Jump to content

Пространственный анализ

Карта доктора Джона Сноу из Лондона , на которой показаны очаги случаев холеры во время вспышки холеры на Брод-стрит в 1854 году . Это было одно из первых применений пространственного анализа на основе карт.

Пространственный анализ — это любой формальный метод , изучающий объекты с использованием их топологических , геометрических или географических свойств. Пространственный анализ включает в себя множество методов, использующих различные аналитические подходы, особенно пространственную статистику . Его можно применять в таких разнообразных областях, как астрономия с ее исследованиями размещения галактик в космосе или в технологии изготовления чипов с использованием алгоритмов «разместить и проложить» для построения сложных проводных структур. В более узком смысле пространственный анализ — это геопространственный анализ , метод, применяемый к структурам человеческого масштаба, особенно при анализе географических данных . Его также можно применить к геномике, например, к данным транскриптомики .

В пространственном анализе возникают сложные проблемы, многие из которых не определены четко и не решены полностью, но составляют основу текущих исследований. Наиболее фундаментальной из них является проблема определения пространственного положения изучаемых объектов. Классификация методов пространственного анализа затруднена из-за большого количества различных областей исследований, различных фундаментальных подходов, которые можно выбрать, и множества форм, которые могут принимать данные.

Пространственный анализ начался с первых попыток картографии и геодезии . Землеустроительные работы в Египте начались как минимум с 1400 г. до н.э.: размеры облагаемых налогом земельных участков измерялись мерными веревками и отвесами. [1] Многие области способствовали его появлению в современной форме. Биология внесла свой вклад посредством ботанических исследований глобального распределения растений и местного местоположения растений, этологических исследований перемещения животных, ландшафтно-экологических исследований растительных блоков, экологических исследований пространственной динамики популяций и изучения биогеографии . Эпидемиология внесла свой вклад в раннюю работу по картированию заболеваний, особенно в работу Джона Сноу по картированию вспышки холеры, в исследования по картированию распространения болезни и в исследования местоположения для оказания медицинской помощи. Статистика внесла большой вклад благодаря работе в области пространственной статистики. Экономика внесла значительный вклад посредством пространственной эконометрики . Географическая информационная система в настоящее время вносит основной вклад из-за важности географического программного обеспечения в современном аналитическом наборе инструментов. Дистанционное зондирование внесло большой вклад в морфометрический и кластерный анализ. Информатика внесла большой вклад в изучение алгоритмов, особенно в вычислительная геометрия . Математика продолжает предоставлять фундаментальные инструменты для анализа и раскрывать сложность пространственной сферы, например, благодаря недавним работам по фракталам и масштабной инвариантности . Научное моделирование обеспечивает полезную основу для новых подходов. [ нужна ссылка ]

Фундаментальные вопросы

[ редактировать ]

Пространственный анализ сталкивается со многими фундаментальными проблемами в определении объектов его исследования, в построении аналитических операций, которые будут использоваться, в использовании компьютеров для анализа, в ограничениях и особенностях известного анализа, а также в представлении. аналитических результатов. Многие из этих проблем являются активными объектами современных исследований. [ нужна ссылка ]

Общие ошибки часто возникают в пространственном анализе, некоторые из-за математики пространства, некоторые из-за особых способов представления данных в пространстве, некоторые из-за доступных инструментов. Данные переписи населения, поскольку они защищают частную жизнь личности путем агрегирования данных в местные единицы, вызывают ряд статистических проблем. Фрактальная природа береговой линии затрудняет, а то и делает невозможным точные измерения ее длины. Компьютерное программное обеспечение, подгоняющее прямые линии к изгибу береговой линии, может легко рассчитать длину линий, которые оно определяет. Однако эти прямые линии могут не иметь никакого внутреннего значения в реальном мире, как это было показано на примере береговой линии Британии . [ нужна ссылка ]

Эти проблемы представляют собой проблему пространственного анализа из-за силы карт как средства представления. Когда результаты представлены в виде карт, презентация объединяет пространственные данные, которые в целом точны, с аналитическими результатами, которые могут быть неточными, что приводит к впечатлению, что аналитические результаты более точны, чем показывают данные. [2]

Формальные проблемы

[ редактировать ]

Граничная проблема

[ редактировать ]
Проблема границ в анализе — это явление, при котором географические закономерности различаются формой и расположением границ, которые проводятся для административных или измерительных целей. Проблема границ возникает из-за потери соседей в анализах, которые зависят от значений соседей. Хотя географические явления измеряются и анализируются в пределах конкретной единицы, идентичные пространственные данные могут выглядеть либо рассредоточенными, либо сгруппированными в зависимости от границы, расположенной вокруг данных. При анализе точечных данных дисперсия оценивается как зависящая от границы. При анализе площадных данных статистику следует интерпретировать на основе границы.

Проблема с модифицируемой единицей площади

[ редактировать ]
Пример искажения MAUP
Пример проблемы модифицируемой единицы площади и искажения расчетов ставок

Проблема модифицируемой единицы площади (MAUP) является источником статистической систематической ошибки , которая может существенно повлиять на результаты проверки статистических гипотез . MAUP влияет на результаты, когда точечные измерения пространственных явлений объединяются в пространственные подразделения или территориальные единицы (такие как регионы или районы ), как, например, плотность населения или уровень заболеваемости . [3] [4] На полученные сводные значения (например, итоги, доли, доли, плотности) влияют как форма, так и масштаб единицы агрегирования. [5]

Например, данные переписи могут быть объединены в округа, переписные участки, почтовые индексы, полицейские участки или любое другое произвольное пространственное разделение. Таким образом, результаты агрегирования данных зависят от выбора картографом, какую «изменяемую единицу площади» использовать в своем анализе. переписи населения Картографическая карта , рассчитывающая плотность населения с использованием границ штатов, даст радикально иные результаты, чем карта, которая рассчитывает плотность населения на основе границ округов. Кроме того, границы переписных округов также могут со временем меняться. [6] это означает, что MAUP необходимо учитывать при сравнении прошлых данных с текущими данными.

Изменяемая проблема временных единиц

[ редактировать ]
Блок-схема, иллюстрирующая выбранные единицы времени. На графике также показаны три небесных объекта, относящиеся к единицам времени.
Проблема модифицированных временных единиц (MTUP) является источником статистической систематической ошибки , которая возникает во временных рядах и пространственном анализе при использовании временных данных, агрегированных во временные единицы . [7] [8] В таких случаях выбор временной единицы (например, дней, месяцев, лет) может повлиять на результаты анализа и привести к несоответствиям или ошибкам при проверке статистических гипотез . [9]

Проблема усреднения эффекта соседства

[ редактировать ]
Проблема усреднения эффекта соседства или NEAP углубляется в проблемы, связанные с пониманием влияния агрегированных явлений на уровне района на отдельных лиц, когда на эти явления влияют воздействия, зависящие от мобильности. [10] [11] [12] Проблема смешивается с эффектом соседства , который предполагает, что соседство человека влияет на его индивидуальные характеристики, такие как здоровье. [13] [14] Это относится к проблеме границ , поскольку очерченные районы, используемые для анализа, могут не полностью учитывать пространство активности человека, если границы проницаемы, а индивидуальная мобильность пересекает границы. Этот термин был впервые использован Мей-По Кваном в рецензируемом журнале «Международный журнал экологических исследований и общественного здравоохранения» в 2018 году. [10] [11]

Задача коммивояжера

[ редактировать ]
Решение задачи коммивояжёра: чёрная линия показывает кратчайший возможный контур, соединяющий все красные точки.

Задача коммивояжера , также известная как задача коммивояжера (TSP), задает следующий вопрос: «При наличии списка городов и расстояний между каждой парой городов, каков кратчайший возможный маршрут, который посещает каждый город ровно один раз и возвращается в исходный город?" Это NP-сложная задача комбинаторной оптимизации , важная в теоретической информатике и исследовании операций .

Проблема странствующего покупателя , проблема маршрута транспортного средства и проблема кольцевой звезды. [15] являются тремя обобщениями TSP.

В теории вычислительной сложности решающая версия TSP (где задана длина L , задача состоит в том, чтобы решить, имеет ли граф обход, длина которого не превышает L ) принадлежит к классу NP-полных задач. Таким образом, возможно, что в худшем случае время работы для любого алгоритма TSP увеличивается суперполиномиально (но не более чем экспоненциально ) с увеличением количества городов.

