Jump to content

Квантовая нейронная сеть

Пример модели нейронной сети с прямой связью. Для сети глубокого обучения увеличьте количество скрытых слоев.

Квантовые нейронные сети — это вычислительные модели нейронных сетей , основанные на принципах квантовой механики . Первые идеи квантовых нейронных вычислений были независимо опубликованы в 1995 году Субхашем Как и Роном Крисли. [1] [2] занимается теорией квантового разума , которая утверждает, что квантовые эффекты играют роль в когнитивных функциях. Однако типичные исследования в области квантовых нейронных сетей включают в себя объединение классических моделей искусственных нейронных сетей (которые широко используются в машинном обучении для важной задачи распознавания образов) с преимуществами квантовой информации для разработки более эффективных алгоритмов. [3] [4] [5] Одной из важных мотиваций для этих исследований является сложность обучения классических нейронных сетей, особенно в приложениях с большими данными . Есть надежда, что такие особенности квантовых вычислений , как квантовый параллелизм или эффекты интерференции и запутанности, можно будет использовать в качестве ресурсов. Поскольку технологическая реализация квантового компьютера все еще находится на преждевременной стадии, такие модели квантовых нейронных сетей представляют собой в основном теоретические предложения, ожидающие полной реализации в физических экспериментах.

Большинство квантовых нейронных сетей разрабатываются как сети прямого распространения . Подобно своим классическим аналогам, эта структура принимает входные данные от одного слоя кубитов и передает эти входные данные на другой слой кубитов. Этот уровень кубитов оценивает эту информацию и передает выходные данные на следующий уровень. В конце концов путь ведет к последнему слою кубитов. [6] [7] Слои не обязательно должны быть одинаковой ширины, то есть они не обязательно должны иметь такое же количество кубитов, как слой до или после него. Эта структура обучается тому, какой путь выбрать, аналогично классическим искусственным нейронным сетям . Это обсуждается в нижнем разделе. Квантовые нейронные сети относятся к трем различным категориям: квантовый компьютер с классическими данными, классический компьютер с квантовыми данными и квантовый компьютер с квантовыми данными. [6]

Примеры [ править ]

Исследования квантовых нейронных сетей все еще находятся в зачаточном состоянии, и было выдвинуто множество предложений и идей различного масштаба и математической строгости. них основано на идее замены классических бинарных нейронов или нейронов Мак-Каллоха-Питтса кубитом Большинство из (который можно назвать «куроном»), в результате чего нейронные единицы могут находиться в суперпозиции состояний «активация» и «покой». '.

Квантовый персептрон [ править ]

Многие предложения пытаются найти квантовый эквивалент персептрона, из которого строятся нейронные сети. Проблема в том, что нелинейные функции активации не сразу соответствуют математической структуре квантовой теории, поскольку квантовая эволюция описывается линейными операциями и приводит к вероятностному наблюдению. Идеи по имитации функции активации перцептрона с помощью квантовомеханического формализма возникли в результате специальных измерений. [8] [9] к постулированию нелинейных квантовых операторов (математическая основа, которая оспаривается). [10] [11] Прямая реализация функции активации с использованием схемной модели квантовых вычислений недавно была предложена Шульдом, Синайским и Петруччионе на основе алгоритма оценки квантовой фазы . [12]

Квантовые сети [ править ]

В более широком масштабе исследователи попытались обобщить нейронные сети до квантовых условий. Один из способов создания квантового нейрона — сначала обобщить классические нейроны, а затем обобщить их дальше, чтобы создать унитарные вентили. Взаимодействием между нейронами можно управлять квантово, с помощью унитарных вентилей , или классически, посредством измерения состояний сети. Этот теоретический метод высокого уровня можно применять широко, используя различные типы сетей и различные реализации квантовых нейронов, таких как фотонно реализованные нейроны. [7] [13] и квантовый процессор резервуара (квантовая версия вычислений резервуара ). [14] Большинство алгоритмов обучения следуют классической модели обучения искусственной нейронной сети для изучения функции ввода-вывода данного обучающего набора и используют классические петли обратной связи для обновления параметров квантовой системы до тех пор, пока они не сойдутся к оптимальной конфигурации. Обучение как задача оптимизации параметров также рассматривалась в адиабатических моделях квантовых вычислений. [15]

