Jump to content

Геометрия

Страница полузащищена
(Перенаправлено с Геометрического )

Геометрия (от древнегреческого γεωμετρία ( geōmetria ) «измерение земли»; от γῆ ( ) «земля, земля» и μετρον ( métron ) «мера») [1] — раздел математики, изучающий такие свойства пространства, как расстояние, форма, размер и взаимное расположение фигур. [2] Геометрия, наряду с арифметикой , является одним из древнейших разделов математики. Математика, работающего в области геометрии, называют геометром . До 19 века геометрия была почти исключительно посвящена евклидовой геометрии . [а] который включает в себя понятия точки , линии , плоскости , расстояния , угла , поверхности и кривой как фундаментальные понятия. [3]

Первоначально разработанная для моделирования физического мира, геометрия нашла применение практически во всех науках , а также в искусстве , архитектуре и других видах деятельности, связанных с графикой . [4] Геометрия также имеет приложения в областях математики, которые, по-видимому, не связаны друг с другом. Например, методы алгебраической геометрии играют фундаментальную роль в доказательстве Уайлсом Великой теоремы Ферма — проблемы, которая была сформулирована в терминах элементарной арифметики и оставалась нерешенной в течение нескольких столетий.

During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss's Theorema Egregium ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied intrinsically, that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries without the parallel postulate (non-Euclidean geometries) can be developed without introducing any contradiction. The geometry that underlies general relativity is a famous application of non-Euclidean geometry.

Since the late 19th century, the scope of geometry has been greatly expanded, and the field has been split in many subfields that depend on the underlying methods—differential geometry, algebraic geometry, computational geometry, algebraic topology, discrete geometry (also known as combinatorial geometry), etc.—or on the properties of Euclidean spaces that are disregarded—projective geometry that consider only alignment of points but not distance and parallelism, affine geometry that omits the concept of angle and distance, finite geometry that omits continuity, and others. This enlargement of the scope of geometry led to a change of meaning of the word "space", which originally referred to the three-dimensional space of the physical world and its model provided by Euclidean geometry; presently a geometric space, or simply a space is a mathematical structure on which some geometry is defined.

History

A European and an Arab practicing geometry in the 15th century

The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia and Egypt in the 2nd millennium BC.[5][6] Early geometry was a collection of empirically discovered principles concerning lengths, angles, areas, and volumes, which were developed to meet some practical need in surveying, construction, astronomy, and various crafts. The earliest known texts on geometry are the Egyptian Rhind Papyrus (2000–1800 BC) and Moscow Papyrus (c. 1890 BC), and the Babylonian clay tablets, such as Plimpton 322 (1900 BC). For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, or frustum.[7] Later clay tablets (350–50 BC) demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiter's position and motion within time-velocity space. These geometric procedures anticipated the Oxford Calculators, including the mean speed theorem, by 14 centuries.[8] South of Egypt the ancient Nubians established a system of geometry including early versions of sun clocks.[9][10]

In the 7th century BC, the Greek mathematician Thales of Miletus used geometry to solve problems such as calculating the height of pyramids and the distance of ships from the shore. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem.[11] Pythagoras established the Pythagorean School, which is credited with the first proof of the Pythagorean theorem,[12] though the statement of the theorem has a long history.[13][14] Eudoxus (408–c. 355 BC) developed the method of exhaustion, which allowed the calculation of areas and volumes of curvilinear figures,[15] as well as a theory of ratios that avoided the problem of incommensurable magnitudes, which enabled subsequent geometers to make significant advances. Around 300 BC, geometry was revolutionized by Euclid, whose Elements, widely considered the most successful and influential textbook of all time,[16] introduced mathematical rigor through the axiomatic method and is the earliest example of the format still used in mathematics today, that of definition, axiom, theorem, and proof. Although most of the contents of the Elements were already known, Euclid arranged them into a single, coherent logical framework.[17] The Elements was known to all educated people in the West until the middle of the 20th century and its contents are still taught in geometry classes today.[18] Archimedes (c. 287–212 BC) of Syracuse, Italy used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave remarkably accurate approximations of pi.[19] He also studied the spiral bearing his name and obtained formulas for the volumes of surfaces of revolution.

Woman teaching geometry. Illustration at the beginning of a medieval translation of Euclid's Elements, (c. 1310).

Indian mathematicians also made many important contributions in geometry. The Shatapatha Brahmana (3rd century BC) contains rules for ritual geometric constructions that are similar to the Sulba Sutras.[20] According to (Hayashi 2005, p. 363), the Śulba Sūtras contain "the earliest extant verbal expression of the Pythagorean Theorem in the world, although it had already been known to the Old Babylonians. They contain lists of Pythagorean triples,[b] which are particular cases of Diophantine equations.[21]In the Bakhshali manuscript, there are a handful of geometric problems (including problems about volumes of irregular solids). The Bakhshali manuscript also "employs a decimal place value system with a dot for zero."[22] Aryabhata's Aryabhatiya (499) includes the computation of areas and volumes.Brahmagupta wrote his astronomical work Brāhmasphuṭasiddhānta in 628. Chapter 12, containing 66 Sanskrit verses, was divided into two sections: "basic operations" (including cube roots, fractions, ratio and proportion, and barter) and "practical mathematics" (including mixture, mathematical series, plane figures, stacking bricks, sawing of timber, and piling of grain).[23] In the latter section, he stated his famous theorem on the diagonals of a cyclic quadrilateral. Chapter 12 also included a formula for the area of a cyclic quadrilateral (a generalization of Heron's formula), as well as a complete description of rational triangles (i.e. triangles with rational sides and rational areas).[23]

In the Middle Ages, mathematics in medieval Islam contributed to the development of geometry, especially algebraic geometry.[24][25] Al-Mahani (b. 853) conceived the idea of reducing geometrical problems such as duplicating the cube to problems in algebra.[26] Thābit ibn Qurra (known as Thebit in Latin) (836–901) dealt with arithmetic operations applied to ratios of geometrical quantities, and contributed to the development of analytic geometry.[27] Omar Khayyam (1048–1131) found geometric solutions to cubic equations.[28] The theorems of Ibn al-Haytham (Alhazen), Omar Khayyam and Nasir al-Din al-Tusi on quadrilaterals, including the Lambert quadrilateral and Saccheri quadrilateral, were part of a line of research on the parallel postulate continued by later European geometers, including Vitello (c. 1230 – c. 1314), Gersonides (1288–1344), Alfonso, John Wallis, and Giovanni Girolamo Saccheri, that by the 19th century led to the discovery of hyperbolic geometry.[29]

In the early 17th century, there were two important developments in geometry. The first was the creation of analytic geometry, or geometry with coordinates and equations, by René Descartes (1596–1650) and Pierre de Fermat (1601–1665).[30] This was a necessary precursor to the development of calculus and a precise quantitative science of physics.[31] The second geometric development of this period was the systematic study of projective geometry by Girard Desargues (1591–1661).[32] Projective geometry studies properties of shapes which are unchanged under projections and sections, especially as they relate to artistic perspective.[33]

Two developments in geometry in the 19th century changed the way it had been studied previously.[34] These were the discovery of non-Euclidean geometries by Nikolai Ivanovich Lobachevsky, János Bolyai and Carl Friedrich Gauss and of the formulation of symmetry as the central consideration in the Erlangen programme of Felix Klein (which generalized the Euclidean and non-Euclidean geometries). Two of the master geometers of the time were Bernhard Riemann (1826–1866), working primarily with tools from mathematical analysis, and introducing the Riemann surface, and Henri Poincaré, the founder of algebraic topology and the geometric theory of dynamical systems. As a consequence of these major changes in the conception of geometry, the concept of "space" became something rich and varied, and the natural background for theories as different as complex analysis and classical mechanics.[35]

Main concepts

The following are some of the most important concepts in geometry.[3][36]

Axioms

An illustration of Euclid's parallel postulate

Euclid took an abstract approach to geometry in his Elements,[37] one of the most influential books ever written.[38] Euclid introduced certain axioms, or postulates, expressing primary or self-evident properties of points, lines, and planes.[39] He proceeded to rigorously deduce other properties by mathematical reasoning. The characteristic feature of Euclid's approach to geometry was its rigor, and it has come to be known as axiomatic or synthetic geometry.[40] At the start of the 19th century, the discovery of non-Euclidean geometries by Nikolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860), Carl Friedrich Gauss (1777–1855) and others[41] led to a revival of interest in this discipline, and in the 20th century, David Hilbert (1862–1943) employed axiomatic reasoning in an attempt to provide a modern foundation of geometry.[42]

Objects

Points

Points are generally considered fundamental objects for building geometry. They may be defined by the properties that they must have, as in Euclid's definition as "that which has no part",[43] or in synthetic geometry. In modern mathematics, they are generally defined as elements of a set called space, which is itself axiomatically defined.