Задача была впервые сформулирована в 1930 году и является одной из наиболее интенсивно изучаемых задач оптимизации. Он используется в качестве эталона для многих методов оптимизации. Несмотря на то, что проблема сложна в вычислительном отношении, множество эвристик и точных алгоритмов , так что некоторые случаи с десятками тысяч городов могут быть решены полностью, и даже проблемы с миллионами городов могут быть аппроксимированы с точностью до небольшой доли 1%. известно [16]

Проблема неопределенного географического контекста

[ редактировать ]
Проблема неопределенного географического контекста или UGCoP является источником статистической систематической ошибки , которая может существенно повлиять на результаты пространственного анализа при работе с совокупными данными. [17] [18] [19] UGCoP очень тесно связан с проблемой изменяемых единиц площади (MAUP) и, как и MAUP, возникает из-за того, как мы делим землю на единицы площади. [20] [21] Это вызвано трудностью или невозможностью понять, как исследуемые явления (например, люди в пределах переписного участка) в различных счетных единицах взаимодействуют между счетными единицами и за пределами изучаемой территории с течением времени. [17] [22] Особенно важно рассматривать UGCoP в рамках дисциплины географии времени , где исследуемые явления могут перемещаться между пространственными счетными единицами в течение периода исследования. [18] Примеры исследований, которые необходимо учитывать UGCoP, включают доступ к продовольствию и мобильность людей. [23] [24]
Схема и пример пространственно-временной призмы с использованием данных транзитной сети: справа схематическая диаграмма пространственно-временной призмы, а слева — карта потенциальной области пути для двух разных бюджетов времени. [25]
Проблема неопределенного географического контекста, или UGCoP, была впервые сформулирована доктором Мей-По Кваном в 2012 году. [17] [18] Эта проблема тесно связана с экологической ошибкой , краевым эффектом и проблемой изменяемых единиц площади (MAUP), поскольку она относится к совокупным единицам применительно к отдельным людям. [21] Суть проблемы в том, что границы, которые мы используем для агрегирования, произвольны и могут не отражать фактическое соседство индивидов внутри них. [20] [21] Хотя конкретная счетная единица, такая как переписной участок , содержит данные о местонахождении человека, они могут пересекать ее границы, чтобы работать, ходить в школу и делать покупки в совершенно разных районах. [26] [27] Таким образом, исследуемое географическое явление выходит за пределы очерченной границы. [22] [28] [29] Разные лица или группы могут иметь совершенно разные пространства деятельности , в результате чего единица учета, релевантная для одного человека, становится бессмысленной для другого. [23] [30] Например, карта, на которой люди объединены по школьным округам, будет более значимой при изучении совокупности учащихся, чем генеральной совокупности. [31] Традиционный пространственный анализ по необходимости рассматривает каждую дискретную единицу территории как самостоятельный район и не учитывает повседневную деятельность по пересечению границ. [17] [18]

задача Вебера

[ редактировать ]

В геометрии задача Вебера , названная в честь Альфреда Вебера , является одной из самых известных задач теории местоположения . Требуется найти точку на плоскости, которая минимизирует сумму транспортных расходов от этой точки до n пунктов назначения, где разные точки назначения связаны с разными затратами на единицу расстояния.

Задача Вебера обобщает геометрическую медиану , которая предполагает, что транспортные расходы на единицу расстояния одинаковы для всех пунктов назначения, и проблему вычисления точки Ферма , геометрической медианы трех точек. По этой причине ее иногда называют проблемой Ферма – Вебера, хотя то же название также использовалось для невзвешенной геометрической задачи о медиане. Проблема Вебера, в свою очередь, обобщается проблемой притяжения-отталкивания , которая позволяет некоторым из затрат быть отрицательными, так что чем больше расстояние от некоторых точек, тем лучше.

Пространственная характеристика

[ редактировать ]
Распространение бубонной чумы в средневековой Европе. [ нужна ссылка ] Цвета указывают на пространственное распределение вспышек чумы во времени.

Определение пространственного присутствия объекта ограничивает возможный анализ, который может быть применен к этому объекту, и влияет на окончательные выводы, к которым можно прийти. Хотя это свойство в основном верно для любого анализа , оно особенно важно для пространственного анализа, поскольку инструменты для определения и изучения объектов отдают предпочтение конкретным характеристикам изучаемых объектов. Статистические методы предпочитают пространственное определение объектов как точек, поскольку существует очень мало статистических методов, которые работают непосредственно с элементами линии, площади или объема. Компьютерные инструменты предпочитают пространственное определение объектов как однородных и отдельных элементов из-за ограниченного количества доступных элементов базы данных и вычислительных структур, а также простоты, с которой эти примитивные структуры могут быть созданы. [ нужна ссылка ]

Пространственная зависимость

[ редактировать ]

Пространственная зависимость — это пространственная связь значений переменных (для тем, определенных в пространстве, например, количество осадков ) или местоположений (для тем, определяемых как объекты, например, города). Пространственная зависимость измеряется как наличие статистической зависимости в наборе случайных величин , каждая из которых связана с различным географическим местоположением . Пространственная зависимость имеет важное значение в приложениях, где разумно постулировать существование соответствующего набора случайных величин в местах, которые не были включены в выборку. Таким образом, количество осадков можно измерить в ряде мест, где установлены дождемеры, и такие измерения можно рассматривать как результаты случайных величин, но осадки явно происходят в других местах и ​​снова будут случайными. Поскольку осадки проявляют свойства автокорреляции , методы пространственной интерполяции могут использоваться для оценки количества осадков в местах, расположенных рядом с измеренными точками. [32]

Как и в случае с другими типами статистической зависимости, наличие пространственной зависимости обычно приводит к тому, что оценки среднего значения по выборке оказываются менее точными, чем если бы выборки были независимыми, хотя при наличии отрицательной зависимости среднее значение выборки может быть лучше, чем в независимом случае. . Другой проблемой, чем оценка общего среднего значения, является проблема пространственной интерполяции : здесь проблема состоит в том, чтобы оценить ненаблюдаемые случайные результаты переменных в местах, промежуточных по отношению к местам, где проводятся измерения, при этом существует пространственная зависимость между наблюдаемыми и ненаблюдаемыми случайными значениями. переменные. [ нужна ссылка ]

К инструментам исследования пространственной зависимости относятся: пространственная корреляция , функции пространственной ковариации и семивариограммы .Методы пространственной интерполяции включают кригинг , который является разновидностью наилучшего линейного несмещенного прогнозирования .Тема пространственной зависимости важна для геостатистики и пространственного анализа. [ нужна ссылка ]

Пространственная автокорреляция

[ редактировать ]

Пространственная зависимость — это ковариация свойств в пределах географического пространства: характеристики в ближайших местоположениях коррелируют либо положительно, либо отрицательно. [33] Пространственная зависимость приводит к проблеме пространственной автокорреляции в статистике, поскольку, как и временная автокорреляция, это нарушает стандартные статистические методы, предполагающие независимость наблюдений. Например, регрессионный анализ, который не компенсирует пространственную зависимость, может иметь нестабильные оценки параметров и давать ненадежные тесты значимости. Модели пространственной регрессии (см. ниже) отражают эти взаимосвязи и не страдают этими недостатками. Также уместно рассматривать пространственную зависимость как источник информации, а не как нечто, что нужно исправить. [34]

Эффекты местоположения также проявляются как пространственная неоднородность или очевидная вариация процесса в зависимости от местоположения в географическом пространстве. Если пространство не является однородным и безграничным, каждое место будет иметь некоторую степень уникальности по сравнению с другими местами. Это влияет на отношения пространственной зависимости и, следовательно, на пространственный процесс. Пространственная неоднородность означает, что общие параметры, оцененные для всей системы, могут неадекватно описывать процесс в любом данном месте. [ нужна ссылка ]

Пространственная ассоциация

[ редактировать ]

Пространственная ассоциация — это степень сходства вещей в пространстве. Анализ закономерностей распространения двух явлений осуществляется путем наложения карт. Если распределения схожи, то пространственная связь сильна, и наоборот. [35] В географической информационной системе анализ может проводиться количественно. Например, набор наблюдений (в виде точек или извлеченных из ячеек растра) в совпадающих местоположениях можно пересечь и изучить с помощью регрессионного анализа .

Как и пространственная автокорреляция , это может быть полезным инструментом для пространственного прогнозирования. При пространственном моделировании концепция пространственной ассоциации позволяет использовать ковариаты в уравнении регрессии для прогнозирования географического поля и, таким образом, для создания карты.

Второе измерение пространственной ассоциации

[ редактировать ]

Второе измерение пространственной ассоциации (SDA) раскрывает связь между пространственными переменными посредством извлечения географической информации в местах за пределами выборки. SDA эффективно использует недостающую географическую информацию за пределами мест выборки в методах первого измерения пространственной ассоциации (FDA), которые исследуют пространственную ассоциацию с использованием наблюдений в местах выборки. [36]

Масштабирование

[ редактировать ]

Масштаб пространственных измерений является постоянной проблемой пространственного анализа; Более подробную информацию можно найти в «Проблема с изменяемой единицей площади разделе » (MAUP). Ландшафтные экологи разработали ряд масштабно-инвариантных метрик для аспектов экологии, которые имеют фрактальную природу. [37] метода анализа, не зависящего от масштаба. В более общих чертах, для пространственной статистики не существует широко признанного [ нужна ссылка ]

Пространственная выборка предполагает определение ограниченного числа мест в географическом пространстве для точного измерения явлений, которые подвержены зависимости и неоднородности. [ нужна ссылка ] Зависимость предполагает, что, поскольку одно местоположение может предсказать ценность другого местоположения, нам не нужны наблюдения в обоих местах. Но неоднородность предполагает, что это соотношение может меняться в пространстве, и поэтому мы не можем доверять наблюдаемой степени зависимости за пределами региона, который может быть небольшим. Базовые схемы пространственной выборки включают случайную, кластерную и систематическую. Эти базовые схемы могут применяться на нескольких уровнях в определенной пространственной иерархии (например, городской район, город, район). Также возможно использовать вспомогательные данные, например, используя стоимость недвижимости в качестве ориентира в схеме пространственной выборки для измерения уровня образования и дохода. Пространственные модели, такие как статистика автокорреляции, регрессия и интерполяция (см. ниже), также могут определять структуру выборки. [ нужна ссылка ]

Распространенные ошибки пространственного анализа

[ редактировать ]

Фундаментальные проблемы пространственного анализа приводят к многочисленным проблемам анализа, включая предвзятость, искажения и явные ошибки в сделанных выводах. Эти проблемы часто взаимосвязаны, но предпринимались различные попытки отделить отдельные проблемы друг от друга. [38]