Квантовые нейронные сети могут применяться для разработки алгоритмов: имея кубиты с настраиваемыми взаимными взаимодействиями, можно попытаться изучить взаимодействия, следуя классическому правилу обратного распространения ошибки , из обучающего набора желаемых отношений ввода-вывода, которые считаются поведением желаемого выходного алгоритма. [16] [17] Таким образом, квантовая сеть «изучает» алгоритм.

Квантовая ассоциативная память [ править ]

Первый алгоритм квантовой ассоциативной памяти был представлен Дэном Вентурой и Тони Мартинесом в 1999 году. [18] Авторы не пытаются перевести структуру моделей искусственных нейронных сетей в квантовую теорию, а предлагают алгоритм схемотехнического квантового компьютера , моделирующего ассоциативную память . Состояния памяти (в нейронных сетях Хопфилда, сохраненные в весах нейронных связей) записываются в суперпозицию, и алгоритм квантового поиска, подобный Гроверу, извлекает состояние памяти, наиболее близкое к заданному входному сигналу. По сути, это не полностью адресуемая по содержанию память, поскольку можно извлечь только неполные шаблоны.

Первая по-настоящему адресуемая по содержанию квантовая память, которая может извлекать шаблоны даже из поврежденных входных данных, была предложена Карло А. Тругенбергером. [19] [20] [21] Обе памяти могут хранить экспоненциальное (в единицах n кубитов) количество шаблонов, но могут использоваться только один раз из-за теоремы о запрете клонирования и их уничтожения при измерении.

Тругенбергер, [20] тем не менее, он показал, что его проабабилистическая модель квантовой ассоциативной памяти может быть эффективно реализована и многократно использована для любого полиномиального числа хранимых шаблонов, что является большим преимуществом по сравнению с классической ассоциативной памятью.

вдохновленные квантовой теорией нейронные сети , Классические

Значительный интерес был проявлен к «квантовой» модели, которая использует идеи квантовой теории для реализации нейронной сети, основанной на нечеткой логике . [22]

Обучение [ править ]

Квантовые нейронные сети теоретически можно обучать аналогично обучению классических/искусственных нейронных сетей. Ключевое отличие заключается во взаимодействии между слоями нейронных сетей. В классических нейронных сетях в конце заданной операции текущий перцептрон копирует свои выходные данные на следующий уровень перцептронов в сети. Однако в квантовой нейронной сети, где каждый перцептрон является кубитом, это нарушит теорему о запрете клонирования . [6] [23] Предлагаемое обобщенное решение этой проблемы состоит в замене классического метода разветвления произвольным унитарным методом, который распределяет, но не копирует выходные данные одного кубита на следующий слой кубитов. Используя этот разветвленный унитарный ( ) с кубитом фиктивного состояния в известном состоянии (Пример. в вычислительной основе ), также известный как вспомогательный бит , информация из кубита может быть передана на следующий уровень кубитов. [7] Этот процесс соответствует требованию обратимости квантовой операции . [7] [24]

Используя эту квантовую сеть прямой связи, можно эффективно выполнять и обучать глубокие нейронные сети. Глубокая нейронная сеть — это, по сути, сеть со многими скрытыми слоями, как показано в примере модели нейронной сети выше. Поскольку обсуждаемая квантовая нейронная сеть использует разветвленные унитарные операторы, и каждый оператор действует только на соответствующий вход, в любой момент времени используются только два слоя. [6] Другими словами, ни один унитарный оператор не действует на всю сеть в любой момент времени, а это означает, что количество кубитов, необходимых для данного шага, зависит от количества входов в данном слое. Поскольку квантовые компьютеры печально известны своей способностью выполнять несколько итераций за короткий период времени, эффективность квантовой нейронной сети зависит исключительно от количества кубитов в любом заданном слое, а не от глубины сети. [24]