With these modern definitions, every geometric shape is defined as a set of points; this is not the case in synthetic geometry, where a line is another fundamental object that is not viewed as the set of the points through which it passes.

However, there are modern geometries in which points are not primitive objects, or even without points.[44][45] One of the oldest such geometries is Whitehead's point-free geometry, formulated by Alfred North Whitehead in 1919–1920.

Lines

Euclid described a line as "breadthless length" which "lies equally with respect to the points on itself".[43] In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic geometry, a line in the plane is often defined as the set of points whose coordinates satisfy a given linear equation,[46] but in a more abstract setting, such as incidence geometry, a line may be an independent object, distinct from the set of points which lie on it.[47] In differential geometry, a geodesic is a generalization of the notion of a line to curved spaces.[48]

Planes

In Euclidean geometry a plane is a flat, two-dimensional surface that extends infinitely;[43] the definitions for other types of geometries are generalizations of that. Planes are used in many areas of geometry. For instance, planes can be studied as a topological surface without reference to distances or angles;[49] it can be studied as an affine space, where collinearity and ratios can be studied but not distances;[50] it can be studied as the complex plane using techniques of complex analysis;[51] and so on.

Angles

Euclid defines a plane angle as the inclination to each other, in a plane, of two lines which meet each other, and do not lie straight with respect to each other.[43] In modern terms, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle.[52]

Acute (a), obtuse (b), and straight (c) angles. The acute and obtuse angles are also known as oblique angles.

In Euclidean geometry, angles are used to study polygons and triangles, as well as forming an object of study in their own right.[43] The study of the angles of a triangle or of angles in a unit circle forms the basis of trigonometry.[53]

In differential geometry and calculus, the angles between plane curves or space curves or surfaces can be calculated using the derivative.[54][55]

Curves

A curve is a 1-dimensional object that may be straight (like a line) or not; curves in 2-dimensional space are called plane curves and those in 3-dimensional space are called space curves.[56]

In topology, a curve is defined by a function from an interval of the real numbers to another space.[49] In differential geometry, the same definition is used, but the defining function is required to be differentiable.[57] Algebraic geometry studies algebraic curves, which are defined as algebraic varieties of dimension one.[58]

Surfaces

A sphere is a surface that can be defined parametrically (by x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ) or implicitly (by x2 + y2 + z2r2 = 0).

A surface is a two-dimensional object, such as a sphere or paraboloid.[59] In differential geometry[57] and topology,[49] surfaces are described by two-dimensional 'patches' (or neighborhoods) that are assembled by diffeomorphisms or homeomorphisms, respectively. In algebraic geometry, surfaces are described by polynomial equations.[58]

Solids

In Euclidean space, a ball is the volume bounded by a sphere.

A solid is a three-dimensional object bounded by a closed surface; for example, a ball is the volume bounded by a sphere.

Manifolds

A manifold is a generalization of the concepts of curve and surface. In topology, a manifold is a topological space where every point has a neighborhood that is homeomorphic to Euclidean space.[49] In differential geometry, a differentiable manifold is a space where each neighborhood is diffeomorphic to Euclidean space.[57]

Manifolds are used extensively in physics, including in general relativity and string theory.[60]

Measures: length, area, and volume

Length, area, and volume describe the size or extent of an object in one dimension, two dimension, and three dimensions respectively.[61]

In Euclidean geometry and analytic geometry, the length of a line segment can often be calculated by the Pythagorean theorem.[62]

Area and volume can be defined as fundamental quantities separate from length, or they can be described and calculated in terms of lengths in a plane or 3-dimensional space.[61] Mathematicians have found many explicit formulas for area and formulas for volume of various geometric objects. In calculus, area and volume can be defined in terms of integrals, such as the Riemann integral[63] or the Lebesgue integral.[64]

Other geometrical measures include the angular measure, curvature, compactness measures.

Metrics and measures

Visual checking of the Pythagorean theorem for the (3, 4, 5) triangle as in the Zhoubi Suanjing 500–200 BC. The Pythagorean theorem is a consequence of the Euclidean metric.

The concept of length or distance can be generalized, leading to the idea of metrics.[65] For instance, the Euclidean metric measures the distance between points in the Euclidean plane, while the hyperbolic metric measures the distance in the hyperbolic plane. Other important examples of metrics include the Lorentz metric of special relativity and the semi-Riemannian metrics of general relativity.[66]

In a different direction, the concepts of length, area and volume are extended by measure theory, which studies methods of assigning a size or measure to sets, where the measures follow rules similar to those of classical area and volume.[67]

Congruence and similarity

Congruence and similarity are concepts that describe when two shapes have similar characteristics.[68] In Euclidean geometry, similarity is used to describe objects that have the same shape, while congruence is used to describe objects that are the same in both size and shape.[69] Hilbert, in his work on creating a more rigorous foundation for geometry, treated congruence as an undefined term whose properties are defined by axioms.

Congruence and similarity are generalized in transformation geometry, which studies the properties of geometric objects that are preserved by different kinds of transformations.[70]

Compass and straightedge constructions

Classical geometers paid special attention to constructing geometric objects that had been described in some other way. Classically, the only instruments used in most geometric constructions are the compass and straightedge.[c] Also, every construction had to be complete in a finite number of steps. However, some problems turned out to be difficult or impossible to solve by these means alone, and ingenious constructions using neusis, parabolas and other curves, or mechanical devices, were found.

Rotation and orientation

The geometrical concepts of rotation and orientation define part of the placement of objects embedded in the plane or in space.

Dimension

Снежинка Коха с фрактальной размерностью =log4/log3 и топологической размерностью =1.

Там, где традиционная геометрия допускала размеры 1 ( линия ), 2 ( плоскость ) и 3 (наш окружающий мир, понимаемый как трехмерное пространство использовали более высокие измерения . ), математики и физики на протяжении почти двух столетий [71] Одним из примеров математического использования более высоких измерений является конфигурационное пространство системы физической системы, размерность которого равна степеням свободы . Например, конфигурацию винта можно описать пятью координатами. [72]

В общей топологии понятие размерности было расширено от натуральных чисел до бесконечной размерности ( гильбертовых пространств например, ) и положительных действительных чисел (во фрактальной геометрии ). [73] В алгебраической геометрии размерность алгебраического многообразия получила ряд, казалось бы, различных определений, все из которых в наиболее распространенных случаях эквивалентны. [74]

Симметрия

Замощение гиперболической плоскости

Тема симметрии в геометрии почти так же стара, как и сама наука геометрия. [75] Симметричные формы, такие как круг , правильные многоугольники и платоновые тела, имели глубокое значение для многих древних философов. [76] и были подробно исследованы еще до времен Евклида. [39] Симметричные узоры встречаются в природе и были художественно переданы во множестве форм, включая графику Леонардо да Винчи , М.К. Эшера и других. [77] Во второй половине XIX века взаимосвязь между симметрией и геометрией стала объектом пристального внимания. Феликса Кляйна провозгласила Эрлангенская программа , что в очень точном смысле симметрия, выраженная через понятие группы преобразований , определяет, что такое геометрия . [78] Симметрия в классической евклидовой геометрии представлена ​​конгруэнциями и жесткими движениями, тогда как в проективной геометрии аналогичную роль играют коллинеации геометрические преобразования , превращающие прямые линии в прямые. [79] Однако именно в новых геометриях Бояи и Лобачевского, Римана, Клиффорда и Клейна и Софуса Ли идея Кляйна «определить геометрию через ее группу симметрии » нашла свое вдохновение. [80] Как дискретная, так и непрерывная симметрия играют важную роль в геометрии, первая — в топологии и геометрической теории групп . [81] [82] последнее в теории Ли и римановой геометрии . [83] [84]

Другой тип симметрии — это принцип двойственности в проективной геометрии , среди других областей. Этот метафеномен можно грубо описать следующим образом: в любой теореме обмен точкой с плоскостью , соединение с встречей , лежит в с содержит , и результатом является в равной степени истинная теорема. [85] Похожая и тесно связанная форма двойственности существует между векторным пространством и его двойственным пространством . [86]

Современная геометрия

Евклидова геометрия

Евклидова геометрия — это геометрия в ее классическом понимании. [87] Поскольку он моделирует пространство физического мира, он используется во многих научных областях, таких как механика , астрономия , кристаллография , [88] и многие технические области, такие как инженерия , [89] архитектура , [90] геодезия , [91] аэродинамика , [92] и навигация . [93] В обязательную учебную программу большинства стран входит изучение таких евклидовых понятий, как точки , прямые , плоскости , углы , треугольники , конгруэнтность , подобие , объемные фигуры , круги , аналитическая геометрия . [94]

Евклидовы векторы

Евклидовы векторы используются во множестве приложений в физике и технике, таких как положение , смещение , деформация , скорость , ускорение , сила и т. д.

