Jump to content

Вычислительная гидродинамика

Вычислительная гидродинамика ( CFD ) — это раздел гидромеханики , который использует численный анализ и структуры данных для анализа и решения задач, связанных с потоками жидкости . Компьютеры используются для выполнения расчетов, необходимых для моделирования набегающего потока жидкости и взаимодействия жидкости ( жидкостей и газов ) с поверхностями, определяемыми граничными условиями . С помощью высокоскоростных суперкомпьютеров можно достичь лучших решений, которые часто требуются для решения самых больших и сложных проблем. Продолжающиеся исследования создают программное обеспечение, которое повышает точность и скорость сложных сценариев моделирования, таких как трансзвуковые или турбулентные потоки. Первоначальная проверка такого программного обеспечения обычно выполняется с использованием экспериментального оборудования, такого как аэродинамические трубы . Кроме того, для сравнения может быть использован ранее проведенный аналитический или эмпирический анализ конкретной проблемы. Окончательная проверка часто выполняется с использованием полномасштабных испытаний, например летных испытаний .

CFD применяется для решения широкого спектра исследовательских и инженерных задач во многих областях исследований и отраслей, включая аэродинамику и аэрокосмический анализ, гиперзвук , моделирование погоды , естественные науки и экологическую инженерию , проектирование и анализ промышленных систем, биологическую инженерию , потоки жидкости и тепло. передача , двигателя и сгорания анализ , а также визуальные эффекты для фильмов и игр.

Предыстория и история

[ редактировать ]
Компьютерное моделирование высокоскоростного потока воздуха вокруг космического корабля "Шаттл" во время входа в атмосферу.
Моделирование ГПВРД Hyper-X в работе на Маха . скорости -7

Фундаментальной основой почти всех задач CFD являются уравнения Навье-Стокса , которые определяют множество однофазных (газ или жидкость, но не то и другое) потоков жидкости. Эти уравнения можно упростить, удалив члены, описывающие вязкие действия, и получить уравнения Эйлера . Дальнейшее упрощение за счет удаления членов, описывающих завихренность, дает полные потенциальные уравнения . Наконец, для небольших возмущений в дозвуковых и сверхзвуковых потоках (не трансзвуковых или гиперзвуковых ) эти уравнения можно линеаризовать , чтобы получить линеаризованные потенциальные уравнения.

Исторически методы были впервые разработаны для решения линеаризованных потенциальных уравнений. Двумерные (2D) методы, использующие конформные преобразования обтекания цилиндра в обтекание профиля, были разработаны в 1930-х годах. [1] [2]

Одним из самых ранних типов вычислений, напоминающих современные CFD, являются расчеты Льюиса Фрая Ричардсона в том смысле, что в этих расчетах использовались конечные разности и делилось физическое пространство на ячейки. Хотя эти расчеты потерпели полную неудачу, вместе с книгой Ричардсона « Прогноз погоды с помощью численного процесса » [3] заложили основу для современной CFD и численной метеорологии. Фактически, в первых расчетах CFD в 1940-х годах с использованием ENIAC использовались методы, близкие к тем, которые были использованы в книге Ричардсона 1922 года. [4]

Доступные компьютерные мощности способствовали развитию трехмерных методов. Вероятно, первая работа с использованием компьютеров для моделирования потока жидкости, определяемого уравнениями Навье-Стокса, была выполнена в Национальной лаборатории Лос-Аламоса в группе Т3. [5] [6] Эту группу возглавлял Фрэнсис Х. Харлоу , которого многие считают одним из пионеров CFD. С 1957 по конец 1960-х годов эта группа разработала множество численных методов моделирования нестационарных двумерных потоков жидкости, таких как частиц в ячейках , метод [7] метод «жидкость в клетке» , [8] функции потока завихренности , метод [9] и маркерно-клеточный метод . [10] Метод завихренности функции потока Фромма для двумерного нестационарного несжимаемого потока был первым в мире подходом к сильно искажающим потокам несжимаемой жидкости.

Первая статья с трехмерной моделью была опубликована Джоном Хессом и АМО Смитом из Douglas Aircraft в 1967 году. [11] Этот метод дискретизировал поверхность геометрии с помощью панелей, в результате чего этот класс программ получил название «Панельные методы». Сам их метод был упрощен, поскольку не включал подъемные потоки и поэтому применялся в основном к корпусам кораблей и фюзеляжам самолетов. Первый код подъемной панели (A230) был описан в статье, написанной Полом Раббертом и Гэри Саарисом из Boeing Aircraft в 1968 году. [12] были разработаны более совершенные трехмерные панельные коды Со временем в компании Boeing (PANAIR, A502). [13] Локхид (Квадпан), [14] Дуглас (HESS), [15] McDonnell Aircraft (MACAERO), [16] НАСА (PMARC) [17] и аналитические методы (WBAERO, [18] ЮСАЭРО [19] и ВСАЭРО [20] [21] ). Некоторые (PANAIR, HESS и MACAERO) представляли собой коды более высокого порядка, в которых использовались распределения особенностей поверхности более высокого порядка, тогда как другие (Quadpan, PMARC, USAERO и VSAERO) использовали отдельные особенности на каждой панели поверхности. Преимущество кодов низшего порядка заключалось в том, что на компьютерах того времени они работали намного быстрее. Сегодня VSAERO превратилась в многопорядковый код и является наиболее широко используемой программой этого класса. Он использовался при разработке многих подводных лодок , надводных кораблей , автомобилей , вертолетов , самолетов , а в последнее время и ветряных турбин . Его родственный код, USAERO, представляет собой нестационарный панельный метод, который также использовался для моделирования таких объектов, как высокоскоростные поезда и гоночные яхты . Код НАСА PMARC из ранней версии VSAERO и производной от PMARC под названием CMARC. [22] также имеется в продаже.

В двумерной области был разработан ряд панельных кодов для анализа и проектирования профиля крыла. Коды обычно включают анализ пограничного слоя , что позволяет моделировать вязкие эффекты. Ричард Эпплер [ де ] разработал код PROFILE, частично при финансовой поддержке НАСА, который стал доступен в начале 1980-х годов. [23] Вскоре за этим последовал Марка Дрела код XFOIL . [24] И PROFILE, и XFOIL включают двумерные панельные коды со связанными кодами пограничного слоя для анализа профиля профиля. PROFILE использует метод конформного преобразования для проектирования обратного профиля крыла, в то время как XFOIL имеет как конформное преобразование, так и метод обратной панели для проектирования профиля крыла.

Промежуточным этапом между панельными кодами и кодами полного потенциала были коды, в которых использовались уравнения трансзвуковых малых возмущений. В частности, трехмерный код WIBCO, [25] Разработанный Чарли Боппе из Grumman Aircraft в начале 1980-х годов, он широко использовался.

Моделирование космического корабля SpaceX во время входа в атмосферу

Разработчики обратились к кодам Full Potential, поскольку панельные методы не могли рассчитать нелинейный поток, присутствующий на околозвуковых скоростях. Первое описание способа использования уравнений полного потенциала было опубликовано Эрлом Мурманом и Джулианом Коулом из Boeing в 1970 году. [26] Фрэнсис Бауэр, Пол Гарабедян и Дэвид Корн из Института Куранта при Нью-Йоркском университете (NYU) написали серию двумерных кодов профиля профиля полного потенциала, которые получили широкое распространение, наиболее важным из которых была названа программа H. [27] Дальнейшее развитие программы H было разработано Бобом Мельником и его группой из Grumman Aerospace под названием Grumfoil. [28] Энтони Джеймсон , первоначально работавший в Grumman Aircraft и Институте Куранта Нью-Йоркского университета, работал с Дэвидом Коги над разработкой важного трехмерного кода полного потенциала FLO22. [29] в 1975 году. После этого появилось множество кодов полного потенциала, кульминацией которых стал код Boeing Tranair (A633), [30] который до сих пор активно используется.