Функции стоимости [ править ]

Для определения эффективности нейронной сети используется функция стоимости, которая по существу измеряет близость выхода сети к ожидаемому или желаемому результату. В классической нейронной сети веса ( ) и предубеждения ( ) на каждом шаге определяют результат функции стоимости . [6] При обучении классической нейронной сети веса и смещения корректируются после каждой итерации по уравнению 1 ниже, где желаемый результат и — фактический выпуск, функция стоимости оптимизируется, когда = 0. Для квантовой нейронной сети функция стоимости определяется путем измерения точности конечного состояния ( ) с желаемым исходным состоянием ( ), как показано в уравнении 2 ниже. В этом случае унитарные операторы корректируются после каждой итерации, а функция стоимости оптимизируется при C = 1. [6]

Equation 1 
Equation 2 

Бесплодные плато [ править ]

Проблема Бесплодного плато становится все более серьезной по мере расширения VQA.
Бесплодные плато VQA [25] На рисунке показано, что проблема Бесплодного плато становится все более серьезной по мере расширения VQA.

Градиентный спуск широко используется и успешно применяется в классических алгоритмах. Однако, хотя упрощенная структура очень похожа на нейронные сети, такие как CNN, QNN работают намного хуже.

Поскольку квантовое пространство экспоненциально расширяется по мере роста q-бита, наблюдения будут концентрироваться вокруг среднего значения с экспоненциальной скоростью, где также будут иметь экспоненциально малые градиенты. [26]

Эта ситуация известна как бесплодные плато, поскольку большинство начальных параметров захватываются «плато» с почти нулевым градиентом, что приближает случайное блуждание. [26] а не градиентный спуск. Это делает модель необучаемой.

На самом деле не только QNN, но и почти все более глубокие алгоритмы VQA имеют эту проблему. В нынешнюю эпоху NISQ это одна из проблем, которую необходимо решить, если необходимо найти больше приложений для различных алгоритмов VQA, включая QNN.

См. также [ править ]

Ссылки [ править ]