Дифференциальная геометрия

Дифференциальная геометрия использует инструменты математического анализа для изучения проблем, связанных с кривизной.

Дифференциальная геометрия использует методы исчисления и линейной алгебры для изучения задач геометрии. [95] Он имеет приложения в физике , [96] эконометрика , [97] и биоинформатика , [98] среди других.

В частности, дифференциальная геометрия важна для математической физики из-за Альберта Эйнштейна о общей теории относительности постулата что Вселенная искривлена том , . [99] Дифференциальная геометрия может быть либо внутренней (это означает, что рассматриваемые ею пространства представляют собой гладкие многообразия, геометрическая структура которых определяется римановой метрикой , которая определяет, как измеряются расстояния вблизи каждой точки), либо внешней (когда изучаемый объект является частью некоторого окружающего пространства). плоское евклидово пространство). [100]

Неевклидова геометрия

Поведение линий с общим перпендикуляром в каждом из трёх типов геометрии
В математике тесно неевклидова геометрия состоит из трёх геометрий, основанных на аксиомах, связанных с теми, которые определяют евклидову геометрию . Поскольку евклидова геометрия лежит на пересечении метрической геометрии и аффинной геометрии , неевклидова геометрия возникает либо в результате замены постулата параллельности альтернативой, либо в результате ослабления метрического требования. В первом случае получаются гиперболическая геометрия и эллиптическая геометрия , традиционные неевклидовы геометрии. связаны аффинные плоскости Когда метрические требования ослаблены, с планарными алгебрами , которые приводят к кинематической геометрии , которую также называют неевклидовой геометрией.

Топология

Утолщение узла трилистника

Топология — это область, изучающая свойства непрерывных отображений . [101] и может считаться обобщением евклидовой геометрии. [102] На практике топология часто означает работу с крупномасштабными свойствами пространств, такими как связность и компактность . [49]

Область топологии, получившая массовое развитие в 20 веке, в техническом смысле представляет собой разновидность геометрии преобразований , в которой преобразования являются гомеоморфизмами . [103] Это часто выражалось в форме поговорки: «Топология — это геометрия резинового листа». Подобласти топологии включают геометрическую топологию , дифференциальную топологию , алгебраическую топологию и общую топологию . [104]

Алгебраическая геометрия

Квинтик Калаби – Яу тройной

Алгебраическая геометрия — это, по сути, изучение с помощью алгебраических методов некоторых геометрических фигур, называемых алгебраическими множествами и определяемых как общие нули многочленов многомерных чисел . [105] Алгебраическая геометрия стала автономной подобластью геометрии c. 1900 , с теоремой под названием Nullstellensatz Гильберта , которая устанавливает строгое соответствие между алгебраическими множествами и идеалами многочленов колец . Это привело к параллельному развитию алгебраической геометрии и ее алгебраического аналога, называемого коммутативной алгеброй . [106] С конца 1950-х до середины 1970-х годов алгебраическая геометрия претерпела серьезное фундаментальное развитие с введением Александром Гротендиком теории схем , которая позволяет использовать топологические методы , включая теории когомологий , в чисто алгебраическом контексте. [106] Теория схем позволила решить множество сложных задач не только в геометрии, но и в теории чисел . Доказательство Уайлса Великой теоремы Ферма является известным примером давней проблемы теории чисел, для решения которой используется теория схем и ее расширения, такие как теория стека . Одна из семи задач Премии тысячелетия , гипотеза Ходжа , является вопросом алгебраической геометрии. [107]

Алгебраическая геометрия имеет приложения во многих областях, включая криптографию. [108] и теория струн . [109]

Сложная геометрия

Сложная геометрия изучает природу геометрических структур, смоделированных на сложной плоскости или возникающих из нее . [110] [111] [112] Комплексная геометрия лежит на стыке дифференциальной геометрии, алгебраической геометрии и анализа нескольких комплексных переменных и нашла применение в теории струн и зеркальной симметрии . [113]

Комплексная геометрия впервые появилась как отдельная область исследования в работах Бернхарда Римана при изучении римановых поверхностей . [114] [115] [116] Работы в духе Римана проводились итальянской школой алгебраической геометрии в начале 1900-х годов. Современное рассмотрение сложной геометрии началось с работы Жана-Пьера Серра , который ввел в предмет понятие пучков и осветил отношения между сложной геометрией и алгебраической геометрией. [117] [118] Основными объектами изучения комплексной геометрии являются комплексные многообразия , комплексные алгебраические многообразия и комплексные аналитические многообразия , а также голоморфные векторные расслоения и когерентные пучки над этими пространствами. Специальные примеры пространств, изучаемых в комплексной геометрии, включают римановы поверхности и многообразия Калаби – Яу , и эти пространства находят применение в теории струн. В частности, мировые листы струн моделируются римановыми поверхностями, а теория суперструн предсказывает, что дополнительные 6 измерений 10-мерного пространства-времени могут быть смоделированы многообразиями Калаби – Яу.

Дискретная геометрия

Дискретная геометрия включает изучение различных упаковок сфер .

Дискретная геометрия — предмет, имеющий тесную связь с выпуклой геометрией . [119] [120] [121] В основном он касается вопросов взаимного расположения простых геометрических объектов, таких как точки, линии и круги. Примеры включают изучение упаковок сфер , триангуляции , гипотезы Кнезера-Поульсена и т. д. [122] [123] Она разделяет многие методы и принципы с комбинаторикой .

Вычислительная геометрия

Вычислительная геометрия занимается алгоритмами и их реализациями для управления геометрическими объектами. Исторически важные проблемы включали задачу коммивояжера , минимальные связующие деревья , удаление скрытых линий и линейное программирование . [124]

Несмотря на то, что геометрия является молодой областью, она имеет множество применений в компьютерном зрении , обработке изображений , компьютерном проектировании , медицинской визуализации и т. д. [125]

Геометрическая теория групп

Граф Кэли свободной группы с двумя образующими a и b

Геометрическая теория групп использует крупномасштабные геометрические методы для изучения конечно порожденных групп . [126] Это тесно связано с низкоразмерной топологией , например, в Григорием Перельманом доказательстве гипотезы геометризации , которое включало доказательство гипотезы Пуанкаре , проблемы Премии тысячелетия . [127]

Геометрическая теория групп часто вращается вокруг графа Кэли , который является геометрическим представлением группы. Другие важные темы включают квазиизометрии , гиперболические группы Громова и прямоугольные группы Артина . [126] [128]

Выпуклая геометрия

Выпуклая геометрия исследует выпуклые формы в евклидовом пространстве и его более абстрактных аналогах, часто используя методы реального анализа и дискретной математики . [129] Он имеет тесную связь с выпуклым анализом , оптимизацией и функциональным анализом , а также с важными приложениями в теории чисел .

Выпуклая геометрия восходит к античности. [129] Архимед дал первое известное точное определение выпуклости. Изопериметрическая задача , повторяющаяся концепция в выпуклой геометрии, изучалась также греками, в том числе Зенодором . Архимед, Платон , Евклид , а позже Кеплер и Коксетер изучали выпуклые многогранники и их свойства. Начиная с 19-го века, математики изучали другие области выпуклой математики, включая многогранники более высокой размерности, объём и площадь поверхности выпуклых тел, гауссову кривизну , алгоритмы , мозаики и решётки .

Приложения

Геометрия нашла применение во многих областях, некоторые из которых описаны ниже.

Искусство

Медресе Бу Инания, Фес, Марокко, мозаичные плитки зеллиг, образующие сложные геометрические мозаики.