Следующим шагом стали уравнения Эйлера, которые обещали дать более точные решения трансзвуковых течений. Методология, использованная Джеймсоном в его трехмерном коде FLO57. [31] (1981) использовался другими для создания таких программ, как программа Lockheed TEAM. [32] и программа MGAERO IAI/Analytical Methods. [33] MGAERO уникален тем, что представляет собой структурированный код декартовой сетки, в то время как в большинстве других подобных кодов используются структурированные сетки, подогнанные к телу (за исключением весьма успешного кода НАСА CART3D, [34] Код SPLITFLOW компании Lockheed [35] и Технологического института Джорджии ). NASCART-GT [36] Энтони Джеймсон также разработал трехмерный код САМОЛЕТА. [37] в котором использовались неструктурированные тетраэдральные сетки.

В двумерной сфере Марк Дрела и Майкл Джайлс, тогда аспиранты Массачусетского технологического института, разработали программу Эйлера ISES. [38] (фактически набор программ) для проектирования и анализа профиля крыла. Этот код впервые стал доступен в 1986 году и получил дальнейшее развитие для проектирования, анализа и оптимизации одно- или многоэлементных профилей в виде программы MSES. [39] MSES широко используется во всем мире. Производной от MSES для проектирования и анализа аэродинамических профилей в каскаде является MISES. [40] разработан Гарольдом Янгреном, когда он был аспирантом Массачусетского технологического института.

Уравнения Навье – Стокса были конечной целью разработки. Впервые появились двумерные коды, такие как код ARC2D НАСА Эймса. Был разработан ряд трехмерных кодов (ARC3D, OVERFLOW , CFL3D — три успешных проекта НАСА), что привело к появлению многочисленных коммерческих пакетов.

В последнее время методы CFD получили распространение для моделирования поведения потока гранулированных материалов в различных химических процессах в технике. Этот подход стал экономически эффективной альтернативой, предлагающей детальное понимание сложных явлений потока и минимизирующей затраты, связанные с традиционными экспериментальными методами. [41] [42]

Иерархия уравнений движения жидкости

[ редактировать ]

CFD можно рассматривать как группу вычислительных методологий (обсуждаемых ниже), используемых для решения уравнений, управляющих потоком жидкости. При применении CFD критическим шагом является решение, какой набор физических предположений и связанных с ними уравнений необходимо использовать для решения рассматриваемой проблемы. [43] Чтобы проиллюстрировать этот шаг, ниже суммированы физические предположения/упрощения, принятые в уравнениях потока, который является однофазным (см. многофазный поток и двухфазный поток ), однокомпонентным (т. е. он состоит из одного химического вида), не -реагирующие и (если не указано иное) сжимаемые. Тепловым излучением пренебрегаем и учитываем объемные силы гравитации (если не указано иное). Кроме того, для этого типа потока следующее обсуждение подчеркивает иерархию уравнений потока, решаемых с помощью CFD. Обратите внимание, что некоторые из следующих уравнений можно вывести более чем одним способом.

  • Законы сохранения (CL). Это наиболее фундаментальные уравнения, рассматриваемые с помощью CFD, в том смысле, что, например, из них можно вывести все следующие уравнения. Для однофазного одновидового сжимаемого потока учитываются сохранение массы , сохранение погонного момента и сохранение энергии .
  • Законы сохранения континуума (CCL): начните с CL. Предположим, что масса, импульс и энергия локально сохраняются: эти величины сохраняются и не могут «телепортироваться» из одного места в другое, а могут перемещаться только непрерывным потоком (см. уравнение неразрывности ). Другая интерпретация состоит в том, что каждый начинает с CL и предполагает наличие сплошной среды (см. Механику сплошной среды ). Полученная система уравнений является незамкнутой, так как для ее решения необходимы дополнительные соотношения/уравнения: а) определяющие соотношения для тензора вязких напряжений ; (б) определяющие соотношения для диффузионного теплового потока ; (c) уравнение состояния (EOS), такое как закон идеального газа ; и (d) уравнение состояния калорий, связывающее температуру с такими величинами, как энтальпия или внутренняя энергия .
  • Сжимаемые уравнения Навье-Стокса (C-NS): начните с CCL. Предположим, что существует ньютоновский тензор вязких напряжений (см. Ньютоновская жидкость ) и тепловой поток Фурье (см. Тепловой поток ). [44] [45] C-NS необходимо дополнить EOS и калорическим EOS, чтобы получить замкнутую систему уравнений.
  • Несжимаемые уравнения Навье-Стокса (I-NS): начните с C-NS. Предположим, что плотность всегда и везде постоянна. [46] Другой способ получить I-NS — предположить, что число Маха очень мало. [46] [45] и что разница температур в жидкости также очень мала. [45] В результате уравнения сохранения массы и сохранения импульса отделяются от уравнения сохранения энергии, поэтому нужно решить только первые два уравнения. [45]
  • Сжимаемые уравнения Эйлера (EE): начните с C-NS. Предположим, что существует течение без трения и без диффузионного теплового потока. [47]
  • Слабо сжимаемые уравнения Навье-Стокса (WC-NS): начните с C-NS. Предположим, что изменения плотности зависят только от температуры, а не от давления. [48] Например, для идеального газа используйте , где представляет собой удобно определяемое эталонное давление, всегда и везде постоянное, плотность, – удельная газовая постоянная , это температура. В результате WC-NS не улавливает акустические волны. В WC-NS также часто пренебрегают условиями работы давления и вязкого нагрева в уравнении сохранения энергии. WC-NS также называют C-NS с приближением малого числа Маха.
  • Уравнения Буссинеска: начнем с C-NS. Предположим, что изменения плотности всегда и везде пренебрежимо малы, за исключением гравитационного члена уравнения сохранения импульса (где плотность умножает гравитационное ускорение). [49] Также предположим, что различные свойства жидкости, такие как вязкость , теплопроводность и теплоемкость , всегда и везде постоянны. Уравнения Буссинеска широко используются в микромасштабной метеорологии .
  • Сжимаемые уравнения Навье-Стокса, усредненные по Рейнольдсу , и сжимаемые уравнения Навье-Стокса, усредненные по Фавре (C-RANS и C-FANS): начните с C-NS. Предположим, что любая переменная потока , такие как плотность, скорость и давление, можно представить как , где среднее по ансамблю [45] любой переменной потока, и является отклонением или отклонением от этого среднего значения. [45] [50] не обязательно мал. Если является классическим средним по ансамблю (см. разложение Рейнольдса ), получают усредненные по Рейнольдсу уравнения Навье – Стокса. И если является взвешенным по плотности средним по ансамблю, получаются усредненные по Фавре уравнения Навье-Стокса. [50] В результате, в зависимости от числа Рейнольдса, диапазон масштабов движения значительно сокращается, что приводит к гораздо более быстрому решению по сравнению с решением C-NS. Однако информация теряется, и полученная система уравнений требует замыкания различных незамкнутых членов, в частности, напряжения Рейнольдса .
  • Уравнения идеального потока или потенциального потока : начните с EE. Предположим, что вращение жидкости и частиц равно нулю (нулевая завихренность) и нулевое расширение потока (нулевая дивергенция). [45] Результирующее поле течения полностью определяется геометрическими границами. [45] Идеальные потоки могут быть полезны в современных CFD для инициализации моделирования.
  • Линеаризованные уравнения Эйлера сжимаемой жидкости (LEE): [51] Начните с ЭЭ. Предположим, что любая переменная потока , такие как плотность, скорость и давление, можно представить как , где - значение переменной потока в некотором эталонном или базовом состоянии, и является возмущением или отклонением от этого состояния. Далее, предположим, что это возмущение очень мала по сравнению с некоторым эталонным значением. Наконец, предположим, что удовлетворяет «своему» уравнению, такому как EE. LEE и его многочисленные вариации широко используются в вычислительной аэроакустике .
  • звуковой волны или Уравнение акустической волны : начните с LEE. Пренебрегайте всеми градиентами и и предположим, что число Маха в исходном или базовом состоянии очень мало. [48] Полученные уравнения для плотности, импульса и энергии можно преобразовать в уравнение давления, что дает хорошо известное уравнение звуковой волны.
  • Уравнения мелкой воды (SW). Рассмотрим течение вблизи стенки, где интересующий масштаб длины, параллельной стене, намного больше, чем интересующий масштаб длины, перпендикулярный стене. Начните с ЭЭ. Предположим, что плотность всегда и везде постоянна, пренебрегаем составляющей скорости, перпендикулярной стенке, и считаем скорость, параллельную стенке, пространственно-постоянной.
  • Уравнения пограничного слоя (BL): начните с C-NS (I-NS) для сжимаемых (несжимаемых) пограничных слоев. Предположим, что рядом со стенами есть тонкие области, где пространственные градиенты, перпендикулярные стене, намного больше, чем параллельные стене. [49]
  • Уравнение Бернулли: начнем с ЭЭ. Предположим, что изменения плотности зависят только от изменений давления. [49] См. Принцип Бернулли .
  • Устойчивое уравнение Бернулли. Начните с уравнения Бернулли и предположите устойчивый поток. [49] Или начните с EE и предположите, что поток устойчив, и проинтегрируйте полученное уравнение вдоль линии тока. [47] [46]
  • Уравнения потока Стокса или ползущего потока: начните с C-NS или I-NS. Пренебрегаем инерцией потока. [45] [46] Такое предположение может быть оправдано, когда число Рейнольдса очень мало. В результате результирующая система уравнений является линейной, что значительно упрощает их решение.
  • Двумерное уравнение потока в канале: рассмотрим поток между двумя бесконечными параллельными пластинами. Начните с ЦНС. Предположим, что течение стационарное, двумерное и полностью развитое (т. е. профиль скорости не меняется в продольном направлении). [45] Обратите внимание, что это широко используемое полностью разработанное предположение может быть неадекватным в некоторых случаях, например, в некоторых сжимаемых микроканальных течениях, и в этом случае оно может быть заменено локально полностью разработанным предположением. [52]
  • Одномерные уравнения Эйлера или одномерные уравнения газовой динамики (1D-EE): начните с EE. Предположим, что все величины потока зависят только от одного пространственного измерения. [53]
  • Уравнение потока Фанно : рассмотрим поток внутри воздуховода с постоянной площадью и адиабатическими стенками. Начните с 1D-EE. Предположим, что поток устойчивый, нет эффектов гравитации, и введите в уравнение сохранения импульса эмпирический член, чтобы восстановить эффект трения о стенку (которым пренебрегают в EE). Чтобы закрыть уравнение потока Фанно, необходима модель для этого члена трения. Такое замыкание включает в себя предположения, зависящие от проблемы. [54]
  • Уравнение потока Рэлея . Рассмотрим течение внутри канала постоянной площади и либо с неадиабатическими стенками без объемных источников тепла, либо с адиабатическими стенками с объемными источниками тепла. Начните с 1D-EE. Предположим, что поток устойчивый, нет эффектов гравитации, и введите в уравнение сохранения энергии эмпирический член, чтобы восстановить эффект теплопередачи стенок или эффект источников тепла (пренебрегаемый в EE).