Обсуждая береговую линию Великобритании , Бенуа Мандельброт показал, что некоторые пространственные концепции по своей сути бессмысленны, несмотря на презумпцию их обоснованности. Длины в экологии напрямую зависят от масштаба, в котором они измеряются и переживаются. Таким образом, хотя геодезисты обычно измеряют длину реки, эта длина имеет значение только в контексте соответствия метода измерения исследуемому вопросу. [39]

Ошибка местоположения

[ редактировать ]

Локациональная ошибка относится к ошибке, связанной с конкретной пространственной характеристикой, выбранной для элементов исследования, в частности с выбором места для пространственного присутствия элемента. [39]

Пространственные характеристики могут быть упрощенными или даже неправильными. Исследования людей часто сводят пространственное существование людей к одной точке, например, к их домашнему адресу. Это может легко привести к плохому анализу, например, при рассмотрении вопроса о передаче заболевания, которая может произойти на работе или в школе и, следовательно, вдали от дома. [39]

Пространственная характеристика может неявно ограничивать предмет исследования. Например, в последнее время стал популярен пространственный анализ данных о преступности, однако эти исследования могут описать только те виды преступлений, которые можно описать пространственно. Это приводит к появлению множества карт нападений, но не к картам хищений с политическими последствиями в концептуализации преступности и разработке политики по решению этой проблемы. [39]

Атомная ошибка

[ редактировать ]

Это описывает ошибки, возникающие из-за рассмотрения элементов как отдельных «атомов» вне их пространственного контекста. [39] Заблуждение заключается в переносе отдельных выводов в пространственные единицы. [40]

Экологическая ошибка

[ редактировать ]

описывает Экологическая ошибка ошибки, возникающие при выполнении анализа совокупных данных при попытке прийти к выводам по отдельным единицам. [39] [41] Ошибки происходят частично из-за пространственной агрегации. Например, пиксель представляет среднюю температуру поверхности на определенной территории. Экологической ошибкой было бы предположить, что все точки на территории имеют одинаковую температуру.

Решения фундаментальных проблем

[ редактировать ]

Географическое пространство

[ редактировать ]
Манхэттенское расстояние в сравнении с евклидовым расстоянием. Красная, синяя и желтая линии имеют одинаковую длину (12) как в евклидовой геометрии, так и в геометрии такси. В евклидовой геометрии зеленая линия имеет длину 6× 2 ≈ 8,48 и является единственным кратчайшим путем. В геометрии такси длина зеленой линии по-прежнему равна 12, что делает ее не короче любого другого показанного пути.

Математическое пространство существует всякий раз, когда у нас есть набор наблюдений и количественные меры их атрибутов. Например, мы можем представить доходы или годы обучения отдельных лиц в системе координат, где местоположение каждого человека может быть указано относительно обоих измерений. Расстояние между людьми в этом пространстве является количественной мерой их различий в отношении доходов и образования. Однако в пространственном анализе нас интересуют конкретные типы математических пространств, а именно географическое пространство. В географическом пространстве наблюдения соответствуют местоположениям в системе пространственных измерений, которые отражают их близость в реальном мире. Места в системе пространственных измерений часто представляют собой местоположения на поверхности Земли, но это не является строго необходимым. Система пространственных измерений также может фиксировать близость, скажем, к межзвездному пространству или внутри биологического объекта, такого как печень. Фундаментальный принцип заключается в том, Первый закон географии Тоблера : если взаимосвязь между объектами увеличивается с близостью в реальном мире, то уместны представление в географическом пространстве и оценка с использованием методов пространственного анализа.

Евклидово расстояние между локациями часто отражает их близость, хотя это только одна из возможностей. Помимо евклидовых расстояний существует бесконечное количество расстояний, которые можно использовать для количественного анализа. Например, расстояния «Манхэттен» (или « Такси »), где движение ограничено путями, параллельными осям, могут быть более значимыми, чем евклидовы расстояния в городских условиях. Помимо расстояний, другие географические отношения, такие как связность (например, наличие или степень общих границ) и направление на отношения между объектами могут влиять и . Также возможно вычислить пути минимальной стоимости по поверхности стоимости; например, это может обозначать близость мест, когда путешествие должно происходить по пересеченной местности.

Пространственные данные бывают разных видов, и их непросто прийти к системе классификации, которая одновременно эксклюзивный, исчерпывающий, творческий и приносящий удовлетворение. -- Дж. Аптон и Б. Фингелтон [42]

Пространственный анализ данных

[ редактировать ]

Городские и региональные исследования имеют дело с большими таблицами пространственных данных, полученных в результате переписей населения и опросов. Необходимо упростить огромный объем подробной информации, чтобы выделить основные тенденции. Многомерный анализ (или Факторный анализ , FA) позволяет изменять переменные, преобразуя множество переменных переписи, обычно коррелирующих между собой, в меньшее количество независимых «Факторов» или «Главных компонентов», которые фактически являются собственными векторами корреляции данных. матрицы, взвешенные по обратным их собственным значениям. Такая замена переменных имеет два основных преимущества:

  1. Поскольку информация концентрируется на первых новых факторах, то можно сохранить лишь некоторые из них, потеряв лишь небольшое количество информации; их картографирование дает меньше и более значимых карт.
  2. Факторы, фактически собственные векторы, по конструкции ортогональны, т.е. не коррелированы. В большинстве случаев доминирующим фактором (с наибольшим собственным значением) является социальный компонент, разделяющий богатых и бедных в городе. Поскольку факторы не коррелируют, другие, более мелкие процессы, чем социальный статус, которые в противном случае остались бы скрытыми, проявляются во втором, третьем,... факторах.

Факторный анализ зависит от измерения расстояний между наблюдениями: выбор значимого показателя имеет решающее значение. Евклидова метрика (анализ главных компонентов), расстояние хи-квадрат (анализ соответствия) или обобщенное расстояние Махаланобиса (дискриминантный анализ) являются одними из наиболее широко используемых. [43] Были предложены более сложные модели с использованием сообществ или ротаций. [44]

Использование многомерных методов в пространственном анализе началось в 1950-х годах (хотя некоторые примеры восходят к началу века) и достигло кульминации в 1970-х годах, с ростом мощности и доступности компьютеров. Уже в 1948 году в своей плодотворной публикации два социолога, Венделл Белл и Эшреф Шевки, [45] показали, что большая часть городского населения в США и в мире может быть представлена ​​тремя независимыми факторами: 1- «социально-экономический статус», противопоставляющий богатые и бедные районы и распределенный по секторам, идущим вдоль шоссе, идущих от центра города, 2- «жизненный цикл», т.е. возрастная структура домохозяйств, распределенных по концентрическим кругам, и 3- «расовая и этническая принадлежность», определяющая участки мигрантов, расположенные в пределах города. В 1961 году в новаторском исследовании британские географы использовали FA для классификации британских городов. [46] Брайан Дж. Берри из Чикагского университета и его студенты широко использовали этот метод. [47] применяя его к наиболее важным городам мира и демонстрируя общие социальные структуры. [48] Использование факторного анализа в географии, которое стало настолько простым благодаря современным компьютерам, было очень широким, но не всегда очень разумным. [49]

Поскольку извлеченные векторы определяются матрицей данных, невозможно сравнивать факторы, полученные в результате разных переписей. Решение состоит в объединении нескольких матриц переписи в единую таблицу, которую затем можно проанализировать. Однако это предполагает, что определение переменных не изменилось с течением времени и приводит к созданию очень больших таблиц, которыми трудно управлять. Лучшее решение, предложенное психометристами, [50] группирует данные в «кубическую матрицу» с тремя записями (например, местоположения, переменные, периоды времени). Трехфакторный факторный анализ затем дает три группы факторов, связанных небольшой кубической «основной матрицей». [51] Этот метод, который показывает эволюцию данных с течением времени, не получил широкого распространения в географии. [52] В Лос-Анджелесе, [53] тем не менее, на протяжении нескольких десятилетий он демонстрировал традиционно игнорируемую роль центра города как организующего центра для всего города.

Пространственная автокорреляция

[ редактировать ]

Статистика пространственной автокорреляции измеряет и анализирует степень зависимости между наблюдениями в географическом пространстве. Классическая статистика пространственной автокорреляции включает статистику Морана. , Гири , Гетис и эллипс стандартного отклонения . Эта статистика требует измерения матрицы пространственных весов , которая отражает интенсивность географических связей между наблюдениями в окрестностях, например, расстояния между соседями, длину общей границы или то, попадают ли они в определенный класс направления, например «запад». Классическая статистика пространственной автокорреляции сравнивает пространственные веса с ковариационными отношениями в парах местоположений. Пространственная автокорреляция, которая более положительна, чем ожидалось на основе случайного результата, указывает на кластеризацию схожих значений в географическом пространстве, тогда как значительная отрицательная пространственная автокорреляция указывает на то, что соседние значения более различаются, чем ожидалось по случайности, предполагая пространственную структуру, подобную шахматной доске.

Статистика пространственной автокорреляции, такая как статистика Морана. и Гири являются глобальными в том смысле, что они оценивают общую степень пространственной автокорреляции набора данных. Возможность пространственной неоднородности предполагает, что предполагаемая степень автокорреляции может значительно различаться в зависимости от географического пространства. Статистика локальной пространственной автокорреляции предоставляет оценки, дезагрегированные до уровня единиц пространственного анализа, что позволяет оценить отношения зависимости в пространстве. статистика сравнивает районы со средними показателями по всему миру и определяет локальные регионы с сильной автокорреляцией. Локальные версии и статистика также доступна.