Математика и искусство связаны по-разному. Например, теория перспективы показала, что геометрия — это нечто большее, чем просто метрические свойства фигур: перспектива является источником проективной геометрии . [130]

Художники издавна использовали концепцию пропорций в дизайне. Витрувий разработал сложную теорию идеальных пропорций человеческой фигуры. [131] Эти концепции использовались и адаптировались художниками от Микеланджело до современных художников комиксов. [132]

Золотое сечение — это особая пропорция, которая сыграла противоречивую роль в искусстве. Часто утверждается, что это наиболее эстетичное соотношение длин, и часто утверждается, что оно включено в известные произведения искусства, хотя наиболее надежные и недвусмысленные примеры были намеренно созданы художниками, знающими об этой легенде. [133]

Плитки или мозаика использовались в искусстве на протяжении всей истории. Исламское искусство часто использует мозаику, как и искусство Эшера . [134] В работе Эшера также использовалась гиперболическая геометрия .

Сезанн выдвинул теорию, согласно которой все изображения могут быть построены из сферы , конуса и цилиндра . Это до сих пор используется в теории искусства, хотя точный список форм варьируется от автора к автору. [135] [136]

Архитектура

Геометрия имеет множество применений в архитектуре. Фактически, было сказано, что геометрия лежит в основе архитектурного дизайна. [137] [138] Применение геометрии в архитектуре включает использование проективной геометрии для создания принудительной перспективы . [139] использование конических сечений при строительстве куполов и подобных объектов, [90] использование тесселяций , [90] и использование симметрии. [90]

Физика

Область астрономии , особенно в том, что касается картографирования положения звезд и планет на небесной сфере и описания взаимосвязи между движениями небесных тел, на протяжении всей истории служила важным источником геометрических проблем. [140]

риманова геометрия и псевдориманова используются В общей теории относительности геометрия . [141] Теория струн использует несколько вариантов геометрии. [142] как и квантовая теория информации . [143]

Другие области математики

Пифагорейцы открыли, что стороны треугольника могут иметь несоизмеримую длину.

Исчисление находилось под сильным влиянием геометрии. [30] Например, введение координат Рене Декартом и параллельное развитие алгебры ознаменовали новый этап в геометрии, поскольку геометрические фигуры, такие как плоские кривые , теперь можно было представить аналитически в форме функций и уравнений. Это сыграло ключевую роль в появлении исчисления бесконечно малых в 17 веке. Аналитическая геометрия продолжает оставаться основой учебной программы по математическому анализу и математическому анализу. [144] [145]

Другая важная область применения — теория чисел . [146] В Древней Греции пифагорейцы . рассматривали роль чисел в геометрии Однако открытие несоизмеримых длин противоречило их философским воззрениям. [147] С 19-го века геометрия использовалась для решения задач теории чисел, например, посредством геометрии чисел или, в последнее время, теории схем , которая используется в доказательстве Уайлса Великой теоремы Ферма . [148]

См. также

Списки
Связанные темы
Другие приложения

Примечания

  1. ^ До 19 века в геометрии доминировало предположение, что все геометрические конструкции евклидовы. В 19 веке и позже это было поставлено под сомнение развитием гиперболической геометрии Лобачевским другими и других неевклидовых геометрий Гауссом и . Затем стало понятно, что неявно неевклидова геометрия появлялась на протяжении всей истории, включая работы Дезарга в 17 веке, вплоть до неявного использования сферической геометрии для понимания геодезии Земли и навигации по океанам, начиная с античности.
  2. ^ Тройки Пифагора - это тройки целых чисел. с имуществом: . Таким образом, , , и т. д.
  3. ^ У древних греков были конструкции с использованием других инструментов.

Ссылки

  1. ^ «Геометрия — формулы, примеры | Плоская и объемная геометрия» . Куемат . Проверено 31 августа 2023 г.
  2. ^ Винченцо Де Риси (2015). Математизация пространства: объекты геометрии от античности до раннего Нового времени . Биркхойзер. стр. 1–. ISBN  978-3-319-12102-4 . Архивировано из оригинала 20 февраля 2021 года . Проверено 14 сентября 2019 г.
  3. ^ Перейти обратно: а б Табак, Джон (2014). Геометрия: язык пространства и формы . Издательство информационной базы. п. xiv. ISBN  978-0-8160-4953-0 .
  4. ^ Уолтер А. Мейер (2006). Геометрия и ее приложения . Эльзевир. ISBN  978-0-08-047803-6 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  5. ^ Фриберг, Йоран (1981). «Методы и традиции вавилонской математики» . История Математики . 8 (3): 277–318. дои : 10.1016/0315-0860(81)90069-0 .
  6. ^ Нойгебауэр, Отто (1969) [1957]. «Глава IV Египетская математика и астрономия» . Точные науки в древности (2-е изд.). Дуврские публикации . стр. 71–96. ISBN  978-0-486-22332-2 . Архивировано из оригинала 14 августа 2020 года . Проверено 27 февраля 2021 г. .
  7. ^ ( Бойер 1991 , «Египет», стр. 19)
  8. ^ Оссендрийвер, Матье (29 января 2016 г.). «Древние вавилонские астрономы рассчитали положение Юпитера по площади под графиком скорости времени». Наука . 351 (6272): 482–484. Бибкод : 2016Sci...351..482O . doi : 10.1126/science.aad8085 . ПМИД   26823423 . S2CID   206644971 .
  9. ^ Депюйдт, Лео (1 января 1998 г.). «Гномоны в Мероэ и ранняя тригонометрия». Журнал египетской археологии . 84 : 171–180. дои : 10.2307/3822211 . JSTOR   3822211 .
  10. ^ Слейман, Эндрю (27 мая 1998 г.). «Неолитические наблюдатели за небом» . Архив журнала «Археология» . Архивировано из оригинала 5 июня 2011 года . Проверено 17 апреля 2011 г.
  11. ^ ( Бойер 1991 , «Иония и пифагорейцы», стр. 43)
  12. ^ Ивс, Ховард, Введение в историю математики , Сондерс, 1990, ISBN   0-03-029558-0 .
  13. ^ Курт фон Фриц (1945). «Открытие несоизмеримости Гиппасом Метапонтумским». Классика в истории греческой математики . Анналы математики; Бостонские исследования в области философии науки. Том. 240. стр. 211–231. дои : 10.1007/978-1-4020-2640-9_11 . ISBN  978-90-481-5850-8 . JSTOR   1969021 .
  14. ^ Джеймс Р. Чойк (1980). «Пентаграмма и открытие иррационального числа» . Двухлетний математический журнал колледжа . 11 (5): 312–316. дои : 10.2307/3026893 . JSTOR   3026893 . Архивировано из оригинала 9 сентября 2022 года . Проверено 9 сентября 2022 г.
  15. ^ ( Бойер 1991 , «Эпоха Платона и Аристотеля», стр. 92)
  16. ^ ( Бойер 1991 , «Евклид Александрийский», стр. 119)
  17. ^ ( Бойер 1991 , «Евклид Александрийский», стр. 104)
  18. ^ Говард Ивс , Введение в историю математики , Сондерс, 1990, ISBN   0-03-029558-0 с. 141: «Ни одно произведение, кроме Библии , не использовалось более широко…»
  19. ^ О'Коннор, Джей-Джей; Робертсон, EF (февраль 1996 г.). «История исчисления» . Университет Сент-Эндрюс . Архивировано из оригинала 15 июля 2007 года . Проверено 7 августа 2007 г.
  20. ^ Стаал, Фриц (1999). «Греческая и ведическая геометрия». Журнал индийской философии . 27 (1–2): 105–127. дои : 10.1023/А:1004364417713 . S2CID   170894641 .
  21. ^ ( Кук 2005 , стр. 198): «Арифметическое содержание Шулва-сутр состоит из правил поиска пифагорейских троек, таких как (3, 4, 5), (5, 12, 13), (8, 15, 17). и (12, 35, 37). Неизвестно, какое практическое значение имели эти арифметические правила. Лучшее предположение состоит в том, что в индуистском доме должно было гореть три огня на трех разных алтарях. три алтаря должны были иметь разную форму, но все три должны были иметь одинаковую площадь. Эти условия приводили к определенным «диофантовым» проблемам, частным случаем которых является генерация пифагорейских троек, чтобы одно квадратное целое число было равно. сумма двух других».
  22. ^ ( Хаяши 2005 , стр. 371)
  23. ^ Перейти обратно: а б ( Хаяси 2003 , стр. 121–122)
  24. ^ Рашид, Рушди (1994). Развитие арабской математики: между арифметикой и алгеброй . Бостонские исследования в области философии науки. Том. 156. с. 35. дои : 10.1007/978-94-017-3274-1 . ISBN  978-0-7923-2565-9 . ОСЛК   29181926 .
  25. ^ ( Boyer 1991 , «Арабская гегемония», стр. 241–242) «Омар Хайям (ок. 1050–1123), «изготовитель палаток», написал алгебру , которая вышла за рамки алгебры аль-Хорезми и включила уравнения третьего порядка. Как и его арабские предшественники, Омар Хайям предлагал для квадратных уравнений как арифметические, так и геометрические решения для общих кубических уравнений, он считал (ошибочно, как показал позднее XVI век), арифметические решения невозможны; Схема использования пересекающихся коник для решения кубических задач ранее использовалась Менехмом, Архимедом и Альхазаном, но Омар Хайям сделал достойный похвалы шаг, обобщив метод на все уравнения третьей степени (имеющие положительные корни... Для уравнений высшей степени). степени выше трех, Омар Хайям, очевидно, не предполагал подобных геометрических методов, поскольку пространство содержит не более трех измерений... Одним из наиболее плодотворных вкладов арабского эклектизма была тенденция сократить разрыв между числовой и геометрической алгеброй. Решающий шаг в этом направлении был сделан гораздо позже Декарта, но Омар Хайям двигался в этом направлении, когда писал: «Кто думает, что алгебра — это уловка для получения неизвестных, тот думал это напрасно. Не следует обращать внимания на тот факт, что алгебра и геометрия внешне различны. Алгебры — это доказанные геометрические факты».
  26. ^ О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. «Аль-Махани» . MacTutor Архив истории математики . Университет Сент-Эндрюс .
  27. ^ О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. «Ас-Саби Сабит ибн Курра аль-Харрани» . MacTutor Архив истории математики . Университет Сент-Эндрюс .
  28. ^ О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. «Омар Хайям» . MacTutor Архив истории математики . Университет Сент-Эндрюс .
  29. ^ Борис А. Розенфельд и Адольф П. Юшкевич (1996), «Геометрия», в Рошди Рашед, изд., Энциклопедия истории арабской науки , Vol. 2, стр. 447–494 [470], Рутледж , Лондон и Нью-Йорк:

    «Три учёных, Ибн аль-Хайсам, Хайям и ат-Туси, внесли наиболее значительный вклад в эту отрасль геометрии, важность которой стала полностью осознаваться только в XIX веке. По существу, их положения о свойствах четырёхугольников которые они считали, предполагая, что некоторые углы этих фигур были острыми или тупыми, воплощали в себе первые несколько теорем гиперболической и эллиптической геометрии. Их другие предложения показали, что различные геометрические утверждения были эквивалентны постулату V Евклида. Важно, что эти ученые установили взаимную связь между этим постулатом и суммой углов треугольника и четырехугольника. Своими работами по теории параллельных прямых арабские математики непосредственно повлияли на соответствующие исследования своих европейских коллег. доказать постулат о параллельных прямых, выдвинутый Витело, польскими учеными XIII века, при пересмотре работы Ибн аль-Хайсама. Книга оптики ( Китаб аль-Маназир ) — несомненно, была навеяна арабскими источниками. Доказательства, выдвинутые в XIV веке еврейским ученым Леви бен Герсоном, жившим на юге Франции, и упомянутым выше Альфонсо из Испании непосредственно граничат с доказательством Ибн аль-Хайсама. Выше мы показали, что «Изложение Евклида» Псевдо-Тузи стимулировало исследования теории параллельных прямых как Дж. Уоллиса, так и Дж. Саккери».