Методология

[ редактировать ]

Во всех этих подходах применяется одна и та же основная процедура.

  • Во время предварительной обработки
    • Геометрию (САПР ) и физические границы проблемы можно определить с помощью компьютерного проектирования . После этого данные можно соответствующим образом обработать (очистить) и извлечь объем жидкости (или домен жидкости).
    • Объем , занимаемый жидкостью, разбивается на дискретные ячейки (сетку). Сетка может быть однородной или неоднородной, структурированной или неструктурированной, состоящей из комбинации шестигранных, тетраэдрических, призматических, пирамидальных или многогранных элементов.
    • Определено физическое моделирование – например, уравнения движения жидкости + энтальпия + излучение + сохранение видов.
    • Граничные условия определены. Это включает в себя определение поведения и свойств жидкости на всех ограничивающих поверхностях области жидкости. Для переходных задач также определяются начальные условия.
  • Запускается моделирование . , и уравнения решаются итеративно как в установившемся, так и в переходном режиме
  • Наконец, постпроцессор используется для анализа и визуализации полученного решения.

Методы дискретизации

[ редактировать ]

Устойчивость выбранной дискретизации обычно устанавливается численно, а не аналитически, как в случае простых линейных задач. Особое внимание необходимо также уделить тому, чтобы дискретизация корректно обрабатывала разрывные решения. Уравнения Эйлера и уравнения Навье – Стокса допускают скачки уплотнения и контактные поверхности.

Некоторые из используемых методов дискретизации:

Метод конечного объема

[ редактировать ]

Метод конечных объемов (FVM) является распространенным подходом, используемым в кодах CFD, поскольку он имеет преимущество в использовании памяти и скорости решения, особенно для больших задач, турбулентных потоков с высоким числом Рейнольдса и потоков с преобладанием исходных условий (например, сгорания). [55]

В методе конечных объемов основные дифференциальные уравнения в частных производных (обычно уравнения Навье-Стокса, уравнения сохранения массы и энергии и уравнения турбулентности) преобразуются в консервативную форму, а затем решаются в дискретных контрольных объемах. Такая дискретизация гарантирует сохранение потоков через определенный контрольный объем. Уравнение конечного объема дает основные уравнения в форме:

где вектор сохраняющихся переменных, – вектор потоков (см. уравнения Эйлера или уравнения Навье – Стокса ), - объем элемента контрольного объема, а – площадь поверхности элемента контрольного объема.

Метод конечных элементов

[ редактировать ]

Метод конечных элементов (МКЭ) используется при структурном анализе твердых тел, но также применим и к жидкостям. Однако формулировка FEM требует особой осторожности, чтобы обеспечить консервативное решение. Формулировка FEM была адаптирована для использования с определяющими уравнениями гидродинамики. [56] [57] Хотя FEM должен быть тщательно сформулирован, чтобы быть консервативным, он гораздо более стабилен, чем подход конечного объема. [58] Однако FEM может потребовать больше памяти и имеет более медленное время решения, чем FVM. [59]

В этом методе формируется взвешенное уравнение невязки:

где - невязка уравнения в вершине элемента , — уравнение сохранения, выраженное на элементной основе, - весовой коэффициент, а — объем элемента.

Метод конечных разностей

[ редактировать ]

Метод конечных разностей (FDM) имеет историческое значение. [57] и прост в программировании. В настоящее время он используется лишь в нескольких специализированных программах, которые обрабатывают сложную геометрию с высокой точностью и эффективностью за счет использования встроенных границ или перекрывающихся сеток (при этом решение интерполируется по каждой сетке). [ нужна ссылка ]

где — вектор сохраняющихся переменных, а , , и являются потоками в , , и направления соответственно.

Метод спектральных элементов

[ редактировать ]

Метод спектральных элементов представляет собой метод типа конечных элементов. Для этого требуется, чтобы математическая задача (уравнение в частных производных) была представлена ​​в слабой формулировке. Обычно это делается путем умножения дифференциального уравнения на произвольную тестовую функцию и интегрирования по всей области. Чисто математически тестовые функции совершенно произвольны — они принадлежат бесконечномерному функциональному пространству. Очевидно, что бесконечномерное функциональное пространство не может быть представлено на сетке дискретных спектральных элементов; здесь начинается дискретизация спектрального элемента. Самым важным является выбор интерполяционных и проверочных функций. В стандартном МКЭ низкого порядка в 2D для четырехугольных элементов наиболее типичным выбором является билинейный тест или интерполирующая функция вида . Однако в методе спектральных элементов интерполирующие и тестовые функции выбираются в виде полиномов очень высокого порядка (обычно, например, 10-го порядка в приложениях CFD). Это гарантирует быструю сходимость метода. Кроме того, необходимо использовать очень эффективные процедуры интегрирования, поскольку количество интегрирований, выполняемых в числовых кодах, велико. Таким образом, используются квадратуры интегрирования Гаусса высокого порядка, поскольку они достигают наибольшей точности при наименьшем количестве выполняемых вычислений.В настоящее время существует несколько академических CFD-кодов, основанных на методе спектральных элементов, а еще несколько находятся в стадии разработки, поскольку в научном мире возникают новые схемы временного шага.

