Размерность (векторное пространство)

Из Википедии, бесплатной энциклопедии
(Перенаправлено с Конечномерное )
Схема размеров 1, 2, 3 и 4.

В математике размерность его векторного пространства V — это мощность е. количество векторов) базиса V над (т . базовым полем . [1] [2] Иногда ее называют размерностью Гамеля (в честь Георга Гамеля ) или алгебраической размерностью , чтобы отличить ее от других типов размерности .

Для каждого векторного пространства существует базис, [а] и все базы векторного пространства имеют одинаковую мощность; [б] в результате размерность векторного пространства определена однозначно. Мы говорим является конечномерный, если размерность конечно , и бесконечномерен, если его размерность бесконечна .

Размерность векторного пространства над полем можно записать как или как читать «размерность над ". Когда можно вывести из контекста, обычно пишется.

Примеры [ править ]

Векторное пространство имеет

в качестве стандартной основы и, следовательно, В более общем смысле, и даже в более общем плане, для любой сферы

Комплексные числа являются одновременно реальным и комплексным векторным пространством; у нас есть и Таким образом, размерность зависит от базового поля.

Единственное векторное пространство с размерностью является векторное пространство, состоящее только из своего нулевого элемента.

Свойства [ править ]

Если является линейным подпространством затем

Чтобы показать, что два конечномерных векторных пространства равны, можно использовать следующий критерий: если является конечномерным векторным пространством и является линейным подпространством с затем

Космос имеет стандартную основу где это -й столбец соответствующей единичной матрицы . Поэтому, имеет размерность

Любые два конечномерных векторных пространства над одинаковой размерности изоморфны . Любое биективное отображение между их базами можно однозначно расширить до биективного линейного отображения между векторными пространствами. Если некоторое множество, векторное пространство с размерностью над можно построить следующим образом: возьмем множество всех функций такой, что для всех, кроме конечного числа в Эти функции можно добавлять и умножать с элементами чтобы получить желаемое -векторное пространство.

Важный результат о размерностях даёт теорема о ранге-нулевой для линейных отображений .

Если является расширением поля , тогда в частности, является векторным пространством над Кроме того, каждый -векторное пространство также является -векторное пространство. Размеры связаны формулой

В частности, каждое комплексное векторное пространство размерности это реальное векторное пространство размерности

Некоторые формулы связывают размерность векторного пространства с мощностью базового поля и мощностью самого пространства. Если это векторное пространство над полем и если размерность обозначается затем:

Если тусклый конечно тогда
Если тусклый тогда бесконечно

Обобщения [ править ]

Векторное пространство можно рассматривать как частный случай матроида , и в последнем имеется четко определенное понятие размерности. Длина модуля и ранг абелевой группы обладают несколькими свойствами, аналогичными размерности векторных пространств.

Размерность Крулля коммутативного кольца , названная в честь Вольфганга Крулля (1899–1971), определяется как максимальное число строгих включений в возрастающую цепочку простых идеалов в кольце.

След [ править ]

В качестве альтернативы размерность векторного пространства можно охарактеризовать как след тождественного оператора . Например, Это определение кажется круговым, но оно допускает полезные обобщения.

Во-первых, он позволяет определить понятие размерности, когда у него есть след, но нет естественного чувства основы. Например, можно иметь алгебру с картами (включение скаляров, называемых единицей ) и отображение (соответствует следу, называемому счетчиком ). Сочинение является скаляром (будучи линейным оператором в одномерном пространстве), соответствует «следу идентичности» и дает понятие размерности абстрактной алгебры. На практике в биалгебрах это отображение должно быть тождественным, которое можно получить нормализацией счетчика путем деления на размерность ( ), поэтому в этих случаях нормировочная константа соответствует размерности.

В качестве альтернативы можно найти след операторов в бесконечномерном пространстве; в этом случае определяется (конечный) след, даже если (конечного) измерения не существует, и это дает понятие «размерности оператора». Они подпадают под категорию « операторов следового класса » в гильбертовом пространстве или, в более общем смысле, ядерных операторов в банаховом пространстве .

Более тонкое обобщение состоит в том, чтобы рассматривать след семейства операторов как своего рода «искривленное» измерение. Это особенно важно в теории представлений , где характер представления является следом представления, следовательно, скалярной функцией на группе. чье значение для личности - размерность представления, поскольку представление отправляет идентификатор в группе в идентификационную матрицу: Другие ценности персонажа можно рассматривать как «искаженные» измерения и находить аналоги или обобщения утверждений о измерениях на утверждения о символах или представлениях. Сложный пример этого можно найти в теории чудовищного самогона : -инвариант — это градуированная размерность бесконечномерного градуированного представления группы монстров , а замена измерения символом дает ряд Маккея-Томпсона для каждого элемента группы монстров. [3]

См. также [ править ]

Примечания [ править ]

Ссылки [ править ]

  1. ^ Ицков, Михаил (2009). Тензорная алгебра и тензорный анализ для инженеров: с приложениями к механике сплошной среды . Спрингер. п. 4. ISBN  978-3-540-93906-1 .
  2. ^ Экслер (2015) с. 44, §2.36
  3. ^ Гэннон, Терри (2006), Самогон за пределами монстра: мост, соединяющий алгебру, модульные формы и физику , Cambridge University Press, ISBN  0-521-83531-3

Источники [ править ]

Внешние ссылки [ править ]