  30. ^ Перейти обратно: а б Карл Б. Бойер (2012). История аналитической геометрии . Курьерская корпорация. ISBN  978-0-486-15451-0 . Архивировано из оригинала 26 декабря 2019 года . Проверено 18 сентября 2019 г.
  31. ^ CH Эдвардс младший (2012). Историческое развитие исчисления . Springer Science & Business Media. п. 95. ИСБН  978-1-4612-6230-5 . Архивировано из оригинала 29 декабря 2019 года . Проверено 18 сентября 2019 г.
  32. ^ Джудит В. Филд ; Джереми Грей (2012). Геометрические работы Жирара Дезарга . Springer Science & Business Media. п. 43. ИСБН  978-1-4613-8692-6 . Архивировано из оригинала 27 декабря 2019 года . Проверено 18 сентября 2019 г.
  33. ^ CR Уайли (2011). Введение в проективную геометрию . Курьерская корпорация. ISBN  978-0-486-14170-1 . Архивировано из оригинала 28 декабря 2019 года . Проверено 18 сентября 2019 г.
  34. ^ Джереми Грей (2011). Миры из ничего: Курс истории геометрии XIX века . Springer Science & Business Media. ISBN  978-0-85729-060-1 . Архивировано из оригинала 7 декабря 2019 года . Проверено 18 сентября 2019 г.
  35. ^ Эдуардо Байро-Коррошано (2018). Приложения геометрической алгебры Vol. I: Компьютерное зрение, графика и нейрокомпьютеры . Спрингер. п. 4. ISBN  978-3-319-74830-6 . Архивировано из оригинала 28 декабря 2019 года . Проверено 18 сентября 2019 г.
  36. ^ Моррис Клайн (1990). Математическая мысль от древности до современности: Том 3 . США: Издательство Оксфордского университета. стр. 1010–. ISBN  978-0-19-506137-6 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  37. ^ Виктор Дж. Кац (2000). Использование истории для преподавания математики: международный взгляд . Издательство Кембриджского университета. стр. 45–. ISBN  978-0-88385-163-0 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  38. ^ Дэвид Берлински (2014). Царь бесконечного пространства: Евклид и его элементы . Основные книги. ISBN  978-0-465-03863-3 .
  39. ^ Перейти обратно: а б Робин Хартшорн (2013). Геометрия: Евклид и не только . Springer Science & Business Media. стр. 29–. ISBN  978-0-387-22676-7 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  40. ^ Пэт Хербст; Таро Фудзита; Стефан Халвершайд; Майкл Вайс (2017). Изучение и преподавание геометрии в средних школах: перспектива моделирования . Тейлор и Фрэнсис. стр. 20–. ISBN  978-1-351-97353-3 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  41. ^ И.М. Яглом (2012). Простая неевклидова геометрия и ее физическая основа: элементарное описание геометрии Галилея и принципа относительности Галилея . Springer Science & Business Media. стр. 6–. ISBN  978-1-4612-6135-3 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  42. ^ Аудун Холм (2010). Геометрия: наше культурное наследие . Springer Science & Business Media. стр. 254–. ISBN  978-3-642-14441-7 . Архивировано из оригинала 1 сентября 2021 года . Проверено 14 сентября 2019 г.
  43. ^ Перейти обратно: а б с д и Элементы Евклида - Все тринадцать книг в одном томе , на основе перевода Хита, Green Lion Press. ISBN   1-888009-18-7 .
  44. ^ Герла, Г. (1995). «Бессмысленные геометрии» (PDF) . В Букенхауте, Ф.; Кантор, В. (ред.). Справочник по геометрии падения: здания и фундаменты . Северная Голландия. стр. 1015–1031. Архивировано из оригинала (PDF) 17 июля 2011 года.
  45. ^ Кларк, Боуман Л. (январь 1985 г.). «Люди и очки» . Журнал формальной логики Нотр-Дама . 26 (1): 61–75. дои : 10.1305/ndjfl/1093870761 .
  46. ^ Джон Кейси (1885). Аналитическая геометрия точечных, прямых, окружных и конических сечений .
  47. ^ Фрэнсис Букенхаут, изд. (1995). Справочник по геометрии падения: здания и фундаменты . Амстердам: Эльзевир. ISBN  978-0-444-88355-1 . OCLC   162589397 . Архивировано из оригинала 1 марта 2023 года . Проверено 9 сентября 2022 г.
  48. ^ «геодезический – определение геодезического на английском языке из Оксфордского словаря» . OxfordDictionaries.com . Архивировано из оригинала 15 июля 2016 года . Проверено 20 января 2016 г.
  49. ^ Перейти обратно: а б с д и Манкрес, Джеймс Р. (2000). Топология . Том. 2 (2-е изд.). Река Аппер-Сэддл, Нью-Джерси: ISBN Prentice Hall, Inc.  0-13-181629-2 . OCLC   42683260 .
  50. ^ Шмелев, Ванда (1983). От аффинной к евклидовой геометрии . Спрингер. ISBN  978-90-277-1243-1 . Архивировано из оригинала 1 марта 2023 года . Проверено 9 сентября 2022 г.
  51. ^ Альфорс, Ларс В. (1979). Комплексный анализ: введение в теорию аналитических функций одной комплексной переменной (3-е изд.). Нью-Йорк: МакГроу-Хилл. ISBN  9780070006577 . OCLC   4036464 . Архивировано из оригинала 1 марта 2023 года . Проверено 9 сентября 2022 г.
  52. ^ Сидоров, Л.А. (2001) [1994]. "Угол" . Энциклопедия математики . ЭМС Пресс .
  53. ^ Гельфанд, И.М. (2001). Тригонометрия . Марк Э. Саул. Бостон: Биркхойзер. стр. 1–20. ISBN  0-8176-3914-4 . OCLC   41355833 . Архивировано из оригинала 1 марта 2023 года . Проверено 10 сентября 2022 г.
  54. ^ Стюарт, Джеймс (2012). Исчисление: ранние трансцендентальные теории , 7-е изд., Brooks Cole Cengage Learning. ISBN   978-0-538-49790-9
  55. ^ Йост, Юрген (2002). Риманова геометрия и геометрический анализ . Берлин: Springer-Verlag. ISBN  978-3-540-42627-1 . .
  56. ^ Бейкер, Генри Фредерик. Принципы геометрии. Том. 2. Архив КУБКА, 1954 год.
  57. ^ Перейти обратно: а б с Карму, Манфредо Пердиган ду (1976). Дифференциальная геометрия кривых и поверхностей . Том. 2. Энглвуд Клиффс, Нью-Джерси: Прентис-Холл. ISBN  0-13-212589-7 . ОСЛК   1529515 . Архивировано из оригинала 1 марта 2023 года . Проверено 9 сентября 2022 г.
  58. ^ Перейти обратно: а б Мамфорд, Дэвид (1999). Красная книга разновидностей и схем включает Мичиганские лекции о кривых и их якобианах (2-е изд.). Спрингер-Верлаг . ISBN  978-3-540-63293-1 . Збл   0945.14001 .
  59. ^ Бриггс, Уильям Л. и Лайл Кокран Исчисление. «Ранние трансценденталисты». ISBN   978-0-321-57056-7 .
  60. ^ Яу, Шинг-Тунг ; Надис, Стив (2010). Форма внутреннего пространства: теория струн и геометрия скрытых измерений Вселенной . Основные книги. ISBN   978-0-465-02023-2 .
  61. ^ Перейти обратно: а б Стивен А. Триз (2018). История и измерение базовых и производных единиц . Международное издательство Спрингер. стр. 101–. ISBN  978-3-319-77577-7 . Архивировано из оригинала 30 декабря 2019 года . Проверено 25 сентября 2019 г.
  62. ^ Джеймс В. Кэннон (2017). Геометрия длин, площадей и объемов . Американское математическое соц. п. 11. ISBN  978-1-4704-3714-5 . Архивировано из оригинала 31 декабря 2019 года . Проверено 25 сентября 2019 г.
  63. ^ Гилберт Стрэнг (1991). Исчисление . СИАМ. ISBN  978-0-9614088-2-4 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  64. ^ HS Медведь (2002). Основы интеграции Лебега . Академическая пресса. ISBN  978-0-12-083971-1 . Архивировано из оригинала 25 декабря 2019 года . Проверено 25 сентября 2019 г.
  65. ^ Дмитрий Бураго, Ю. Д. Бураго , Сергей Иванов, Курс метрической геометрии , Американское математическое общество, 2001, ISBN   0-8218-2129-6 .
  66. ^ Уолд, Роберт М. (1984). Общая теория относительности . Издательство Чикагского университета. ISBN  978-0-226-87033-5 .
  67. ^ Теренс Тао (2011). Введение в теорию меры . Американское математическое соц. ISBN  978-0-8218-6919-2 . Архивировано из оригинала 27 декабря 2019 года . Проверено 25 сентября 2019 г.
  68. ^ Шломо Либескинд (2008). Евклидова и трансформационная геометрия: дедуктивное исследование . Джонс и Бартлетт Обучение. п. 255. ИСБН  978-0-7637-4366-6 . Архивировано из оригинала 25 декабря 2019 года . Проверено 25 сентября 2019 г.
  69. ^ Марк А. Фрайтаг (2013). Математика для учителей начальной школы: процессный подход . Cengage Обучение. п. 614. ИСБН  978-0-618-61008-2 . Архивировано из оригинала 28 декабря 2019 года . Проверено 25 сентября 2019 г.
  70. ^ Джордж Э. Мартин (2012). Геометрия преобразований: введение в симметрию . Springer Science & Business Media. ISBN  978-1-4612-5680-9 . Архивировано из оригинала 7 декабря 2019 года . Проверено 25 сентября 2019 г.
  71. ^ Марк Блэклок (2018). Появление четвертого измерения: высшее пространственное мышление в конце века . Издательство Оксфордского университета. ISBN  978-0-19-875548-7 . Архивировано из оригинала 27 декабря 2019 года . Проверено 18 сентября 2019 г.
  72. ^ Чарльз Джаспер Джоли (1895). Бумаги . Академия. стр. 62–. Архивировано из оригинала 27 декабря 2019 года . Проверено 18 сентября 2019 г.