Решетчатый метод Больцмана

[ редактировать ]

Решеточный метод Больцмана (LBM) с его упрощенной кинетической картиной на решетке обеспечивает эффективное в вычислительном отношении описание гидродинамики.В отличие от традиционных методов CFD, которые решают уравнения сохранения макроскопических свойств (т.е. массы, импульса и энергии) численно, LBM моделирует жидкость, состоящую из фиктивных частиц, и такие частицы выполняют последовательные процессы распространения и столкновения по дискретной решетчатой ​​сетке. В этом методе используется дискретная в пространстве и времени версия уравнения кинетической эволюции в форме Больцмана Бхатнагара-Гросса-Крука (БГК) .

Вихревой метод

[ редактировать ]

Метод вихрей, также известный как метод лагранжевых вихревых частиц, представляет собой бессеточный метод моделирования несжимаемых турбулентных потоков. В нем завихренность дискретизируется на лагранжевы частицы, причем эти вычислительные элементы называются вихрями, вихрями или вихревыми частицами. [60] Вихревые методы были разработаны как безсеточная методология, которая не будет ограничена фундаментальными эффектами сглаживания, связанными с сеточными методами. Однако для практической реализации вихревые методы требуют средств для быстрого вычисления скоростей на основе вихревых элементов – другими словами, они требуют решения конкретной формы задачи N тел (в которой движение N объектов связано с их взаимным влиянием). ). Этот прорыв произошел в 1980-х годах с разработкой алгоритмов Барнса-Хата и метода быстрых мультиполей (FMM). Это открыло путь к практическому вычислению скоростей по вихревым элементам.

Программное обеспечение, основанное на вихревом методе, предлагает новые средства для решения сложных задач гидродинамики с минимальным вмешательством пользователя. [ нужна ссылка ] Все, что требуется, — это указать геометрию задачи и задать граничные и начальные условия. Среди существенных преимуществ этой современной технологии;

  • Он практически не имеет сетки, что исключает многочисленные итерации, связанные с RANS и LES.
  • Все проблемы решаются одинаково. Никакие входные данные для моделирования или калибровки не требуются.
  • Возможно моделирование временных рядов, которое имеет решающее значение для правильного анализа акустики.
  • Мелкий и крупный масштаб точно моделируются одновременно.

Метод граничных элементов

[ редактировать ]

В методе граничных элементов граница, занятая жидкостью, разбивается на поверхностную сетку.

Схемы дискретизации высокого разрешения

[ редактировать ]

Схемы высокого разрешения используются там, где присутствуют потрясения или разрывы. Улавливание резких изменений решения требует использования численных схем второго или более высокого порядка, не вносящих паразитных колебаний. Обычно это требует применения ограничителей потока , чтобы гарантировать, что решение уменьшает общую вариацию . [ нужна ссылка ]

Модели турбулентности

[ редактировать ]

При компьютерном моделировании турбулентных потоков одной общей целью является получение модели, которая может прогнозировать интересующие величины, такие как скорость жидкости, для использования в инженерных проектах моделируемой системы. Для турбулентных потоков диапазон масштабов длины и сложность явлений, связанных с турбулентностью, делают большинство подходов к моделированию непомерно дорогими; разрешение, необходимое для разрешения всех масштабов, связанных с турбулентностью, выходит за рамки вычислительных возможностей. Основной подход в таких случаях заключается в создании числовых моделей для аппроксимации нерешенных явлений. В этом разделе перечислены некоторые часто используемые вычислительные модели турбулентных потоков.

Модели турбулентности можно классифицировать на основе вычислительных затрат, что соответствует диапазону масштабов, которые моделируются, и масштабов, которые разрешаются (чем больше масштабов турбулентности разрешается, тем выше разрешение моделирования и, следовательно, тем выше затраты на вычисления). Если большинство или все турбулентные масштабы не моделируются, вычислительные затраты будут очень низкими, но компромисс будет заключаться в снижении точности.

В дополнение к широкому диапазону масштабов длины и времени и связанным с этим вычислительным затратам, основные уравнения гидродинамики содержат нелинейный член конвекции и нелинейный и нелокальный член градиента давления. Эти нелинейные уравнения необходимо решать численно с соответствующими граничными и начальными условиями.

Усредненный по Рейнольдсу Навье – Стокса

[ редактировать ]
Внешняя аэродинамика модели DrivAer , рассчитанная с помощью URANS (вверху) и DDES (внизу).
Моделирование аэродинамического пакета Porsche Cayman (987.2)

Усредненные по Рейнольдсу уравнения Навье – Стокса (RANS) являются старейшим подходом к моделированию турбулентности. Решается ансамблевая версия основных уравнений, которая вводит новые кажущиеся напряжения, известные как напряжения Рейнольдса . Это добавляет тензор неизвестных второго порядка, для которого различные модели могут обеспечивать разные уровни замыкания. Распространенным заблуждением является то, что уравнения RANS не применимы к потокам с изменяющимся во времени средним расходом, поскольку эти уравнения «усреднены по времени». Фактически, статистически нестационарные (или нестационарные) потоки можно рассматривать в равной степени. Иногда его называют УРАНАМИ. В усреднении Рейнольдса нет ничего, что могло бы предотвратить это, но модели турбулентности, используемые для замыкания уравнений, действительны только до тех пор, пока время, в течение которого происходят эти изменения среднего значения, велико по сравнению с временными масштабами турбулентного движения, содержащего большую часть энергия.

Модели RANS можно разделить на два широких подхода:

Гипотеза Буссинеска
Этот метод предполагает использование алгебраического уравнения для напряжений Рейнольдса, которое включает определение турбулентной вязкости и, в зависимости от уровня сложности модели, решение уравнений переноса для определения турбулентной кинетической энергии и диссипации. Модели включают k-ε ( Лаундер и Спалдинг ), [61] Модель длины смешивания ( Прандтль ), [62] и Модель нулевого уравнения (Себечи и Смит ). [62] Модели, доступные в этом подходе, часто обозначаются количеством уравнений переноса, связанных с этим методом. Например, модель длины смешивания является моделью «нулевого уравнения», поскольку никакие уравнения переноса не решаются; тот является моделью «Двух уравнений», поскольку два уравнения переноса (одно для и один для ) решены.
Модель стресса Рейнольдса (RSM)
Этот подход пытается фактически решить уравнения переноса для напряжений Рейнольдса. Это означает введение нескольких уравнений переноса для всех напряжений Рейнольдса и, следовательно, этот подход требует гораздо больше ресурсов ЦП. [ нужна ссылка ]

Моделирование больших вихрей

[ редактировать ]
Объемная визуализация вихревого пламени без предварительного смешивания, смоделированного LES.

Моделирование больших вихрей (LES) — это метод, при котором мельчайшие масштабы потока удаляются посредством операции фильтрации, а их эффект моделируется с использованием моделей подсеточного масштаба. Это позволяет решать самые большие и важные масштабы турбулентности, значительно снижая при этом вычислительные затраты, связанные с самыми маленькими масштабами. Этот метод требует больших вычислительных ресурсов, чем методы RANS, но намного дешевле, чем DNS.