Пространственная неоднородность

[ редактировать ]
Земельный покров вокруг Мэдисона, штат Висконсин. Поля окрашены в желтый и коричневый цвета, вода — в синий, а городские поверхности — в красный.
Пространственная неоднородность — это свойство, обычно приписываемое ландшафту или населению . Это относится к неравномерному распределению различных концентраций каждого вида на территории. Ландшафт с пространственной неоднородностью представляет собой сочетание концентраций нескольких видов растений или животных (биологических), или образований местности (геологических), или характеристик окружающей среды (например, осадков, температуры, ветра), заполняющих его территорию. Популяция, демонстрирующая пространственную неоднородность, — это популяция, в которой различные концентрации особей этого вида распределены по территории неравномерно; почти синоним слова «неравномерно распределенный».

Пространственное взаимодействие

[ редактировать ]

Пространственное взаимодействие или « гравитационные модели » оценивают потоки людей, материалов или информации между точками географического пространства. Факторы могут включать движущие переменные происхождения, такие как количество пассажиров в жилых районах, переменные привлекательности пункта назначения, такие как количество офисных площадей в районах трудоустройства, и отношения близости между местоположениями, измеряемые с помощью таких показателей, как расстояние езды или время в пути. топологические или соединительные Кроме того, необходимо определить отношения между областями, особенно учитывая часто противоречивые отношения между расстоянием и топологией; например, два пространственно близких района могут не проявлять какого-либо существенного взаимодействия, если их разделяет шоссе. После определения функциональных форм этих отношений аналитик может оценить параметры модели, используя наблюдаемые данные о потоке и стандартные методы оценки, такие как обычный метод наименьших квадратов или метод максимального правдоподобия. Версии моделей пространственного взаимодействия с конкурирующими направлениями включают близость пунктов назначения (или пунктов отправления) в дополнение к близости отправления и назначения; это фиксирует влияние кластеризации пунктов назначения (исхода) на потоки.

Пространственная интерполяция

[ редактировать ]

Методы пространственной интерполяции оценивают переменные в ненаблюдаемых местах географического пространства на основе значений в наблюдаемых местах. Базовые методы включают обратное взвешивание по расстоянию : оно ослабляет переменную по мере уменьшения близости к наблюдаемому местоположению. Кригинг — это более сложный метод, который интерполирует пространство в соответствии с соотношением пространственного лага, которое имеет как систематические, так и случайные компоненты. Это может обеспечить широкий диапазон пространственных отношений для скрытых значений между наблюдаемыми местоположениями. Кригинг обеспечивает оптимальные оценки с учетом предполагаемого соотношения запаздывания, а оценки ошибок можно сопоставить, чтобы определить, существуют ли пространственные закономерности.

Пространственная регрессия

[ редактировать ]

Методы пространственной регрессии фиксируют пространственную зависимость в регрессионном анализе , избегая статистических проблем, таких как нестабильные параметры и ненадежные тесты значимости, а также предоставляя информацию о пространственных отношениях между задействованными переменными. В зависимости от конкретного метода пространственная зависимость может войти в модель регрессии как отношения между независимыми переменными и зависимыми, между зависимыми переменными и самим пространственным запаздыванием или в терминах ошибок. Географически взвешенная регрессия (GWR) — это локальная версия пространственной регрессии, которая генерирует параметры, дезагрегированные по пространственным единицам анализа. [54] Это позволяет оценить пространственную неоднородность оцениваемых связей между независимыми и зависимыми переменными. Использование байесовского иерархического моделирования. [55] В сочетании с методами Монте-Карло (MCMC) цепи Маркова недавно было показано, что они эффективны при моделировании сложных взаимосвязей с использованием моделей Пуассона-гамма-CAR, Пуассона-логнормального-SAR или сверхдисперсных логит-моделей. Статистические пакеты для реализации таких байесовских моделей с использованием MCMC включают WinBugs , CrimeStat и множество пакетов, доступных на языке программирования R. [56]

Пространственные стохастические процессы, такие как гауссовы процессы , также все чаще используются в анализе пространственной регрессии. Версии GWR, основанные на моделях, известные как модели с пространственно изменяющимися коэффициентами, применялись для проведения байесовского вывода. [55] Пространственный стохастический процесс может стать вычислительно эффективной и масштабируемой моделью гауссовского процесса, такой как гауссовские процессы прогнозирования. [57] и Гауссовы процессы ближайших соседей (NNGP). [58]

Пространственные нейронные сети

[ редактировать ]
Пространственные нейронные сети (SNN) представляют собой суперкатегорию специализированных нейронных сетей (NN) для представления и прогнозирования географических явлений. Они обычно улучшают как статистическую точность , так и надежность а-пространственных/классических нейронных сетей всякий раз, когда они обрабатывают наборы геопространственных данных , а также других пространственных (статистических) моделей (например, моделей пространственной регрессии), когда переменные наборов геопространственных данных отображают нелинейные отношения . [59] [60] [61] Примерами SNN являются пространственные нейронные сети OSFA, SVANN и GWNN.

Моделирование и моделирование

[ редактировать ]

Модели пространственного взаимодействия являются совокупными и нисходящими: они определяют общие управляющие отношения для потока между местоположениями. Эта характеристика также свойственна городским моделям, например моделям, основанным на математическом программировании, потоках между секторами экономики или теории ставок и ренты. Альтернативная перспектива моделирования состоит в том, чтобы представить систему на максимально возможном уровне дезагрегации и изучить возникновение снизу вверх сложных закономерностей и отношений из поведения и взаимодействий на индивидуальном уровне. [ нужна ссылка ]

Теория сложных адаптивных систем применительно к пространственному анализу предполагает, что простые взаимодействия между ближайшими объектами могут привести к созданию сложных, постоянных и функциональных пространственных объектов на совокупных уровнях. Двумя фундаментальными методами пространственного моделирования являются клеточные автоматы и агентное моделирование. Моделирование клеточных автоматов налагает фиксированную пространственную структуру, такую ​​​​как ячейки сетки, и определяет правила, которые диктуют состояние ячейки на основе состояний соседних ячеек. С течением времени возникают пространственные закономерности, когда клетки меняют состояния в зависимости от своих соседей; это изменяет условия для будущих периодов времени. Например, ячейки могут представлять местоположения в городской местности, а их состояния могут соответствовать различным типам землепользования. Модели, которые могут возникнуть в результате простого взаимодействия местного землепользования, включают офисные районы и разрастание городов . В агентном моделировании используются программные объекты (агенты), которые имеют целенаправленное поведение (цели) и могут реагировать, взаимодействовать и изменять свою среду, преследуя свои цели. В отличие от ячеек клеточных автоматов, симуляторы могут позволить агентам быть мобильными относительно пространства. Например, можно смоделировать транспортный поток и его динамику, используя агентов, представляющих отдельные транспортные средства, которые пытаются минимизировать время в пути между указанными пунктами отправления и назначения. Стремясь к минимуму времени в пути, агенты должны избегать столкновений с другими транспортными средствами, а также стремиться минимизировать время в пути. Клеточные автоматы и агентное моделирование являются взаимодополняющими стратегиями моделирования. Их можно интегрировать в общую систему географических автоматов, в которой одни агенты стационарны, а другие мобильны.

Калибровка играет ключевую роль в подходах моделирования и моделирования CA и ABM. Первоначальные подходы к СА предлагали надежные подходы к калибровке, основанные на стохастических методах Монте-Карло. [62] [63] Подходы ABM основаны на правилах принятия решений агентами (во многих случаях извлеченных из методов качественного исследования, таких как анкетирование). [64] Современные алгоритмы машинного обучения калибруются с использованием обучающих наборов, например, для того, чтобы понять качества искусственной среды. [65]

Многоточечная геостатистика (MPS)

[ редактировать ]

Пространственный анализ концептуальной геологической модели является основной целью любого алгоритма MPS. Этот метод анализирует пространственную статистику геологической модели, называемую обучающим изображением, и генерирует реализации явлений, которые учитывают эту входную многоточечную статистику.

Недавний алгоритм MPS, использованный для решения этой задачи, — это метод Хонарки, основанный на шаблонах. [66] В этом методе для анализа закономерностей на обучающем изображении используется дистанционный подход. Это позволяет воспроизводить многоточечную статистику и сложные геометрические особенности обучающего изображения. Каждый выход алгоритма MPS представляет собой реализацию, представляющую случайное поле. Вместе несколько реализаций могут использоваться для количественной оценки пространственной неопределенности.

Один из последних методов представлен Tahmasebi et al. [67] использует функцию взаимной корреляции для улучшения воспроизведения пространственной структуры. Они называют свой метод моделирования MPS алгоритмом CCSIM. Этот метод способен количественно оценить пространственную связность, изменчивость и неопределенность. Кроме того, метод не чувствителен к любому типу данных и способен моделировать как категориальные, так и непрерывные сценарии. Алгоритм CCSIM может использоваться для любых стационарных, нестационарных и многомерных систем и может обеспечить высококачественную визуальную привлекательность модели. [68] [69]

Геопространственный и гидропространственный анализ

[ редактировать ]

Геопространственный и гидропространственный анализ , или просто пространственный анализ , [70] — это подход к применению статистического анализа и других аналитических методов к данным, имеющим географический или пространственный аспект. Для такого анализа обычно используется программное обеспечение, способное отображать карты, обрабатывать пространственные данные и применять аналитические методы к наземным или географическим наборам данных, включая использование географических информационных систем и геоматики . [71] [72] [73]

Использование географической информационной системы

[ редактировать ]

Географические информационные системы (ГИС) — большая область, предоставляющая множество возможностей, предназначенных для сбора, хранения, манипулирования, анализа, управления и представления всех типов географических данных — использует геопространственный и гидропространственный анализ в различных контекстах, операциях и приложениях. .