  73. ^ Роджер Темам (2013). Бесконечномерные динамические системы в механике и физике . Springer Science & Business Media. п. 367. ИСБН  978-1-4612-0645-3 . Архивировано из оригинала 24 декабря 2019 года . Проверено 18 сентября 2019 г.
  74. ^ Билл Джейкоб; Цит-Юэнь Лам (1994). Последние достижения в области реальной алгебраической геометрии и квадратичных форм: материалы года RAGSQUAD, Беркли, 1990–1991 гг . Американское математическое соц. п. 111. ИСБН  978-0-8218-5154-8 . Архивировано из оригинала 28 декабря 2019 года . Проверено 18 сентября 2019 г.
  75. ^ Ян Стюарт (2008). Почему красота — это истина: история симметрии . Основные книги. п. 14. ISBN  978-0-465-08237-7 . Архивировано из оригинала 25 декабря 2019 года . Проверено 23 сентября 2019 г.
  76. ^ Стахов Алексей (2009). Математика гармонии: от Евклида к современной математике и информатике . Всемирная научная. п. 144. ИСБН  978-981-4472-57-9 . Архивировано из оригинала 29 декабря 2019 года . Проверено 23 сентября 2019 г.
  77. ^ Вернер Хан (1998). Симметрия как принцип развития в природе и искусстве . Всемирная научная. ISBN  978-981-02-2363-2 . Архивировано из оригинала 1 января 2020 года . Проверено 23 сентября 2019 г.
  78. ^ Брайан Дж. Кантвелл (2002). Введение в анализ симметрии . Издательство Кембриджского университета. п. 34. ISBN  978-1-139-43171-2 . Архивировано из оригинала 27 декабря 2019 года . Проверено 23 сентября 2019 г.
  79. ^ Б. Розенфельд; Билл Вибе (2013). Геометрия групп Ли . Springer Science & Business Media. стр. 158 и далее. ISBN  978-1-4757-5325-7 . Архивировано из оригинала 24 декабря 2019 года . Проверено 23 сентября 2019 г.
  80. ^ Питер Пешич (2007). За пределами геометрии: классические статьи от Римана до Эйнштейна . Курьерская корпорация. ISBN  978-0-486-45350-7 . Архивировано из оригинала 1 сентября 2021 года . Проверено 23 сентября 2019 г.
  81. ^ Мичио Каку (2012). Струны, конформные поля и топология: введение . Springer Science & Business Media. п. 151. ИСБН  978-1-4684-0397-8 . Архивировано из оригинала 24 декабря 2019 года . Проверено 23 сентября 2019 г.
  82. ^ Младен Бествина; Миха Сагеев; Карен Фогтманн (2014). Геометрическая теория групп . Американское математическое соц. п. 132. ИСБН  978-1-4704-1227-2 . Архивировано из оригинала 29 декабря 2019 года . Проверено 23 сентября 2019 г.
  83. ^ БХ. Стеб (1996). Непрерывные симметрии, алгебры Ли, дифференциальные уравнения и компьютерная алгебра . Мировое научное издательство. ISBN  978-981-310-503-4 . Архивировано из оригинала 26 декабря 2019 года . Проверено 23 сентября 2019 г.
  84. ^ Чарльз В. Миснер (2005). Направления общей теории относительности: Том 1: Материалы Международного симпозиума 1993 года, Мэриленд: Статьи в честь Чарльза Миснера . Издательство Кембриджского университета. п. 272. ИСБН  978-0-521-02139-5 . Архивировано из оригинала 26 декабря 2019 года . Проверено 23 сентября 2019 г.
  85. ^ Линней Вэйланд Даулинг (1917). Проективная геометрия . Книжная компания McGraw-Hill, Incorporated. п. 10 .
  86. ^ Г. Гирц (2006). Расслоения топологических векторных пространств и их двойственность . Спрингер. п. 252. ИСБН  978-3-540-39437-2 . Архивировано из оригинала 27 декабря 2019 года . Проверено 23 сентября 2019 г.
  87. ^ Роберт Э. Баттс; Дж. Р. Браун (2012). Конструктивизм и наука: очерки новейшей немецкой философии . Springer Science & Business Media. стр. 127–. ISBN  978-94-009-0959-5 . Архивировано из оригинала 1 сентября 2021 года . Проверено 20 сентября 2019 г.
  88. ^ Наука . Моисей Царь. 1886. стр. 181–. Архивировано из оригинала 27 декабря 2019 года . Проверено 20 сентября 2019 г.
  89. ^ В. Эббот (2013). Практическая геометрия и инженерная графика: Учебник для инженеров и других студентов . Springer Science & Business Media. стр. 6–. ISBN  978-94-017-2742-6 . Архивировано из оригинала 25 декабря 2019 года . Проверено 20 сентября 2019 г.
  90. ^ Перейти обратно: а б с д Джордж Л. Херси (2001). Архитектура и геометрия в эпоху барокко . Издательство Чикагского университета. ISBN  978-0-226-32783-9 . Архивировано из оригинала 25 декабря 2019 года . Проверено 20 сентября 2019 г.
  91. ^ П. Ваничек; Э. Я. Краковский (2015). Геодезия: Концепции . Эльзевир. п. 23. ISBN  978-1-4832-9079-9 . Архивировано из оригинала 31 декабря 2019 года . Проверено 20 сентября 2019 г.
  92. ^ Рассел М. Каммингс; Скотт А. Мортон; Уильям Х. Мейсон; Дэвид Р. МакДэниел (2015). Прикладная вычислительная аэродинамика . Издательство Кембриджского университета. п. 449. ИСБН  978-1-107-05374-8 . Архивировано из оригинала 1 сентября 2021 года . Проверено 20 сентября 2019 г.
  93. ^ Рой Уильямс (1998). Геометрия навигации . Хорвуд Паб. ISBN  978-1-898563-46-4 . Архивировано из оригинала 7 декабря 2019 года . Проверено 20 сентября 2019 г.
  94. ^ Шмидт, В.; Хуанг, Р.; Коган, Леланд С. (2002). «Последовательная учебная программа: пример математики» . Американский педагог . 26 (2): 10–26. S2CID   118964353 .
  95. ^ Джерард Уолшап (2015). Многомерное исчисление и дифференциальная геометрия . Де Грютер. ISBN  978-3-11-036954-0 . Архивировано из оригинала 27 декабря 2019 года . Проверено 23 сентября 2019 г.
  96. ^ Харли Фландерс (2012). Дифференциальные формы с приложениями к физическим наукам . Курьерская корпорация. ISBN  978-0-486-13961-6 . Архивировано из оригинала 1 сентября 2021 года . Проверено 23 сентября 2019 г.
  97. ^ Пол Марриотт; Марк Салмон (2000). Приложения дифференциальной геометрии к эконометрике . Издательство Кембриджского университета. ISBN  978-0-521-65116-5 . Архивировано из оригинала 1 сентября 2021 года . Проверено 23 сентября 2019 г.
  98. ^ Мэтью Хе; Сергей Петухов (2011). Математика биоинформатики: теория, методы и приложения . Джон Уайли и сыновья. п. 106. ИСБН  978-1-118-09952-0 . Архивировано из оригинала 27 декабря 2019 года . Проверено 23 сентября 2019 г.
  99. ^ ПАМ Дирак (2016). Общая теория относительности . Издательство Принстонского университета. ISBN  978-1-4008-8419-3 . Архивировано из оригинала 26 декабря 2019 года . Проверено 23 сентября 2019 г.
  100. ^ Нихат Ай; Юрген Йост; Хонг Ван Ле; Лоренц Шваххофер (2017). Информационная геометрия . Спрингер. п. 185. ИСБН  978-3-319-56478-4 . Архивировано из оригинала 24 декабря 2019 года . Проверено 23 сентября 2019 г.
  101. ^ Мартин Д. Кроссли (2011). Существенная топология . Springer Science & Business Media. ISBN  978-1-85233-782-7 . Архивировано из оригинала 28 декабря 2019 года . Проверено 24 сентября 2019 г.
  102. ^ Чарльз Нэш; Сиддхартха Сен (1988). Топология и геометрия для физиков . Эльзевир. п. 1. ISBN  978-0-08-057085-3 . Архивировано из оригинала 26 декабря 2019 года . Проверено 24 сентября 2019 г.
  103. ^ Джордж Э. Мартин (1996). Геометрия преобразований: введение в симметрию . Springer Science & Business Media. ISBN  978-0-387-90636-2 . Архивировано из оригинала 22 декабря 2019 года . Проверено 24 сентября 2019 г.
  104. ^ Дж. П. Мэй (1999). Краткий курс алгебраической топологии . Издательство Чикагского университета. ISBN  978-0-226-51183-2 . Архивировано из оригинала 23 декабря 2019 года . Проверено 24 сентября 2019 г.
  105. ^ Робин Хартшорн (2013). Алгебраическая геометрия . Springer Science & Business Media. ISBN  978-1-4757-3849-0 . Архивировано из оригинала 27 декабря 2019 года . Проверено 24 сентября 2019 г.
  106. ^ Перейти обратно: а б Жан Дьедонн (1985). История алгебраической геометрии . Перевод Джудит Д. Салли. ЦРК Пресс. ISBN  978-0-412-99371-8 . Архивировано из оригинала 25 декабря 2019 года . Проверено 24 сентября 2019 г.
  107. ^ Джеймс Карлсон; Джеймс А. Карлсон; Артур Джаффе; Эндрю Уайлс (2006). Проблемы премии тысячелетия . Американское математическое соц. ISBN  978-0-8218-3679-8 . Архивировано из оригинала 30 мая 2016 года . Проверено 24 сентября 2019 г.
  108. ^ Эверетт В. Хау; Кристин Э. Лаутер ; Джуди Л. Уокер (2017). Алгебраическая геометрия для теории кодирования и криптографии: IPAM, Лос-Анджелес, Калифорния, февраль 2016 г. Спрингер. ISBN  978-3-319-63931-4 . Архивировано из оригинала 27 декабря 2019 года . Проверено 24 сентября 2019 г.
  109. ^ Маркос Марино; Майкл Таддеус; Рави Вакил (2008). Перечислительные инварианты в алгебраической геометрии и теории струн: лекции, прочитанные на летней школе CIME, проходившей в Четраро, Италия, 6–11 июня 2005 г. Спрингер. ISBN  978-3-540-79814-9 . Архивировано из оригинала 27 декабря 2019 года . Проверено 24 сентября 2019 г.