Моделирование отдельных вихрей

[ редактировать ]

Моделирование отдельных вихрей (DES) представляет собой модификацию модели RANS, в которой модель переключается на формулировку подсеточного масштаба в областях, достаточно мелких для расчетов LES. Областям вблизи твердых границ и где масштаб турбулентной длины меньше максимального размера сетки назначается режим решения RANS. Поскольку масштаб турбулентной длины превышает размер сетки, регионы решаются с использованием режима LES. Следовательно, разрешение сетки для DES не так требовательно, как для чистого LES, что значительно снижает стоимость вычислений. Хотя DES изначально был сформулирован для модели Спаларта-Алмараса (Philippe R. Spalart et al., 1997), его можно реализовать с другими моделями RANS (Стрелец, 2001), соответствующим образом изменив масштаб длины, который явно или неявно участвует в модель РАНС. Таким образом, в то время как DES на основе модели Спаларта – Аллмараса действует как LES с моделью стены, DES на основе других моделей (например, двух моделей уравнений) ведет себя как гибридная модель RANS-LES. Генерация сетки более сложна, чем в случае простого RANS или LES, из-за переключателя RANS-LES. DES представляет собой незональный подход и обеспечивает единое гладкое поле скоростей в областях RANS и LES решений.

IDDES Моделирование BMW от Karel Motorsports. Это тип моделирования DES, выполненный в OpenFOAM. График представляет собой коэффициент давления.

Прямое численное моделирование

[ редактировать ]

Прямое численное моделирование (DNS) разрешает весь диапазон турбулентных масштабов длины. Это сводит на нет эффект моделей, но обходится чрезвычайно дорого. Вычислительные затраты пропорциональны . [63] DNS неразрешим для потоков со сложной геометрией или конфигурациями потоков.

Когерентное моделирование вихрей

[ редактировать ]

Подход моделирования когерентного вихря разлагает поле турбулентного потока на когерентную часть, состоящую из организованного вихревого движения, и некогерентную часть, которая представляет собой случайный фоновый поток. [64] Это разложение выполняется с помощью вейвлет -фильтрации. Этот подход имеет много общего с LES, поскольку он использует разложение и разрешает только отфильтрованную часть, но отличается тем, что не использует линейный фильтр нижних частот. Вместо этого операция фильтрации основана на вейвлетах, и фильтр можно адаптировать по мере развития поля потока. Фардж и Шнайдер протестировали метод CVS с двумя конфигурациями потока и показали, что когерентная часть потока демонстрирует Энергетический спектр, демонстрируемый всем потоком, соответствовал когерентным структурам ( вихревым трубкам ), в то время как некогерентные части потока представляли собой однородный фоновый шум, который не имел организованных структур. Гольдштейн и Васильев [65] применил модель FDV для моделирования крупных вихрей, но не предполагал, что вейвлет-фильтр устранит все когерентные движения из масштабов подфильтра. Используя фильтрацию LES и CVS, они показали, что в рассеянии SFS доминирует когерентная часть поля потока SFS.

PDF-методы

[ редактировать ]

Методы функции плотности вероятности (PDF) для турбулентности, впервые представленные Лундгреном , [66] основаны на отслеживании одноточечной PDF скорости, , что дает вероятность скорости в точке находясь между и . Этот подход аналогичен кинетической теории газов , в которой макроскопические свойства газа описываются большим количеством частиц. Методы PDF уникальны тем, что их можно применять в рамках множества различных моделей турбулентности; основные различия заключаются в форме уравнения переноса PDF. Например, в контексте моделирования больших вихрей PDF-файл становится отфильтрованным PDF-файлом. [67] Методы PDF также можно использовать для описания химических реакций, [68] [69] и особенно полезны для моделирования химически реагирующих потоков, поскольку член химического источника является закрытым и не требует модели. PDF обычно отслеживается с использованием методов лагранжевых частиц; в сочетании с моделированием больших вихрей это приводит к уравнению Ланжевена для эволюции частиц подфильтра.

Метод ограничения завихренности

[ редактировать ]

( VC Метод ограничения завихренности ) — это метод Эйлера, используемый при моделировании турбулентных следов. Он использует подход, подобный уединенной волне, для получения стабильного решения без численного расширения. VC может захватывать мелкомасштабные объекты с точностью до двух ячеек сетки. В рамках этих функций решается нелинейное разностное уравнение, а не конечно-разностное уравнение . VC аналогичен методам улавливания ударных импульсов , в которых соблюдаются законы сохранения, поэтому основные интегральные величины точно вычисляются.

Линейная вихревая модель

[ редактировать ]

Модель линейного вихря — это метод, используемый для моделирования конвективного перемешивания, происходящего в турбулентном потоке. [70] В частности, он обеспечивает математический способ описания взаимодействия скалярной переменной внутри поля векторного потока. Он в основном используется в одномерных представлениях турбулентного потока, поскольку его можно применять в широком диапазоне масштабов длин и чисел Рейнольдса. Эта модель обычно используется в качестве строительного блока для более сложных представлений потока, поскольку она обеспечивает прогнозы с высоким разрешением, которые справедливы для широкого диапазона условий потока.

Двухфазный поток

[ редактировать ]
Моделирование орды пузырей с использованием метода объема жидкости

Моделирование двухфазного потока все еще находится в стадии разработки. Были предложены различные методы, в том числе метод объема жидкости , метод установки уровня и отслеживание фронта . [71] [72] Эти методы часто предполагают компромисс между сохранением четкого интерфейса и сохранением массы. [ по мнению кого? ] . Это очень важно, поскольку оценка плотности, вязкости и поверхностного натяжения основана на усредненных по границе раздела значениях. [ нужна ссылка ]

Алгоритмы решения

[ редактировать ]

Дискретизация в пространстве дает систему обыкновенных дифференциальных уравнений для нестационарных задач и алгебраических уравнений для стационарных задач. Неявные или полунеявные методы обычно используются для интегрирования обыкновенных дифференциальных уравнений, образуя систему (обычно) нелинейных алгебраических уравнений. Применение Ньютона [ сломанный якорь ] или итерация Пикара дает систему линейных уравнений, которая несимметрична при наличии адвекции и неопределенна при наличии несжимаемости. Такие системы, особенно в 3D, часто слишком велики для прямых решателей, поэтому используются итерационные методы, либо стационарные методы, такие как последовательная сверхрелаксация , либо методы подпространства Крылова . Методы Крылова, такие как GMRES , обычно используемые с предобусловливанием , работают путем минимизации невязки в последовательных подпространствах, генерируемых предобусловливающим оператором.

Multigrid Преимущество заключается в асимптотически оптимальной производительности при решении многих задач. Традиционный [ по мнению кого? ] решатели и предобусловливатели эффективны для уменьшения высокочастотных компонентов остатка, но для уменьшения низкочастотных компонентов обычно требуется много итераций. Работая в нескольких масштабах, multigrid уменьшает все компоненты остатка на одинаковые коэффициенты, что приводит к независимому от сетки количеству итераций. [ нужна ссылка ]

Для неопределенных систем предобуславливатели, такие как неполная LU-факторизация , аддитивный Шварц и многосеточный , работают плохо или полностью терпят неудачу, поэтому для эффективной предварительной обработки необходимо использовать структуру задачи. [73] Методы, обычно используемые в CFD, - это алгоритмы SIMPLE и Uzawa , которые демонстрируют скорость сходимости, зависящую от сетки, но недавние достижения, основанные на блочной LU-факторизации в сочетании с многосеточной структурой для результирующих определенных систем, привели к созданию предобусловливателей, которые обеспечивают независимую от сетки скорость сходимости. [74]

Нестационарная аэродинамика

[ редактировать ]

CFD совершил большой прорыв в конце 70-х годов с введением LTRAN2, двумерного кода для моделирования колеблющихся аэродинамических профилей, основанного на трансзвуковой теории малых возмущений Балхауса и его коллег. [75] Он использует алгоритм переключения Мурмана-Коула для моделирования движущихся ударных волн. [26] Позже он был расширен до 3-D с использованием схемы повернутых разностей от AFWAL/Boeing, что привело к созданию LTRAN3. [76] [77]

Биомедицинская инженерия

[ редактировать ]
Моделирование кровотока в аорте человека

CFD-исследования используются для уточнения характеристик аортального кровотока в деталях, выходящих за рамки возможностей экспериментальных измерений. Для анализа этих состояний создаются CAD-модели сосудистой системы человека с использованием современных методов визуализации, таких как МРТ или компьютерная томография . На основе этих данных реконструируется 3D-модель, и можно рассчитать поток жидкости. Необходимо учитывать такие свойства крови, как плотность и вязкость, а также реалистичные граничные условия (например, системное давление). Таким образом, это дает возможность анализировать и оптимизировать поток в сердечно-сосудистой системе для различных применений. [78]

ЦП против графического процессора

[ редактировать ]

Традиционно моделирование CFD выполняется на центральных процессорах. [79]

В последнее время моделирование также выполняется на графических процессорах. Обычно они содержат более медленные, но больше процессоров. Для алгоритмов CFD, которые имеют хорошую производительность параллелизма (т. е. хорошее ускорение за счет добавления большего количества ядер), это может значительно сократить время моделирования. Жидкостно-неявная частица [80] и методы решетки-Больцмана [81] являются типичными примерами кодов, которые хорошо масштабируются на графических процессорах.