Основные приложения

[ редактировать ]

Геопространственный и гидропространственный анализ с использованием ГИС был разработан для решения проблем в области наук об окружающей среде и жизни, в частности экологии , геологии и эпидемиологии . Оно распространилось практически на все отрасли, включая оборону, разведку, коммунальные услуги, природные ресурсы (т.е. нефть и газ, лесное хозяйство и т. д.), социальные науки, медицину и общественную безопасность (т.е. управление чрезвычайными ситуациями и криминологию), снижение и управление рисками стихийных бедствий. (DRRM) и адаптация к изменению климата (CCA). Пространственная статистика обычно является результатом наблюдений, а не экспериментов. Гидропространственный метод особенно используется для водной стороны и элементов, связанных с водной поверхностью, толщей, дном, поддоном и прибрежными зонами.

Основные операции

[ редактировать ]

Векторные ГИС обычно связаны с такими операциями, как наложение карты (объединение двух или более карт или слоев карты в соответствии с заранее заданными правилами), простая буферизация (идентификация областей карты на заданном расстоянии от одного или нескольких объектов, таких как города, дороги или реки) и аналогичные базовые операции. Это отражает (и отражается) в использовании термина «пространственный анализ» в рамках Открытого геопространственного консорциума ( OGC ) «простые спецификации объектов». Для растровых ГИС, широко используемых в науках об окружающей среде и дистанционном зондировании, это обычно означает ряд действий, применяемых к ячейкам сетки одной или нескольких карт (или изображений), часто включающих фильтрацию и/или алгебраические операции (алгебра карт). Эти методы включают обработку одного или нескольких растровых слоев в соответствии с простыми правилами, в результате чего получается новый слой карты, например, замена значения каждой ячейки некоторой комбинацией значений ее соседей или вычисление суммы или разницы значений конкретных атрибутов для каждой ячейки сетки в два совпадающих набора растровых данных. Описательная статистика, такая как количество ячеек, средние значения, дисперсии, максимумы, минимумы, совокупные значения, частоты и ряд других показателей и расчетов расстояний, также часто включается в этот общий термин «пространственный анализ». Пространственный анализ включает в себя большое разнообразие статистических методов (описательных, исследовательская и пояснительная статистика ), которые применяются к данным, которые изменяются в пространстве и могут меняться с течением времени. Некоторые более продвинутые статистические методы включают Getis-ord Gi* или Anselin Local Moran's I, которые используются для определения шаблонов кластеризации данных с пространственной привязкой.

Расширенные операции

[ редактировать ]

Геопространственный и гидропространственный анализ выходит за рамки 2D и 3D картографических операций и пространственной статистики. Оно является многомерным, а также временным и включает в себя:

  • Анализ поверхности — в частности, анализ свойств физических поверхностей, таких как градиент , аспект и видимость , а также анализ «полей» данных, подобных поверхности;
  • Сетевой анализ — изучение свойств природных и искусственных сетей с целью понять поведение потоков внутри и вокруг таких сетей; и локальный анализ. Сетевой анализ на основе ГИС может использоваться для решения широкого спектра практических проблем, таких как выбор маршрута и расположение объектов (основные темы в области операционных исследований ), а также проблем, связанных с потоками, например, которые встречаются в гидропространственных, гидрологических и транспортных исследованиях. Во многих случаях проблемы местоположения связаны с сетями и, как таковые, решаются с помощью инструментов, предназначенных для этой цели, но в других случаях существующие сети могут иметь мало значения или вообще не иметь значения, или их может быть непрактично включать в процесс моделирования. Проблемы, которые не связаны конкретно с сетью, такие как прокладка новых дорог или трубопроводов, расположение региональных складов, расположение вышек мобильных телефонов или выбор участков здравоохранения в сельских общинах, можно эффективно анализировать (по крайней мере, на начальном этапе) без привязки к существующим физическим сетям. Локационный анализ «в плоскости» также применим там, где подходящие наборы сетевых данных недоступны или слишком велики или дороги для использования, или когда алгоритм определения местоположения очень сложен или включает в себя исследование или моделирование очень большого количества альтернативных конфигураций. .
  • Геовизуализация — создание изображений, карт, диаграмм, диаграмм, трехмерных представлений и связанных с ними наборов табличных данных и манипулирование ими. Пакеты ГИС все чаще предоставляют набор таких инструментов, обеспечивающих статические или вращающиеся виды, наложение изображений на 2,5D-представления поверхности, анимацию и пролеты, динамическое связывание и кисть, а также пространственно-временную визуализацию. Этот последний класс инструментов является наименее развитым, что отчасти отражает ограниченный диапазон подходящих совместимых наборов данных и ограниченный набор доступных аналитических методов, хотя эта картина быстро меняется. Все эти средства дополняют основные инструменты, используемые в пространственном анализе на протяжении всего аналитического процесса (исследование данных, выявление закономерностей и взаимосвязей, построение моделей и передача результатов).

Мобильные геопространственные и гидропространственные вычисления

[ редактировать ]

Традиционно геопространственные и гидропространственные вычисления выполнялись в основном на персональных компьютерах (ПК) или серверах. Однако из-за растущих возможностей мобильных устройств геопространственные вычисления в мобильных устройствах становятся быстрорастущей тенденцией. [74] Портативный характер этих устройств, а также наличие полезных датчиков, таких как приемники глобальной навигационной спутниковой системы (ГНСС) и датчики барометрического давления, делают их полезными для сбора и обработки геопространственной и гидропространственной информации в полевых условиях. Помимо локальной обработки геопространственной информации на мобильных устройствах, еще одной растущей тенденцией являются облачные геопространственные вычисления. В этой архитектуре данные могут собираться в полевых условиях с помощью мобильных устройств, а затем передаваться на облачные серверы для дальнейшей обработки и окончательного хранения. Аналогичным образом геопространственная и гидропространственная информация может быть доступна подключенным мобильным устройствам через облако, обеспечивая доступ к обширным базам данных геопространственной и гидропространственной информации в любом месте, где доступно беспроводное соединение для передачи данных.

Географическая информатика и пространственный анализ

[ редактировать ]
Эта карта злополучного марша Наполеона на Москву является ранним и знаменитым примером геовизуализации. Он показывает направление движения армии, места, через которые прошли войска, размер армии, умершей от голода и ран, а также низкие температуры, которые они пережили.

Географические информационные системы (ГИС) и лежащая в их основе географическая информатика , которая развивает эти технологии, оказывают сильное влияние на пространственный анализ. Растущая способность собирать и обрабатывать географические данные означает, что пространственный анализ происходит во все более богатых данными средах. Системы сбора географических данных включают изображения дистанционного зондирования, системы мониторинга окружающей среды, такие как интеллектуальные транспортные системы, и технологии определения местоположения, такие как мобильные устройства, которые могут сообщать о местоположении практически в реальном времени. ГИС предоставляют платформы для управления этими данными, расчета пространственных отношений, таких как расстояние, связность и направленность между пространственными единицами, а также визуализации как необработанных данных, так и результатов пространственного анализа в картографическом контексте. Подтипы включают в себя:

  • Геовизуализация (GVis) сочетает в себе научную визуализацию с цифровой картографией для поддержки исследования и анализа географических данных и информации, включая результаты пространственного анализа или моделирования. GVis использует ориентацию человека на обработку визуальной информации при исследовании, анализе и передаче географических данных и информации. В отличие от традиционной картографии, GVis обычно является трехмерной или четырехмерной (последнее включает время) и интерактивной для пользователя.
  • Открытие географических знаний (GKD) — это ориентированный на человека процесс применения эффективных вычислительных инструментов для исследования огромных пространственных баз данных . GKD включает в себя интеллектуальный анализ географических данных , а также сопутствующие действия, такие как отбор данных, очистка и предварительная обработка данных, а также интерпретация результатов. GVis также может играть центральную роль в процессе GKD. GKD основан на предпосылке, что огромные базы данных содержат интересные (действительные, новые, полезные и понятные) закономерности, которые не могут быть обнаружены стандартными аналитическими методами. GKD может служить процессом генерации гипотез для пространственного анализа, создавая предварительные закономерности и взаимосвязи, которые должны быть подтверждены с помощью методов пространственного анализа.
  • Системы поддержки пространственных решений (SDSS) берут существующие пространственные данные и используют различные математические модели для прогнозирования будущего. Это позволяет городским и региональным планировщикам проверять решения о вмешательстве до их реализации. [75]