  1. ^ Как, С. (1995). «О квантовых нейронных вычислениях». Достижения в области визуализации и электронной физики . 94 : 259–313. дои : 10.1016/S1076-5670(08)70147-2 . ISBN  9780120147366 .
  2. ^ Крисли, Р. (1995). «Квантовое обучение». Ин Пюлкканен, П.; Пюлккё, П. (ред.). Новые направления в когнитивной науке: материалы международного симпозиума, Саариселька, 4–9 августа 1995 г., Лапландия, Финляндия . Хельсинки: Финская ассоциация искусственного интеллекта. стр. 77–89. ISBN  951-22-2645-6 .
  3. ^ да Силва, Аденилтон Дж.; Людермир, Тереза ​​Б.; де Оливейра, Уилсон Р. (2016). «Квантовый персептрон над полем и выбор архитектуры нейронной сети в квантовом компьютере». Нейронные сети . 76 : 55–64. arXiv : 1602.00709 . Бибкод : 2016arXiv160200709D . дои : 10.1016/j.neunet.2016.01.002 . ПМИД   26878722 . S2CID   15381014 .
  4. ^ Панелла, Массимо; Мартинелли, Джузеппе (2011). «Нейронные сети с квантовой архитектурой и квантовым обучением». Международный журнал теории цепей и приложений . 39 : 61–77. дои : 10.1002/cta.619 . S2CID   3791858 .
  5. ^ Шульд, М.; Синайский И.; Петруччионе, Ф. (2014). «В поисках квантовой нейронной сети». Квантовая обработка информации . 13 (11): 2567–2586. arXiv : 1408.7005 . Бибкод : 2014QuIP...13.2567S . дои : 10.1007/s11128-014-0809-8 . S2CID   37238534 .
  6. Перейти обратно: Перейти обратно: а б с д и ж Пиво, Керстин; Бондаренко Дмитрий; Фаррелли, Терри; Осборн, Тобиас Дж.; Зальцманн, Роберт; Шайерманн, Дэниел; Вольф, Рамона (10 февраля 2020 г.). «Обучение глубоких квантовых нейронных сетей» . Природные коммуникации . 11 (1): 808. arXiv : 1902.10445 . Бибкод : 2020NatCo..11..808B . дои : 10.1038/s41467-020-14454-2 . ISSN   2041-1723 . ПМК   7010779 . ПМИД   32041956 .
  7. Перейти обратно: Перейти обратно: а б с д Ван, Квок-Хо; Дальстен, Оскар; Кристьянссон, Хлер; Гарднер, Роберт; Ким, Мёншик (2017). «Квантовое обобщение нейронных сетей прямого распространения». npj Квантовая информация . 3 : 36. arXiv : 1612.01045 . Бибкод : 2017npjQI...3...36W . дои : 10.1038/s41534-017-0032-4 . S2CID   51685660 .
  8. ^ Перус, М. (2000). «Нейронные сети как основа квантовой ассоциативной памяти». Мир нейронных сетей . 10 (6): 1001. CiteSeerX   10.1.1.106.4583 .
  9. ^ Зак, М.; Уильямс, CP (1998). «Квантовые нейронные сети». Международный журнал теоретической физики . 37 (2): 651–684. дои : 10.1023/А:1026656110699 . S2CID   55783801 .
  10. ^ Гупта, Санджай; Зия, РКП (2001). «Квантовые нейронные сети». Журнал компьютерных и системных наук . 63 (3): 355–383. arXiv : Quant-ph/0201144 . дои : 10.1006/jcss.2001.1769 . S2CID   206569020 .
  11. ^ Фабер, Дж.; Джиральди, Джорджия (2002). «Квантовые модели искусственной нейронной сети» .
  12. ^ Шульд, М.; Синайский И.; Петруччионе, Ф. (2014). «Моделирование перцептрона на квантовом компьютере». Буквы по физике А. 379 (7): 660–663. arXiv : 1412.3635 . дои : 10.1016/j.physleta.2014.11.061 . S2CID   14288234 .
  13. ^ Нарайанан, А.; Меннер, Т. (2000). «Архитектуры и компоненты квантовых искусственных нейронных сетей». Информационные науки . 128 (3–4): 231–255. дои : 10.1016/S0020-0255(00)00055-4 . S2CID   10901562 .
  14. ^ Гош, С.; Опала, А.; Матушевский, М.; Патерек, П.; Лью, ТКП (2019). «Квантовая обработка резервуаров». npj Квантовая информация . 5:35 . arXiv : 1811.10335 . Бибкод : 2019npjQI...5...35G . дои : 10.1038/s41534-019-0149-8 . S2CID   119197635 .
  15. ^ Невен, Х.; и др. (2008). «Обучение двоичного классификатора с помощью квантово-адиабатического алгоритма». arXiv : 0811.0416 [ квант-ph ].