См. также

[ редактировать ]
  1. ^ Милн-Томсон, Луи Мелвилл (1973). Теоретическая аэродинамика . Курьерская корпорация. ISBN  978-0-486-61980-4 . [ нужна страница ]
  2. ^ Макмертри, Патрик А.; Гансог, Тодд К.; Керштейн, Алан Р.; Крюгер, Стивен К. (апрель 1993 г.). «Линейное вихревое моделирование перемешивания в однородном турбулентном потоке». Физика жидкостей A: Гидродинамика . 5 (4): 1023–1034. Бибкод : 1993PhFlA...5.1023M . дои : 10.1063/1.858667 .
  3. ^ Ричардсон, ЛФ; Чепмен, С. (1965). Прогноз погоды с помощью численного процесса . Дуврские публикации.
  4. ^ Хант, JCR (январь 1998 г.). «Льюис Фрай Ричардсон и его вклад в математику, метеорологию и модели конфликтов». Ежегодный обзор механики жидкости . 30 (1): xiii – xxxvi. Бибкод : 1998AnRFM..30D..13H . дои : 10.1146/annurev.fluid.30.1.0 .
  5. ^ «Наследие группы Т-3» . Проверено 13 марта 2013 г.
  6. ^ Харлоу, Фрэнсис Х. (апрель 2004 г.). «Гидродинамика в Лос-Аламосской национальной лаборатории Группы Т-3» . Журнал вычислительной физики . 195 (2): 414–433. Бибкод : 2004JCoPh.195..414H . дои : 10.1016/j.jcp.2003.09.031 .
  7. ^ Харлоу, Фрэнсис Харви; Эванс, Марта; Рихтмайер, Роберт Д. (1955). Машинный метод расчета гидродинамических задач . Лос-Аламосская научная лаборатория Калифорнийского университета. hdl : 2027/mdp.39015095283399 . OCLC   1288309947 . [ нужна страница ]
  8. ^ Джентри, Ричард А; Мартин, Роберт Э; Дейли, Барт Дж (август 1966 г.). «Метод Эйлера для решения задач нестационарного течения сжимаемой жидкости». Журнал вычислительной физики . 1 (1): 87–118. Бибкод : 1966JCoPh...1...87G . дои : 10.1016/0021-9991(66)90014-3 .
  9. ^ Фромм, Джейкоб Э.; Харлоу, Фрэнсис Х. (июль 1963 г.). «Численное решение задачи развития вихревой улицы». Физика жидкостей . 6 (7): 975–982. Бибкод : 1963PhFl....6..975F . дои : 10.1063/1.1706854 .
  10. ^ Харлоу, Фрэнсис Х.; Уэлч, Дж. Эдди (декабрь 1965 г.). «Численный расчет нестационарного течения вязкой несжимаемой жидкости со свободной поверхностью». Физика жидкостей . 8 (12): 2182–2189. Бибкод : 1965PhFl....8.2182H . дои : 10.1063/1.1761178 .
  11. ^ Хесс, Дж.Л.; Смит, АМО (1967). «Расчет потенциального обтекания произвольных тел». Прогресс аэрокосмических наук . 8 : 1–138. Бибкод : 1967ПрАэС...8....1Н . дои : 10.1016/0376-0421(67)90003-6 .
  12. ^ Рубиберт, П.; Саарис, Г. (1972). «Обзор и оценка трехмерного метода расчета потенциального потока подъема для произвольных конфигураций». 10-е совещание по аэрокосмическим наукам . дои : 10.2514/6.1972-188 .
  13. ^ Кармайкл, Р.; Эриксон, Л. (1981). «PAN AIR - панельный метод более высокого порядка для прогнозирования дозвуковых или сверхзвуковых линейных потенциальных потоков вокруг произвольных конфигураций». 14-я конференция по динамике жидкости и плазмы . дои : 10.2514/6.1981-1255 .
  14. ^ Янгрен, Х.; Бушар, Э.; Куперсмит, Р.; Миранда, Л. (1983). «Сравнение формулировок панельного метода и его влияние на разработку QUADPAN, усовершенствованного метода низкого порядка». Конференция по прикладной аэродинамике . дои : 10.2514/6.1983-1827 .
  15. ^ Хесс, Дж.; Фридман, Д. (1983). «Анализ сложных конфигураций воздухозаборников с использованием панельного метода высшего порядка». Конференция по прикладной аэродинамике . дои : 10.2514/6.1983-1828 .
  16. ^ Бристоу, Д.Р., « Разработка панельных методов для дозвукового анализа и проектирования », NASA CR-3234, 1980.
  17. ^ Эшби, Дейл Л.; Дадли, Майкл Р.; Игучи, Стив К.; Браун, Линдси и Кац, Джозеф, « Теория потенциального потока и руководство по эксплуатации для панели кода PMARC », NASA NASA-TM-102851, 1991.
  18. ^ Вудворд, Ф.А., Дворжак, Ф.А. и Геллер, Э.В., « Компьютерная программа для трехмерных несущих тел в дозвуковом невязком потоке », Технический отчет USAAMRDL, TR 74-18, Ft. Юстис, Вирджиния, апрель 1974 г.
  19. ^ Кац, Джозеф; Маскью, Брайан (апрель 1988 г.). «Нестационарная тихоходная аэродинамическая модель для полных конфигураций самолетов». Журнал самолетов . 25 (4): 302–310. дои : 10.2514/3.45564 .
  20. ^ Маскью, Брайан (февраль 1982 г.). «Прогнозирование дозвуковых аэродинамических характеристик: пример панельных методов низкого порядка». Журнал самолетов . 19 (2): 157–163. дои : 10.2514/3.57369 .
  21. ^ Маскью, Брайан, « Теоретический документ программы VSAERO: компьютерная программа для расчета нелинейных аэродинамических характеристик произвольных конфигураций », NASA CR-4023, 1987.
  22. ^ Пинелла, Дэвид и Гаррисон, Питер, «Цифровая аэродинамическая труба CMARC; трехмерные панельные коды низкого порядка», Aerologic, 2009.
  23. ^ Эпплер, Р.; Сомерс, Д.М., « Компьютерная программа для проектирования и анализа низкоскоростных профилей », NASA TM-80210, 1980.
  24. ^ Дрела, Марк, « XFOIL: Система анализа и проектирования для профилей с низким числом Рейнольдса », в Springer-Verlag Lecture Notes in Engineering, № 54, 1989.
  25. ^ Боппе, К. (1977). «Расчет трансзвуковых течений крыла методом встраивания сетки». 15-е совещание по аэрокосмическим наукам . дои : 10.2514/6.1977-207 .
  26. ^ Перейти обратно: а б Мурман, Эрл М.; Коул, Джулиан Д. (январь 1971 г.). «Расчет плоских стационарных трансзвуковых течений». Журнал АИАА . 9 (1): 114–121. Бибкод : 1971AIAAJ...9..114C . дои : 10.2514/3.6131 .
  27. ^ Теория сверхкритических секций крыла с компьютерными программами и примерами . Конспект лекций по экономике и математическим системам. Том. 66. 1972. doi : 10.1007/978-3-642-80678-0 . ISBN  978-3-540-05807-6 . [ нужна страница ]
  28. ^ Мид, HR; Мельник, Р.Э., « GRUMFOIL: Компьютерный код для вязкого трансзвукового течения над аэродинамическими профилями », NASA CR-3806, 1985.
  29. ^ Джеймсон, А.; Коги, Д. (1977). «Метод конечного объема для расчета трансзвукового потенциального потока». 3-я конференция по вычислительной гидродинамике . дои : 10.2514/6.1977-635 .