См. также

[ редактировать ]
Общие темы
Конкретные приложения
  1. ^ История землеустройства. По состоянию на 17 декабря 2020 г. https://info.courthousedirect.com/blog/history-of-land-surveying .
  2. ^ Марк Монмонье Как лгать с картами Издательство Чикагского университета, 1996.
  3. ^ Опеншоу, Стэн (1983). Проблема изменяемой единицы площади (PDF) . ISBN  0-86094-134-5 .
  4. ^ Чен, Сян; Да, Синьюэ; Уайденер, Майкл Дж.; Делмелль, Эрик; Кван, Мэй-По; Шеннон, Джерри; Расин, Расин Ф.; Адамс, Аарон; Лян, Лу; Пэн, Цзя (27 декабря 2022 г.). «Систематический обзор проблемы модифицируемых единиц площади (MAUP) в общественных исследованиях окружающей среды в области продуктов питания» . Городская информатика . 1 . дои : 10.1007/s44212-022-00021-1 . S2CID   255206315 .
  5. ^ «MAUP | Определение – ГИС-словарь поддержки Esri» . support.esri.com . Проверено 9 марта 2017 г.
  6. ^ География, Бюро переписи населения США. «Примечания об изменении географических границ» . www.census.gov . Проверено 24 февраля 2017 г.
  7. ^ Ченг, Тао; Адепеху, Монсуру; Прейс, Тобиас (27 июня 2014 г.). «Проблема модифицируемых временных единиц (MTUP) и ее влияние на обнаружение пространственно-временных кластеров» . ПЛОС ОДИН . 9 (6): e100465. дои : 10.1371/journal.pone.0100465 . ПМК   4074055 . ПМИД   24971885 .
  8. ^ Йонг, Р. де; Брюин, С. де (5 января 2012 г.). «Линейные тенденции во временных рядах сезонной растительности и проблема модифицируемых временных единиц» . Биогеонауки . 9 : 71–77. дои : 10.5194/bg-9-71-2012 .
  9. ^ Декард, Мика; Шнелл, Кори (22 октября 2022 г.). «Временная (не)стабильность горячих точек насильственной преступности между месяцами и проблема изменяемой временной единицы». Преступность и правонарушения . 69 (6–7): 1312–1335. дои : 10.1177/00111287221128483 .
  10. ^ Перейти обратно: а б Кван, Мэй-По (2018). «Проблема усреднения эффекта соседства (NEAP): неуловимый фактор, искажающий эффект соседства» . Int J Environ Res Public Health . 15 (9). дои : 10.3390/ijerph15091841 . ПМК   6163400 . ПМИД   30150510 .
  11. ^ Перейти обратно: а б Кван, Мэй-По (2023). «Человеческая мобильность и проблема усреднения эффекта соседства (NEAP)». Ин Ли, Бин; Сюнь, Ши; А-Син, Чжу; Ван, Цуйчжэнь; Линь, Хуэй (ред.). Новое мышление в ГИС-науке . Спрингер. ISBN  978-981-19-3818-4 . Проверено 7 октября 2023 г.
  12. ^ Сюй, Тяньтянь; Ван, Шии; Лю, Цин; Ким, Чонхван; Чжан, Цзинъи; Рен, Ивэнь; Та, На; Ван, Сяолян; У, Цзяюй (август 2023 г.). «Различия в воздействии цвета растительности на уровне сообщества и на индивидуальном уровне: объяснительная основа, основанная на проблеме усреднения эффекта соседства». Городское лесное хозяйство и городское озеленение . 86 . дои : 10.1016/j.ufug.2023.128001 .
  13. ^ Хэм, Мартен ван; Мэнли, Дэвид (2012). «Исследование эффектов соседства на перепутье. Десять проблем для внедрения будущих исследований». Окружающая среда и планирование A: Экономика и космос . 44 (12): 2787–2793. дои : 10.1068/a4543 .
  14. ^ Парри, Марк (5 ноября 2012 г.). «Эффект соседства» . ОБЗОР ХРОНИКИ. Хроника высшего образования . Проверено 7 октября 2023 г.
  15. ^ Лаббе, Мартина; Лапорт, Гилберт; Мартин, Инмакулада Родригес; Гонсалес, Хуан Хосе Саласар (май 2004 г.). «Проблема кольцевой звезды: многогранный анализ и точный алгоритм». Сети . 43 (3): 177–189. дои : 10.1002/net.10114 . ISSN   0028-3045 .
  16. ^ См. проблему мирового турне TSP, которая уже решена с точностью до 0,05% от оптимального решения. [1]
  17. ^ Перейти обратно: а б с д Кван, Мэй-По (2012). «Проблема неопределенного географического контекста». Анналы Ассоциации американских географов . 102 (5): 958–968. дои : 10.1080/00045608.2012.687349 . S2CID   52024592 .
  18. ^ Перейти обратно: а б с д Кван, Мэй-По (2012). «Как ГИС может помочь решить проблему неопределенного географического контекста в социальных исследованиях» . Анналы ГИС . 18 (4): 245–255. дои : 10.1080/19475683.2012.727867 . S2CID   13215965 . Проверено 4 января 2023 г.
  19. ^ Мэтьюз, Стивен А. (2017). Международная географическая энциклопедия: Люди, Земля, окружающая среда и технологии: проблема неопределенного географического контекста . дои : 10.1002/9781118786352.wbieg0599 .
  20. ^ Перейти обратно: а б Опеншоу, Стэн (1983). Проблема модифицируемого воздушного судна (PDF) . Геокниги. ISBN  0-86094-134-5 .
  21. ^ Перейти обратно: а б с Чен, Сян; Да, Синьюэ; Уайденер, Майкл Дж.; Делмелль, Эрик; Кван, Мэй-По; Шеннон, Джерри; Расин, Расин Ф.; Адамс, Аарон; Лян, Лу; Пэн, Цзя (27 декабря 2022 г.). «Систематический обзор проблемы модифицируемых единиц площади (MAUP) в общественных исследованиях окружающей среды в области продуктов питания» . Городская информатика . 1 . дои : 10.1007/s44212-022-00021-1 . S2CID   255206315 .
  22. ^ Перейти обратно: а б Гао, Фэй; Кихал, Вахида; Мер, Нолвенн Ле; Сурис, Марк; Деген, Северин (2017). «Влияет ли краевой эффект на степень пространственной доступности для поставщиков медицинских услуг?» . Международный журнал географии здравоохранения . 16 (1): 46. дои : 10.1186/s12942-017-0119-3 . ПМЦ   5725922 . ПМИД   29228961 .
  23. ^ Перейти обратно: а б Чен, Сян; Кван, Мэй-По (2015). «Контекстуальная неопределенность, человеческая мобильность и воспринимаемая продовольственная среда: проблема неопределенного географического контекста в исследованиях доступа к продовольствию» . Американский журнал общественного здравоохранения . 105 (9): 1734–1737. дои : 10.2105/AJPH.2015.302792 . ПМЦ   4539815 . ПМИД   26180982 .
  24. ^ Чжоу, Синган; Лю, Цзяньчжэн; Гар Он Йе, Энтони; Юэ, Ян; Ли, Вэйфэн (2015). «Проблема неопределенного географического контекста при определении центров активности с использованием данных позиционирования мобильного телефона и данных о точках интереса». Достижения в области обработки и анализа пространственных данных . Достижения в области географической информатики. стр. 107–119. дои : 10.1007/978-3-319-19950-4_7 . ISBN  978-3-319-19949-8 .
  25. ^ Аллен, Джефф (2019). «Использование сегментов сети при визуализации городских изохрон». Cartographica: Международный журнал географической информации и геовизуализации . 53 (4): 262–270. дои : 10.3138/cart.53.4.2018-0013 . S2CID   133986477 .
  26. ^ Чжао, Пэнсян; Кван, Мэй-По; Чжоу, Сухун (2018). «Проблема неопределенного географического контекста при анализе взаимосвязей между ожирением и искусственной средой в Гуанчжоу» . Международный журнал экологических исследований и общественного здравоохранения . 15 (2): 308. doi : 10.3390/ijerph15020308 . ПМЦ   5858377 . ПМИД   29439392 .
  27. ^ Чжоу, Синган; Лю, Цзяньчжэн; Да, Энтони Гар Он; Юэ, Ян; Ли, Вэйфэн (2015). «Проблема неопределенного географического контекста при определении центров активности с использованием данных позиционирования мобильного телефона и данных о точках интереса» . Достижения в области обработки и анализа пространственных данных . Достижения в области географической информатики. стр. 107–119. дои : 10.1007/978-3-319-19950-4_7 . ISBN  978-3-319-19949-8 . Проверено 22 января 2023 г.
  28. ^ Тоблер, Уолдо (2004). «О первом законе географии: ответ» . Анналы Ассоциации американских географов . 94 (2): 304–310. дои : 10.1111/j.1467-8306.2004.09402009.x . S2CID   33201684 . Проверено 10 марта 2022 г.
  29. ^ Сальво, Дебора; Дюран, Кейси П.; Дули, Эрин Э.; Джонсон, Эшли М.; Олуёми, Абиодун; Габриэль, Келли П.; Ван Дан Берг, Александра; Перес, Адриана; Коль, Гарольд В. (июнь 2019 г.). «Уменьшение проблемы неопределенного географического контекста в исследованиях физической активности: исследование Houston TRAIN». Медицина и наука в спорте и физических упражнениях . 51 (6S): 437. doi : 10.1249/01.mss.0000561808.49993.53 . S2CID   198375226 .
  30. ^ Бережливость, Найджел (1977). Введение в географию времени (PDF) . Geo Abstracts, Университет Восточной Англии. ISBN  0-90224667-4 .
  31. ^ Шмул, Джесси Л.; Джонсон, Исаак Л.; Додсон, Зан М.; Кин, Роберт; Градек, Роберт; Бич, Скотт Р.; Клогерти, Джейн Э. (2018). «Разработка инструмента онлайн-опросов на основе ГИС для выявления воспринимаемой географии окрестностей для решения проблемы неопределенного географического контекста» . Профессиональный географ . 70 (3): 423–433. дои : 10.1080/00330124.2017.1416299 . S2CID   135366460 . Проверено 22 января 2023 г.
  32. ^ Джорнел, А.Г. и Хуйбрегтс, С.Дж., Горная геостатистика , Academic Press Inc, Лондон.
  33. ^ фон Чефальвей, Крис (2023), «Пространственная динамика эпидемий» , Вычислительное моделирование инфекционных заболеваний , Elsevier, стр. 257–303, doi : 10.1016/b978-0-32-395389-4.00017-7 , ISBN  978-0-323-95389-4 , получено 5 марта 2023 г.
  34. ^ Кнегт, Де; Кугенур, МБ; Скидмор, АК; Хейткениг, IMA; Нокс, Нью-Мексико; Слотоу, Р.; Принс, HHT (2010). «Пространственная автокорреляция и масштабирование отношений вид-окружающая среда» . Экология . 91 (8): 2455–2465. Бибкод : 2010Ecol...91.2455D . дои : 10.1890/09-1359.1 . ПМИД   20836467 .