  16. ^ Банг, Дж.; и др. (2014). «Стратегия разработки квантовых алгоритмов с помощью машинного обучения». Новый журнал физики . 16 (7): 073017. arXiv : 1301.1132 . Бибкод : 2014NJPh...16g3017B . дои : 10.1088/1367-2630/16/7/073017 . S2CID   55377982 .
  17. ^ Берман, ЕС; Стек, Дж. Э.; Кумар, П.; Уолш, Калифорния (2008). «Разработка квантового алгоритма с использованием динамического обучения». Квантовая информация и вычисления . 8 (1–2): 12–29. arXiv : 0808.1558 . дои : 10.26421/QIC8.1-2-2 . S2CID   18587557 .
  18. ^ Вентура, Д.; Мартинес, Т. (1999). «Квантовая ассоциативная память, основанная на алгоритме Гровера» (PDF) . Искусственные нейронные сети и генетические алгоритмы . стр. 22–27. дои : 10.1007/978-3-7091-6384-9_5 . ISBN  978-3-211-83364-3 . S2CID   3258510 . Архивировано из оригинала (PDF) 11 сентября 2017 г.
  19. ^ Тругенбергер, Калифорния (18 июля 2001 г.). «Вероятностные квантовые воспоминания» . Письма о физических отзывах . 87 (6): 067901. arXiv : quant-ph/0012100 . Бибкод : 2001PhRvL..87f7901T . doi : 10.1103/physrevlett.87.067901 . ISSN   0031-9007 . ПМИД   11497863 . S2CID   23325931 .
  20. Перейти обратно: Перейти обратно: а б Тругенбергер, Карло А. (2002). «Квантовое распознавание образов». Квантовая обработка информации . 1 (6): 471–493. дои : 10.1023/А:1024022632303 . S2CID   1928001 .
  21. ^ Тругенбергер, Калифорния (19 декабря 2002 г.). «Фазовые переходы в квантовом распознавании образов» . Письма о физических отзывах . 89 (27): 277903. arXiv : quant-ph/0204115 . Бибкод : 2002PhRvL..89A7903T . дои : 10.1103/physrevlett.89.277903 . ISSN   0031-9007 . ПМИД   12513243 . S2CID   33065081 .
  22. ^ Пурушотаман, Г.; Караяннис, Н. (1997). «Квантовые нейронные сети (QNN): по своей сути нечеткие нейронные сети прямого распространения» (PDF) . Транзакции IEEE в нейронных сетях . 8 (3): 679–93. дои : 10.1109/72.572106 . ПМИД   18255670 . S2CID   1634670 . Архивировано из оригинала (PDF) 11 сентября 2017 г.
  23. ^ Нильсен, Майкл А; Чуанг, Исаак Л. (2010). Квантовые вычисления и квантовая информация . Кембридж; Нью-Йорк: Издательство Кембриджского университета. ISBN  978-1-107-00217-3 . OCLC   665137861 .
  24. Перейти обратно: Перейти обратно: а б Фейнман, Ричард П. (1 июня 1986 г.). «Квантово-механические компьютеры» . Основы физики . 16 (6): 507–531. Бибкод : 1986FoPh...16..507F . дои : 10.1007/BF01886518 . ISSN   1572-9516 . S2CID   122076550 .
  25. ^ Ван, Самсон; Фонтана, Генри; Сересо, М.; Шарма, Кунал; Соне, Акира; Чинчио, Лукаш; Коулз, Патрик Дж. (29 ноября 2021 г.). «Вызванные шумом бесплодные плато в вариационных квантовых алгоритмах» . Природные коммуникации . 12 (1): 6961.arXiv : 2007.14384 . Бибкод : 2021NatCo..12.6961W . дои : 10.1038/ s41467-021-27045-6 ISSN   2041-1723 . ПМЦ   8630047 . ПМИД   34845216 .
  26. Перейти обратно: Перейти обратно: а б МакКлин, Джаррод Р.; Бойшо, Серхио; Смелянский Вадим Н.; Бэббуш, Райан; Невен, Хартмут (16 ноября 2018 г.). «Бесплодные плато в ландшафтах обучения квантовых нейронных сетей» . Природные коммуникации . 9 (1): 4812. arXiv : 1803.11173 . Бибкод : 2018NatCo...9.4812M . дои : 10.1038/s41467-018-07090-4 . ISSN   2041-1723 . ПМК   6240101 . ПМИД   30446662 .

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b1e28f6a71535967c6aaeb57709c758d__1716627060
URL1:https://arc.ask3.ru/arc/aa/b1/8d/b1e28f6a71535967c6aaeb57709c758d.html
Заголовок, (Title) документа по адресу, URL1:
Quantum neural network - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)