  30. ^ Самант, С.; Буссолетти, Дж.; Джонсон, Ф.; Беркхарт, Р.; Эверсон, Б.; Мелвин, Р.; Янг, Д.; Эриксон, Л.; Мэдсон, М. (1987). «ТРАНАИР - Компьютерный код для трансзвукового анализа произвольных конфигураций». 25-е ​​совещание AIAA по аэрокосмическим наукам . дои : 10.2514/6.1987-34 .
  31. ^ Джеймсон, А.; Шмидт, Вольфганг; Тюркель, ЭЛИ (1981). «Численное решение уравнений Эйлера методами конечных объемов с использованием схем Рунге Кутты с шагом по времени». 14-я конференция по динамике жидкости и плазмы . дои : 10.2514/6.1981-1259 .
  32. ^ Радж, Прадип; Бреннан, Джеймс Э. (1989). «Усовершенствование аэродинамического метода Эйлера для анализа трансзвуковых потоков». Журнал самолетов . 26 :13–20. дои : 10.2514/3.45717 .
  33. ^ Тидд, Д.; Страш, Д.; Эпштейн, Б.; Лунц, А.; Нахшон, А.; Рубин, Т. (1991). «Применение эффективного трехмерного многосеточного метода Эйлера (MGAERO) для составления конфигураций самолетов». 9-я конференция по прикладной аэродинамике . дои : 10.2514/6.1991-3236 .
  34. ^ Мелтон, Джон; Бергер, Марша; Афтосмис, Майкл; Вонг, Майкл (1995). «3D-приложения метода Эйлера на декартовой сетке». 33-е совещание и выставка по аэрокосмическим наукам . дои : 10.2514/6.1995-853 .
  35. ^ Карман, л, младший, Стив (1995). «SPLITFLOW — трехмерный код CFD на неструктурированную декартову/призматическую сетку для сложной геометрии». 33-е совещание и выставка по аэрокосмическим наукам . дои : 10.2514/6.1995-343 . {{cite book}}: CS1 maint: несколько имен: список авторов ( ссылка )
  36. ^ Маршалл, Дэвид; Раффин, Стивен (2004). «Схема встроенной граничной декартовой сетки для вязких потоков с использованием новой обработки граничных условий вязкой стенки». 42-я встреча и выставка AIAA по аэрокосмическим наукам . дои : 10.2514/6.2004-581 . ISBN  978-1-62410-078-9 .
  37. ^ Джеймсон, А.; Бейкер, Т.; Уэзерилл, Н. (1986). «Расчет невязкого трансзвукового обтекания всего самолета». 24-е совещание по аэрокосмическим наукам . дои : 10.2514/6.1986-103 .
  38. ^ Джайлз, М.; Дрела, М.; Томпкинс-младший, В. (1985). «Ньютоновское решение прямых и обратных трансзвуковых уравнений Эйлера». 7-я конференция по вычислительной физике . дои : 10.2514/6.1985-1530 .
  39. ^ Дрела, Марк (1990). «Ньютоновское решение связанных вязких/невязких многоэлементных течений профиля». 21-я конференция по гидродинамике, динамике плазмы и лазерам . дои : 10.2514/6.1990-1470 .
  40. ^ Дрела М. и Янгрен Х., «Руководство пользователя по MISES 2.53», Лаборатория вычислительных наук Массачусетского технологического института, декабрь 1998 г.
  41. ^ Жоп, Пьер; Фортерре, Йоэль; Пуликен, Оливье (июнь 2006 г.). «Основной закон для плотных сыпучих потоков» . Природа . 441 (7094): 727–730. arXiv : cond-mat/0612110 . Бибкод : 2006Natur.441..727J . дои : 10.1038/nature04801 . ISSN   1476-4687 .
  42. ^ Бирун, Мехди Х.; Маццеи, Лука (июнь 2024 г.). «Безканализованные гранулированные потоки: влияние исходной геометрии зернистого столба на динамику жидкости» . Химико-техническая наука . 292 : 119997. doi : 10.1016/j.ces.2024.119997 . ISSN   0009-2509 .
  43. ^ Ферцигер Дж. Х. и Перич М. (2002). Вычислительные методы гидродинамики . Спрингер-Верлаг. {{cite book}}: CS1 maint: несколько имен: список авторов ( ссылка )
  44. ^ «Уравнения Навье-Стокса» . Проверено 7 января 2020 г.
  45. ^ Перейти обратно: а б с д и ж г час я дж Пантон, РЛ (1996). Несжимаемый поток . Джон Уайли и сыновья.
  46. ^ Перейти обратно: а б с д Ландау Л.Д. и Лифшиц Э.М. (2007). Механика жидкости . Эльзевир. {{cite book}}: CS1 maint: несколько имен: список авторов ( ссылка )
  47. ^ Перейти обратно: а б Фокс, Р.В. и Макдональд, AT (1992). Введение в механику жидкости . Джон Уайли и сыновья. {{cite book}}: CS1 maint: несколько имен: список авторов ( ссылка )
  48. ^ Перейти обратно: а б Пуансо Т. и Вейнанте Д. (2005). Теоретическое и численное горение . РТ Эдвардс. {{cite book}}: CS1 maint: несколько имен: список авторов ( ссылка )
  49. ^ Перейти обратно: а б с д Кунду, П. (1990). Механика жидкости . Академическая пресса.
  50. ^ Перейти обратно: а б «Усредненные уравнения Навье-Стокса Фавра» . Проверено 7 января 2020 г.
  51. ^ Байи К. и Дэниел Дж. (2000). «Численное решение задач распространения акустики с использованием линеаризованных уравнений Эйлера». Журнал АИАА . 38 (1): 22–29. Бибкод : 2000AIAAJ..38...22B . дои : 10.2514/2.949 . {{cite journal}}: CS1 maint: несколько имен: список авторов ( ссылка )
  52. ^ Харли, Дж. К., Хуанг, Ю., Бау, Х. Х. и Земель, Дж. Н. (1995). «Течение газа в микроканалах». Журнал механики жидкости . 284 : 257–274. Бибкод : 1995JFM...284..257H . дои : 10.1017/S0022112095000358 . S2CID   122833857 . {{cite journal}}: CS1 maint: несколько имен: список авторов ( ссылка )
  53. ^ «Одномерные уравнения Эйлера» . Проверено 12 января 2020 г.
  54. ^ Каваццути М., Кортичелли М.А. и Караяннис Т.Г. (2019). «Сжимаемые течения Фанно в микроканалах: улучшенная квази-2D численная модель для ламинарных течений» . Тепловая наука и инженерный прогресс . 10 :10–26. дои : 10.1016/ж.цепь.2019.01.003 . hdl : 11392/2414220 . {{cite journal}}: CS1 maint: несколько имен: список авторов ( ссылка )
  55. ^ Патанкар, Сухас В. (1980). Численный расчет теплопередачи и потока жидкости . Издательская корпорация Hemisphere. ISBN  978-0891165224 .
  56. ^ «Подробное объяснение метода конечных элементов (МКЭ)» . www.comsol.com . Проверено 15 июля 2022 г.
  57. ^ Перейти обратно: а б Андерсон, Джон Дэвид (1995). Вычислительная гидродинамика: основы с приложениями . МакГроу-Хилл. ISBN  978-0-07-113210-7 .