  110. ^ Хайбрехтс, Дэниел (2005). Сложная геометрия: введение . Берлин: Шпрингер. ISBN  9783540266877 . OCLC   209857590 . Архивировано из оригинала 1 марта 2023 года . Проверено 10 сентября 2022 г.
  111. ^ Гриффитс П. и Харрис Дж. (2014). Основы алгебраической геометрии. Джон Уайли и сыновья.
  112. ^ Уэллс, Р.О. младший (2008). Дифференциальный анализ на комплексных многообразиях . Тексты для аспирантов по математике. Том. 65. О. Гарсиа-Прада (3-е изд.). Нью-Йорк: Springer-Verlag. дои : 10.1007/978-0-387-73892-5 . ISBN  9780387738918 . OCLC   233971394 . Архивировано из оригинала 1 марта 2023 года . Проверено 9 сентября 2022 г.
  113. ^ Хори К., Томас Р., Кац С., Вафа К., Пандхарипанде Р., Клемм А., ... и Заслоу Э. (2003). Зеркальная симметрия (Том 1). Американское математическое соц.
  114. ^ Форстер, О. (2012). Лекции по римановым поверхностям (т. 81). Springer Science & Business Media.
  115. ^ Миранда, Р. (1995). Алгебраические кривые и римановы поверхности (Том 5). Американское математическое соц.
  116. ^ Дональдсон, СК (2011). Римановы поверхности . Оксфорд: Издательство Оксфордского университета. ISBN  978-0-19-154584-9 . ОСЛК   861200296 . Архивировано из оригинала 1 марта 2023 года . Проверено 9 сентября 2022 г.
  117. ^ Greenhouse, JP (1955). Когерентные алгебраические пучки. Анналы математики, 197–278.
  118. ^ Greenhouse, JP (1956). Алгебраическая геометрия и аналитическая геометрия. В Анналах Института Фурье (т. 6, стр. 1–42).
  119. ^ Иржи Матушек (2013). Лекции по дискретной геометрии . Springer Science & Business Media. ISBN  978-1-4613-0039-7 . Архивировано из оригинала 27 декабря 2019 года . Проверено 25 сентября 2019 г.
  120. ^ Чуаньмин Цзун (2006). Куб – окно в выпуклую и дискретную геометрию . Издательство Кембриджского университета. ISBN  978-0-521-85535-8 . Архивировано из оригинала 23 декабря 2019 года . Проверено 25 сентября 2019 г.
  121. ^ Питер М. Грубер (2007). Выпуклая и дискретная геометрия . Springer Science & Business Media. ISBN  978-3-540-71133-9 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  122. ^ Сатьян Л. Девадосс ; Джозеф О'Рурк (2011). Дискретная и вычислительная геометрия . Издательство Принстонского университета. ISBN  978-1-4008-3898-1 . Архивировано из оригинала 27 декабря 2019 года . Проверено 25 сентября 2019 г.
  123. ^ Карой Бездек (2010). Классические темы дискретной геометрии . Springer Science & Business Media. ISBN  978-1-4419-0600-7 . Архивировано из оригинала 28 декабря 2019 года . Проверено 25 сентября 2019 г.
  124. ^ Франко П. Препарата ; Майкл И. Шамос (2012). Вычислительная геометрия: Введение . Springer Science & Business Media. ISBN  978-1-4612-1098-6 . Архивировано из оригинала 28 декабря 2019 года . Проверено 25 сентября 2019 г.
  125. ^ Сяньфэн Дэвид Гу; Шинг-Тунг Яу (2008). Вычислительная конформная геометрия . Международная пресса. ISBN  978-1-57146-171-1 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  126. ^ Перейти обратно: а б Клара Лё (2017). Геометрическая теория групп: Введение . Спрингер. ISBN  978-3-319-72254-2 . Архивировано из оригинала 29 декабря 2019 года . Проверено 25 сентября 2019 г.
  127. ^ Джон Морган; Банда Тянь (2014). Гипотеза геометризации . Американское математическое соц. ISBN  978-0-8218-5201-9 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  128. ^ Дэниел Т. Уайз (2012). От богатства к Раагу: 3-многообразия, прямоугольные группы Артина и кубическая геометрия: 3-многообразия, прямоугольные группы Артина и кубическая геометрия . Американское математическое соц. ISBN  978-0-8218-8800-1 . Архивировано из оригинала 28 декабря 2019 года . Проверено 25 сентября 2019 г.
  129. ^ Перейти обратно: а б Жерар Меран (2014). Справочник по выпуклой геометрии . Эльзевир Наука. ISBN  978-0-08-093439-6 . Архивировано из оригинала 1 сентября 2021 года . Проверено 24 сентября 2019 г.
  130. ^ Юрген Рихтер-Геберт (2011). Перспективы проективной геометрии: экскурсия по реальной и сложной геометрии . Springer Science & Business Media. ISBN  978-3-642-17286-1 . Архивировано из оригинала 29 декабря 2019 года . Проверено 25 сентября 2019 г.
  131. ^ Кимберли Элам (2001). Геометрия дизайна: исследования пропорций и композиции . Принстонская архитектурная пресса. ISBN  978-1-56898-249-6 . Архивировано из оригинала 31 декабря 2019 года . Проверено 25 сентября 2019 г.
  132. ^ Брэд Дж. Гигар (2004). Книга «Все о мультфильмах»: создавайте уникальные и вдохновляющие мультфильмы для развлечения и прибыли . Адамс Медиа. стр. 82–. ISBN  978-1-4405-2305-2 . Архивировано из оригинала 27 декабря 2019 года . Проверено 25 сентября 2019 г.
  133. ^ Марио Ливио (2008). Золотое сечение: история PHI, самого удивительного числа в мире . Корона/Архетип. п. 166. ИСБН  978-0-307-48552-6 . Архивировано из оригинала 30 декабря 2019 года . Проверено 25 сентября 2019 г.
  134. ^ Мишель Эммер; Дорис Шатшнайдер (2007). Наследие MC Эшера: празднование столетия . Спрингер. п. 107. ИСБН  978-3-540-28849-7 . Архивировано из оригинала 22 декабря 2019 года . Проверено 25 сентября 2019 г.
  135. ^ Роберт Капитоло; Кен Шваб (2004). Курс рисования 101 . Стерлинг Паблишинг Компани, Инк. 22 . ISBN  978-1-4027-0383-6 .
  136. ^ Филлис Гелино (2011). Интеграция искусств в учебную программу начальной школы . Cengage Обучение. п. 55. ИСБН  978-1-111-30126-2 . Архивировано из оригинала 7 декабря 2019 года . Проверено 25 сентября 2019 г.
  137. ^ Криштиану Чеккато; Ларс Хессельгрен; Марк Поли; Хельмут Поттманн, Йоханнес Вальнер (2016). Достижения в области архитектурной геометрии 2010 . Биркхойзер. п. 6. ISBN  978-3-99043-371-3 . Архивировано из оригинала 25 декабря 2019 года . Проверено 25 сентября 2019 г.
  138. ^ Хельмут Поттманн (2007). Архитектурная геометрия . Издательство Института Бентли. ISBN  978-1-934493-04-5 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  139. ^ Мэриан Моффетт; Майкл В. Фасио; Лоуренс Вудхаус (2003). Всемирная история архитектуры . Издательство Лоуренса Кинга. п. 371. ИСБН  978-1-85669-371-4 . Архивировано из оригинала 27 декабря 2019 года . Проверено 25 сентября 2019 г.
  140. ^ Робин М. Грин; Робин Майкл Грин (1985). Сферическая астрономия . Издательство Кембриджского университета. п. 1. ISBN  978-0-521-31779-5 . Архивировано из оригинала 21 декабря 2019 года . Проверено 25 сентября 2019 г.
  141. ^ Алексеевский Дмитрий Владимирович (2008 г.). Последние достижения в псевдоримановой геометрии . Европейское математическое общество. ISBN  978-3-03719-051-7 . Архивировано из оригинала 28 декабря 2019 года . Проверено 25 сентября 2019 г.
  142. ^ Шинг-Тунг Яу; Стив Надис (2010). Форма внутреннего пространства: теория струн и геометрия скрытых измерений Вселенной . Основные книги. ISBN  978-0-465-02266-3 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  143. ^ Бенгтссон, Ингемар; Жичковский, Кароль (2017). Геометрия квантовых состояний: введение в квантовую запутанность (2-е изд.). Издательство Кембриджского университета . ISBN  978-1-107-02625-4 . OCLC   1004572791 .
  144. ^ Харли Фландерс; Джастин Дж. Прайс (2014). Исчисление с аналитической геометрией . Эльзевир Наука. ISBN  978-1-4832-6240-6 . Архивировано из оригинала 24 декабря 2019 года . Проверено 25 сентября 2019 г.
  145. ^ Джон Рогавски; Колин Адамс (2015). Исчисление . У. Х. Фриман. ISBN  978-1-4641-7499-5 . Архивировано из оригинала 1 января 2020 года . Проверено 25 сентября 2019 г.
  146. ^ Альваро Лосано-Робледо (2019). Теория чисел и геометрия: введение в арифметическую геометрию . Американское математическое соц. ISBN  978-1-4704-5016-8 . Архивировано из оригинала 27 декабря 2019 года . Проверено 25 сентября 2019 г.
  147. ^ Артуро Сангалли (2009). Месть Пифагора: математическая загадка . Издательство Принстонского университета. п. 57 . ISBN  978-0-691-04955-7 .
  148. ^ Гэри Корнелл; Джозеф Х. Сильверман; Гленн Стивенс (2013). Модульные формы и Великая теорема Ферма . Springer Science & Business Media. ISBN  978-1-4612-1974-3 . Архивировано из оригинала 30 декабря 2019 года . Проверено 25 сентября 2019 г.

Источники

Дальнейшее чтение

Внешние ссылки

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 1ebf7f8ce4a66bc460c0bee521548433__1718109960
URL1:https://arc.ask3.ru/arc/aa/1e/33/1ebf7f8ce4a66bc460c0bee521548433.html
Заголовок, (Title) документа по адресу, URL1:
Geometry - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)