  35. ^ «Пространственная ассоциация» (PDF) . Ассоциация учителей географии Виктории . Проверено 17 ноября 2014 г.
  36. ^ Сун, Юнцзе (июль 2022 г.). «Второе измерение пространственной ассоциации» . Международный журнал прикладного наблюдения Земли и геоинформации . 111 : 102834. дои : 10.1016/j.jag.2022.102834 . hdl : 20.500.11937/88649 . S2CID   249166886 .
  37. ^ Хэлли, Дж. М.; Хартли, С.; Каллиманис, А.С.; Кунин, МЫ; Леннон, Джей-Джей; Сгарделис, СП (1 марта 2004 г.). «Использование и злоупотребление фрактальной методологией в экологии». Экологические письма . 7 (3): 254–271. Бибкод : 2004EcolL...7..254H . дои : 10.1111/j.1461-0248.2004.00568.x . ISSN   1461-0248 .
  38. ^ Оканья-Риола, Р. (2010). «Распространенные ошибки при картировании заболеваний» . Геопространственное здоровье . 4 (2): 139–154. дои : 10.4081/gh.2010.196 . ПМИД   20503184 .
  39. ^ Перейти обратно: а б с д и ж «Понимание пространственных заблуждений» . Руководство для учащихся по геопространственному анализу . Департамент географии штата Пенсильвания . Проверено 27 апреля 2018 г.
  40. ^ Кваттроки, Дейл А. (01 февраля 2016 г.). Интеграция масштаба в дистанционное зондирование и ГИС . Тейлор и Фрэнсис. ISBN  9781482218268 . OCLC   973767077 .
  41. ^ Робинсон, Ws (апрель 2009 г.). «Экологические корреляции и поведение особей*» . Международный журнал эпидемиологии . 38 (2): 337–341. дои : 10.1093/ije/dyn357 . ПМИД   19179346 .
  42. ^ Грэм Дж. Аптон и Бернард Фингелтон: Анализ пространственных данных на примере, том 1: Расположение точек и количественные данные John Wiley & Sons, Нью-Йорк. 1985.
  43. ^ Харман Х.Х. (1960) Современный факторный анализ , Издательство Чикагского университета
  44. ^ Раммель Р.Дж. (1970) Прикладной факторный анализ . Эванстон, Иллинойс: Издательство Северо-Западного университета.
  45. ^ Bell W&E Shevky (1955) Анализ социальной сферы , Stanford University Press
  46. ^ Moser CA и W Scott (1961) Британские города; Статистическое исследование их социальных и экономических различий , Оливер и Бойд, Лондон.
  47. ^ Берри Б.Дж. и Ф. Хортон (1971) Географические перспективы городских систем , Джон Уайли, Нью-Йорк.
  48. ^ Берри Б.Дж. и КБ Смит, редакторы (1972) Справочник по классификации городов: методы и приложения , Джон Уайли, Нью-Йорк.
  49. ^ Цицери М.Ф. (1974) Методы многомерного анализа в англосаксонской географии , Парижский университет-1; бесплатная загрузка на http://www-ohp.univ-paris1.fr
  50. ^ Такер Л.Р. (1964) «Распространение факторного анализа на трехмерные матрицы», в издании Фредериксена Н. и Х. Гулликсена, « Вклад в математическую психологию» , Холт, Райнхарт и Уинстон, штат Нью-Йорк.
  51. ^ Р. Коппи и С. Боласко, ред. (1989), Многосторонний анализ данных , Elsevier, Амстердам.
  52. ^ Кант, Р.Г. (1971). «Изменения в размещении производства в Новой Зеландии в 1957–1968 годах: применение трехрежимного факторного анализа». Новозеландский географ . 27 (1): 38–55. Бибкод : 1971NZGeo..27...38C . дои : 10.1111/j.1745-7939.1971.tb00636.x .
  53. ^ Маршан Б. (1986) Возникновение Лос-Анджелеса, 1940-1970 , Pion Ltd, Лондон
  54. ^ Брансдон, К.; Фотерингем, AS; Чарльтон, Мэн (1996). «Географически взвешенная регрессия: метод исследования пространственной нестационарности» . Географический анализ . 28 (4): 281–298. Бибкод : 1996GeoAn..28..281B . дои : 10.1111/j.1538-4632.1996.tb00936.x .
  55. ^ Перейти обратно: а б Банерджи, Судипто; Карлин, Брэдли П.; Гельфанд, Алан Э. (2014), Иерархическое моделирование и анализ пространственных данных, второе издание , Монографии по статистике и прикладной теории вероятности (2-е изд.), Чепмен и Холл / CRC, ISBN  9781439819173
  56. ^ Биванд, Роджер (20 января 2021 г.). «Представление задач CRAN: анализ пространственных данных» . Проверено 21 января 2021 г.
  57. ^ Банерджи, Судипто ; Гельфанд, Алан Э .; Финли, Эндрю О.; Санг, Хуэйян (2008). «Модели процессов гауссовского прогнозирования для больших наборов пространственных данных» . Журнал Королевского статистического общества, серия B. 70 (4): 825–848. дои : 10.1111/j.1467-9868.2008.00663.x . ПМЦ   2741335 . ПМИД   19750209 .
  58. ^ Датта, Абхируп; Банерджи, Судипто; Финли, Эндрю О.; Гельфанд, Алан Э. (2016). «Иерархические модели гауссовских процессов ближайших соседей для больших наборов геостатистических данных» . Журнал Американской статистической ассоциации . 111 (514): 800–812. arXiv : 1406.7343 . дои : 10.1080/01621459.2015.1044091 . ПМЦ   5927603 . ПМИД   29720777 .
  59. ^ Морер И., Кардилло А., Диас-Гильера А., Приньяно Л., Лосано С. (2020). «Сравнение пространственных сетей: универсальный подход, ориентированный на эффективность». Физический обзор . 101 (4): 042301. Бибкод : 2020PhRvE.101d2301M . дои : 10.1103/PhysRevE.101.042301 . hdl : 2445/161417 . ПМИД   32422764 . S2CID   49564277 .
  60. ^ Гупта Дж., Молнар С., Се Ю., Найт Дж., Шекхар С. (2021). «Глубокие нейронные сети с учетом пространственной изменчивости (SVANN): общий подход». Транзакции ACM в интеллектуальных системах и технологиях . 12 (6): 1–21. дои : 10.1145/3466688 . S2CID   244786699 .
  61. ^ Хагенауэр Дж., Хельбих М. (2022). «Географически взвешенная искусственная нейронная сеть» . Международный журнал географической информатики . 36 (2): 215–235. Бибкод : 2022IJGIS..36..215H . дои : 10.1080/13658816.2021.1871618 . S2CID   233883395 .
  62. ^ Сильва, Э.А.; Кларк, К.К. (2002). «Калибровка модели роста городов SLEUTH для Лиссабона и Порту, Португалия». Компьютеры, окружающая среда и городские системы . 26 (6): 525–552. Бибкод : 2002CEUS...26..525S . дои : 10.1016/S0198-9715(01)00014-X .
  63. ^ Сильва, Э.А. (2003). «Сложность, возникновение и клеточные городские модели: уроки, извлеченные из применения SLEUTH в двух мегаполисах Португалии». Европейские исследования планирования . 13 (1): 93–115. дои : 10.1080/0965431042000312424 . S2CID   197257 .
  64. ^ Лю и Сильва (2017). «Изучение динамики взаимодействия развития креативных индустрий и городской пространственной структуры с помощью агентного моделирования: пример Нанкина, Китай» . Городские исследования . 65 (5): 113–125. дои : 10.1177/0042098016686493 . S2CID   157318972 .
  65. ^ Лю, Лунь; Сильва, Элизабет А.; У, Чуньян; Ван, Хуэй (2017). «Метод масштабной оценки качества городской среды на основе машинного обучения» (PDF) . Компьютерная среда и городские системы . 65 : 113–125. Бибкод : 2017CEUS...65..113L . doi : 10.1016/j.compenvurbsys.2017.06.003 .
  66. ^ Хонарха, М; Каерс, Дж (2010). «Стохастическое моделирование закономерностей с использованием дистанционного моделирования закономерностей». Математические науки о Земле . 42 (5): 487–517. Бибкод : 2010MaGeo..42..487H . дои : 10.1007/s11004-010-9276-7 . S2CID   73657847 .
  67. ^ Тахмасеби, П.; Хезархани, А.; Сахими, М. (2012). «Многоточечное геостатистическое моделирование на основе функций взаимной корреляции». Вычислительные науки о Земле . 16 (3): 779–79742. Бибкод : 2012CmpGe..16..779T . дои : 10.1007/s10596-012-9287-1 . S2CID   62710397 .
  68. ^ Тахмасеби, П.; Сахими, М. (2015). «Реконструкция нестационарных неупорядоченных материалов и сред: водораздельное преобразование и функция взаимной корреляции» . Физический обзор E . 91 (3): 032401. Бибкод : 2015PhRvE..91c2401T . дои : 10.1103/PhysRevE.91.032401 . ПМИД   25871117 .
  69. ^ Тахмасеби, П.; Сахими, М. (2015). «Геостатистическое моделирование и реконструкция пористых сред с помощью функции взаимной корреляции и интеграции твердых и мягких данных». Транспорт в пористых средах . 107 (3): 871–905. Бибкод : 2015TPMed.107..871T . дои : 10.1007/s11242-015-0471-3 . S2CID   123432975 .
  70. ^ «Аспирантура по пространственному анализу» . Университет Райерсона . Проверено 17 декабря 2015 г.
  71. ^ геопространственный. Словарь английского языка Коллинза - полное и несокращенное 11-е издание. Получено 5 августа 2012 г. с сайта CollinsDictionary.com: http://www.collinsdictionary.com/dictionary/english/geospatial
  72. ^ Лексикон 21 века Dictionary.com. Авторские права © 2003-2010 Dictionary.com, LLC http://dictionary.reference.com/browse/geospatial
  73. ^ Геопространственная сеть – сочетание физического и виртуального пространств. Архивировано 2 октября 2011 г. в Wayback Machine , Арно Шарл в журнале Receiver, осень 2008 г.
  74. ^ Чен, Жуйчжи; Книга рекордов Гиннесса, Роберт Э. (2014). Геопространственные вычисления на мобильных устройствах (1-е изд.). Норвуд, Массачусетс: Artech House. п. 228. ИСБН  978-1-60807-565-2 . Проверено 1 июля 2014 г.
  75. ^ Гонсалес, Эноа; Доннелли, Элисон; Джонс, Майк; Хрисулакис, Нектарий; Лопес, Мириам (2012). «Система поддержки принятия решений для устойчивого городского метаболизма в Европе». Обзор оценки воздействия на окружающую среду . 38 : 109–119. дои : 10.1016/j.eiar.2012.06.007 .