  58. ^ Сурана, Калифорния; Аллу, С.; Тенпас, ПВ; Редди, JN (февраль 2007 г.). «k-версия метода конечных элементов в газовой динамике: численные решения глобальной дифференцируемости высшего порядка». Международный журнал численных методов в технике . 69 (6): 1109–1157. Бибкод : 2007IJNME..69.1109S . дои : 10.1002/nme.1801 . S2CID   122551159 .
  59. ^ Хюбнер, К.Х.; Торнтон, ЭА; и Байрон, Т.Д. (1995). Метод конечных элементов для инженеров (Третье изд.). Уайли Интерсайенс.
  60. ^ Котте, Жорж-Анри; Кумутсакос, Петрос Д. (2000). Вихревые методы: теория и практика . Кембридж, Великобритания: Кембриджский университет. Нажимать. ISBN  0-521-62186-0 .
  61. ^ Лаундер, Бельгия; Д.Б. Сполдинг (1974). «Численный расчет турбулентных потоков». Компьютерные методы в прикладной механике и технике . 3 (2): 269–289. Бибкод : 1974CMAME...3..269L . дои : 10.1016/0045-7825(74)90029-2 .
  62. ^ Перейти обратно: а б Уилкокс, Дэвид К. (2006). Моделирование турбулентности для CFD (3-е изд.). DCW Industries, Inc. ISBN  978-1-928729-08-2 .
  63. ^ Папа, С.Б. (2000). Турбулентные потоки . Издательство Кембриджского университета. ISBN  978-0-521-59886-6 .
  64. ^ Фарж, Мари ; Шнайдер, Кай (2001). «Моделирование когерентного вихря (CVS), полудетерминированная модель турбулентности с использованием вейвлетов». Поток, турбулентность и горение . 66 (4): 393–426. дои : 10.1023/А:1013512726409 . S2CID   53464243 .
  65. ^ Гольдштейн, Дэниел; Васильев, Олег (1995). «Стохастический когерентный адаптивный метод моделирования больших вихрей». Физика жидкостей А . 24 (7): 2497. Бибкод : 2004PhFl...16.2497G . CiteSeerX   10.1.1.415.6540 . дои : 10.1063/1.1736671 .
  66. ^ Лундгрен, Т.С. (1969). «Модельное уравнение неоднородной турбулентности». Физика жидкостей А . 12 (3): 485–497. Бибкод : 1969PhFl...12..485L . дои : 10.1063/1.1692511 .
  67. ^ Колуччи, П.Дж.; Джабери, ФА; Гиви, П.; Папа, С.Б. (1998). «Фильтрованная функция плотности для моделирования крупных вихрей турбулентных реагирующих потоков». Физика жидкостей А . 10 (2): 499–515. Бибкод : 1998PhFl...10..499C . дои : 10.1063/1.869537 .
  68. ^ Фокс, Родни (2003). Расчетные модели турбулентных реагирующих течений . Издательство Кембриджского университета. ISBN  978-0-521-65049-6 .
  69. ^ Папа, С.Б. (1985). «Методы PDF для турбулентных реактивных потоков». Прогресс в области энергетики и науки о горении . 11 (2): 119–192. Бибкод : 1985PrECS..11..119P . дои : 10.1016/0360-1285(85)90002-4 .
  70. ^ Крюгер, Стивен К. (1993). «Линейное вихревое моделирование перемешивания в однородном турбулентном потоке» . Физика жидкостей . 5 (4): 1023–1034. Бибкод : 1993PhFlA...5.1023M . дои : 10.1063/1.858667 .
  71. ^ Хирт, CW; Николс, Б.Д. (январь 1981 г.). «Метод объема жидкости (ВОФ) для динамики свободных границ». Журнал вычислительной физики . 39 (1): 201–225. Бибкод : 1981JCoPh..39..201H . дои : 10.1016/0021-9991(81)90145-5 .
  72. ^ Унверди, Салих Озен; Трюггвасон, Гретар (май 1992 г.). «Метод отслеживания фронта для вязких, несжимаемых, многожидкостных потоков». Журнал вычислительной физики . 100 (1): 25–37. Бибкод : 1992JCoPh.100...25U . дои : 10.1016/0021-9991(92)90307-К . hdl : 2027.42/30059 .
  73. ^ Бензи, Мишель; Голуб, Джин Х.; Лизен, Йорг (май 2005 г.). «Численное решение задач седла». Акта Нумерика . 14 : 1–137. Бибкод : 2005AcNum..14....1B . CiteSeerX   10.1.1.409.4160 . дои : 10.1017/S0962492904000212 . S2CID   122717775 .
  74. ^ Элман, Ховард; Хоул, Вирджиния; Шадид, Джон; Шаттлворт, Роберт; Туминаро, Рэй (январь 2008 г.). «Таксономия и сравнение многоуровневых предобусловливателей параллельных блоков для уравнений Навье – Стокса несжимаемой жидкости» . Журнал вычислительной физики . 227 (3): 1790–1808. Бибкод : 2008JCoPh.227.1790E . дои : 10.1016/j.jcp.2007.09.026 . S2CID   16365489 .
  75. ^ Адамсон, MR (январь 2006 г.). «Биографии». IEEE Анналы истории вычислений . 28 (1): 99–103. дои : 10.1109/MAHC.2006.5 .
  76. ^ Джеймсон, Энтони (май 1974 г.). «Итерационное решение околозвуковых обтеканий профилей и крыльев, в том числе течений на скорости 1 Маха». Сообщения по чистой и прикладной математике . 27 (3): 283–309. дои : 10.1002/cpa.3160270302 .
  77. ^ Борланд, CJ, «XTRAN3S - Трансзвуковая устойчивая и нестационарная аэродинамика для аэроупругих применений», AFWAL-TR-85-3214, Авиационные лаборатории ВВС Райт, авиабаза Райт-Паттерсон, Огайо, январь 1986 г.
  78. ^ Кауфманн, Т.А.С., Грефе, Р., Хормс, М., Шмитц-Роде, Т. и Штайнзайферанд, У., «Вычислительная гидродинамика в биомедицинской инженерии», Вычислительная гидродинамика: теория, анализ и приложения, стр. 109– 136
  79. ^ Лао, Шаньдун; Холт, Аарон; Вайдхинатан, Дипти; Ситараман, Харисваран; Хреня, Кристина М.; Хаузер, Томас (2021). «Сравнение производительности решателя CFD-DEM MFiX-Exa на графических процессорах и процессорах». arXiv : 2108.08821 [ cs.DC ].
  80. ^ Ву, Куй; Труонг, Нгиа; Юксель, Цем; Хетцляйн, Рама (май 2018 г.). «Быстрое моделирование жидкости с редкими объемами на графическом процессоре». Форум компьютерной графики . 37 (2): 157–167. дои : 10.1111/cgf.13350 . S2CID   43945038 .
  81. ^ «Поддержка приложений Intersect 360 HPC» (PDF) .

Примечания

[ редактировать ]
  • Андерсон, Джон Д. (1995). Вычислительная гидродинамика: основы с приложениями . Наука/Инженерное дело/Математика. МакГроу-Хилл Наука. ISBN  978-0-07-001685-9 .
  • Патанкар, Сухас (1980). Численная теплопередача и поток жидкости . Серия полушарий по вычислительным методам в механике и теплотехнике. Тейлор и Фрэнсис. ISBN  978-0-89116-522-4 .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: ad20ec5c4eb72e909b77fa48c206702b__1720703220
URL1:https://arc.ask3.ru/arc/aa/ad/2b/ad20ec5c4eb72e909b77fa48c206702b.html
Заголовок, (Title) документа по адресу, URL1:
Computational fluid dynamics - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)