентября 2017 г.). «Квантовое моделирование ультрахолодных атомов в оптических решетках» . Природа . 357 (6355): 995–1001. Бибкод : 2017Sci...357..995G . дои : 10.1126/science.aal3837 . ПМИД 28883070 .
- ^ Йотцу, Грегор; Мессер, Майкл; Дебюкуа, Реми; Лебра, Мартин; Улингер, Томас; Грейф, Дэниел; Эсслингер, Тилман (13 ноября 2014 г.). «Экспериментальная реализация топологической модели Холдейна с ультрахолодными фермионами». Природа . 515 (7526): 237–240. arXiv : 1406.7874 . Бибкод : 2014Natur.515..237J . дои : 10.1038/nature13915 . ПМИД 25391960 . S2CID 204898338 .
- ^ Саймон, Джонатан (13 ноября 2014 г.). «Магнитные поля без магнитных полей» . Природа . 515 (7526): 202–203. дои : 10.1038/515202а . ПМИД 25391956 .
- ^ Чжан, Дань-Вэй; Чжу, Янь-Цин; Чжао, YX; Ян, Хуэй; Чжу, Ши-Лян (29 марта 2019 г.). «Топологическая квантовая материя с холодными атомами». Достижения физики . 67 (4): 253–402. arXiv : 1810.09228 . дои : 10.1080/00018732.2019.1594094 . S2CID 91184189 .
- ^ Альберти, Андреа; Робенс, Карстен; Альт, Вольфганг; Брахане, Стефан; Карский, Михал; Рейманн, Рене; Видера, Артур; Мешеде, Дитер (06 мая 2016 г.). «Микроскопия одиночных атомов в оптических решетках сверхразрешения» . Новый журнал физики . 18 (5): 053010. arXiv : 1512.07329 . Бибкод : 2016NJPh...18e3010A . дои : 10.1088/1367-2630/18/5/053010 . ISSN 1367-2630 .
- ^ Робенс, Карстен; Брахане, Стефан; Мешеде, Дитер; Альберти, А. (18 сентября 2016 г.), «Квантовые блуждания с нейтральными атомами: эффекты квантовой интерференции одной и двух частиц» , Лазерная спектроскопия , WORLD SCIENTIFIC, стр. 1–15, arXiv : 1511.03569 , doi : 10.1142/9789813200616_0001 , ISBN 978-981-320-060-9 , S2CID 118452312 , получено 25 мая 2020 г.
- ^ Параоану, GS (4 апреля 2014 г.). «Последний прогресс в квантовом моделировании с использованием сверхпроводящих схем». Журнал физики низких температур . 175 (5–6): 633–654. arXiv : 1402.1388 . Бибкод : 2014JLTP..175..633P . дои : 10.1007/s10909-014-1175-8 . S2CID 119276238 .
- ^ Ма, Жуйчао; Саксберг, Брендан; Оуэнс, Клэй; Люнг, Нельсон; Лу, Яо; Саймон, Джонатан; Шустер, Дэвид И. (6 февраля 2019 г.). «Диссипативно стабилизированный изолятор фотонов Мотта». Природа . 566 (7742): 51–57. arXiv : 1807.11342 . Бибкод : 2019Natur.566...51M . дои : 10.1038/s41586-019-0897-9 . ПМИД 30728523 . S2CID 59606678 .
- ^ Фицпатрик, Маттиас; Сундаресан, Ниреджа М.; Ли, Энди Сай; Кох, Йенс; Хоук, Эндрю А. (10 февраля 2017 г.). «Наблюдение диссипативного фазового перехода в одномерной схемной решетке КЭД». Физический обзор X . 7 (1): 011016. arXiv : 1607.06895 . Бибкод : 2017PhRvX...7a1016F . дои : 10.1103/PhysRevX.7.011016 . S2CID 3550701 .