Дальнейшее чтение

[ редактировать ]
  • Аблер Р., Дж. Адамс и П. Гулд (1971) Пространственная организация – взгляд географа на мир , Энглвуд Клиффс, Нью-Джерси: Прентис-Холл.
  • Анселин, Л. (1995) «Локальные индикаторы пространственной ассоциации - LISA». Географический анализ , 27, 93–115 .
  • Аванге, Джозеф; Паланц, Бела (2016). Геопространственные алгебраические вычисления, теория и приложения, третье издание . Нью-Йорк: Спрингер. ISBN  978-3319254630 .
  • Банерджи, Судипто; Карлин, Брэдли П.; Гельфанд, Алан Э. (2014), Иерархическое моделирование и анализ пространственных данных, второе издание , Монографии по статистике и прикладной теории вероятности (2-е изд.), Чепмен и Холл / CRC, ISBN  9781439819173
  • Бененсон И. и П.М. Торренс. (2004). Геосимуляция: автоматизированное моделирование городских явлений. Уайли.
  • Фотерингем, А.С., К. Брансдон и М. Чарльтон (2000) Количественная география: перспективы анализа пространственных данных , Sage.
  • Фотерингем, А.С. и М.Е. О'Келли (1989) Модели пространственного взаимодействия: формулировки и приложения , Kluwer Academic
  • Фотерингем, AS; Роджерсон, Пенсильвания (1993). «ГИС и проблемы пространственного анализа». Международный журнал географических информационных систем . 7 :3–19. дои : 10.1080/02693799308901936 .
  • Гудчайлд, МФ (1987). «Пространственно-аналитический взгляд на географические информационные системы». Международный журнал географических информационных систем . 1 (4): 327–44. дои : 10.1080/02693798708927820 .
  • МакИхрен, А.М. и Д.Р.Ф. Тейлор (ред.) (1994) Визуализация в современной картографии , Пергамон.
  • Левин, Н. (2010). CrimeStat: программа пространственной статистики для анализа мест совершения преступлений . Версия 3.3. Ned Levine & Associates, Хьюстон, Техас, и Национальный институт юстиции, Вашингтон, округ Колумбия. Ч. 1-17 + 2 обновления глав
  • Миллер, HJ (2004). «Первый закон Тоблера и пространственный анализ». Анналы Ассоциации американских географов . 94 (2): 284–289. дои : 10.1111/j.1467-8306.2004.09402005.x . S2CID   19172678 .
  • Миллер, Х.Дж. и Дж. Хан (ред.) (2001) Интеллектуальный анализ географических данных и обнаружение знаний , Тейлор и Фрэнсис.
  • О'Салливан, Д. и Д. Анвин (2002) Анализ географической информации , Wiley.
  • Паркер, округ Колумбия; Мэнсон, С.М.; Янссен, Массачусетс ; Хоффманн, МЮ; Дедман, П. (2003). «Многоагентные системы для моделирования изменений землепользования и растительного покрова: обзор». Анналы Ассоциации американских географов . 93 (2): 314–337. CiteSeerX   10.1.1.109.1825 . дои : 10.1111/1467-8306.9302004 . S2CID   130096094 .
  • Уайт, Р.; Энгелен, Г. (1997). «Клеточные автоматы как основа комплексного динамического регионального моделирования». Окружающая среда и планирование B: Планирование и дизайн . 24 (2): 235–246. Бибкод : 1997EnPlB..24..235W . дои : 10.1068/b240235 . S2CID   62516646 .
  • Шельдеман Х. и ван Зонневельд М. (2010). Учебное пособие по пространственному анализу разнообразия и распространения растений . Биоверсити Интернэшнл.
  • Фишер М.М., Люнг Ю. (2001) Геокомпьютерное моделирование: методы и приложения. Шпрингер Верлаг, Берлин
  • Фотерингем, С; Кларк, Дж; Абрахарт, Б. (1997). «Геокомпьютеры и ГИС». Транзакции в ГИС . 2 (3): 199–200. дои : 10.1111/j.1467-9671.1997.tb00010.x . S2CID   205576122 .
  • Опеншоу С. и Абрахарт Р.Дж. (2000) Геовычисления. ЦРК Пресс
  • Диаппи Лидия (2004) Развивающиеся города: геовычисления в территориальном планировании. Ашгейт, Англия
  • Лонгли П.А., Брукс С.М., Макдоннелл Р., Макмиллан Б. (1998), Геовычисления, учебник для начинающих. Джон Уайли и сыновья, Чичестер
  • Элен, Дж; Колдуэлл, ДР; Хардинг, С. (2002). «Геокомпьютинг: что это такое?». Comput Environ и Urban Syst . 26 (4): 257–265. Бибкод : 2002CEUS...26..257E . дои : 10.1016/s0198-9715(01)00047-3 .
  • Гахеган, М. (1999). «Что такое геокомпьютинг?». Транзакции в ГИС . 3 (3): 203–206. дои : 10.1111/1467-9671.00017 . S2CID   44656909 .
  • «Геовычисления и городское планирование» Мурганте Б., Боррусо Г., Лапуччи А. (2009) Исследования в области вычислительного интеллекта , Vol. 176. Шпрингер-Верлаг, Берлин.
  • Рейс, Хосе П.; Сильва, Элизабет А.; Пиньо, Пауло (2016). «Пространственные метрики для изучения городских моделей в растущих и сокращающихся городах» . Городская география . 37 (2): 246–271. дои : 10.1080/02723638.2015.1096118 . S2CID   62886095 .
  • Пападимитриу, Ф. (2002). «Моделирование индикаторов и показателей сложности ландшафта: подход с использованием ГИС». Экологические показатели . 2 (1–2): 17–25. Бибкод : 2002EcInd...2...17P . дои : 10.1016/S1470-160X(02)00052-3 .
  • Фишер М., Люнг Й. (2010) «Геовычислительное моделирование: методы и приложения». Достижения в пространственной науке. Шпрингер-Верлаг, Берлин.
  • Мурганте Б., Боррусо Г., Лапуччи А. (2011) «Геовычисления, устойчивое развитие и экологическое планирование» Исследования в области вычислительного интеллекта , Vol. 348. Шпрингер-Верлаг, Берлин.
  • Тахмасеби, П.; Хезархани, А.; Сахими, М. (2012). «Многоточечное геостатистическое моделирование на основе функций взаимной корреляции». Вычислительные науки о Земле . 16 (3): 779–79742. Бибкод : 2012CmpGe..16..779T . дои : 10.1007/s10596-012-9287-1 . S2CID   62710397 .
  • Геза, Тот; Арон, Сокровище; Золтан, Надь (2014). Европейская пространственная структура . ПЕЙДЖ ЛАМБЕРТ Академическое издательство. дои : 10.13140/2.1.1560.2247 .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: fd3eee6f1ac1a0dce7bd1227580bce06__1720240200
URL1:https://arc.ask3.ru/arc/aa/fd/06/fd3eee6f1ac1a0dce7bd1227580bce06.html
Заголовок, (Title) документа по адресу, URL1:
Spatial analysis - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)