Jump to content

Унитарный элемент

В математике элемент если называется *-алгебры унитарным , он обратим и его обратный элемент совпадает с присоединенным к нему элементом. [1]

Определение

[ редактировать ]

Позволять быть *-алгеброй с единицей . Элемент называется унитарным, если . Другими словами, если является обратимым и держится, тогда является унитарным. [1]

Множество унитарных элементов обозначается или .

Особым случаем, имеющим особое значение, является случай, когда является полной нормированной *-алгеброй . Эта алгебра удовлетворяет C*-тождеству ( ) и называется C*-алгеброй .

Критерии

[ редактировать ]
  • Позволять быть единичной C*-алгеброй и элемент нормальный . Затем, унитарен, если спектр состоит только из элементов группы круга , то есть . [2]
  • Единица является унитарным. [3]

Позволять если C*-алгебра с единицей, то:

  • Каждая проекция , т.е. каждый элемент с , является унитарным. Ведь спектр проекции состоит не более чем из и , как следует из непрерывного функционального исчисления . [4]
  • Если является нормальным элементом C*-алгебры , то для каждой непрерывной функции на спектре непрерывное функциональное исчисление определяет унитарный элемент , если . [2]

Характеристики

[ редактировать ]

Позволять быть единичной *-алгеброй и . Затем:

  • Элемент унитарна, поскольку . В частности, образует мультипликативную группу . [1]
  • Элемент это нормально. [3]
  • Сопряженный элемент также унитарна, поскольку справедливо для инволюции *. [1]
  • Если является C*-алгеброй, имеет норму 1, т.е. . [5]

См. также

[ редактировать ]

Примечания

[ редактировать ]
  • Блэкадар, Брюс (2006). Операторные алгебры. Теория С*-алгебр и алгебры фон Неймана . Берлин/Гейдельберг: Springer. стр. 57, 63. ISBN.  3-540-28486-9 .
  • Диксмье, Жак (1977). С*-алгебры . Перевод Джеллетта, Фрэнсиса. Амстердам/Нью-Йорк/Оксфорд: Северная Голландия. ISBN  0-7204-0762-1 . английский перевод C*-алгебры и их представления (на французском языке). Готье-Виллар. 1969.
  • Кэдисон, Ричард В.; Рингроуз, Джон Р. (1983). Основы теории операторных алгебр . Том 1. Элементарная теория . Нью-Йорк/Лондон: Академическая пресса. ISBN  0-12-393301-3 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b22a754d143f88348bae847437e9d850__1721310660
URL1:https://arc.ask3.ru/arc/aa/b2/50/b22a754d143f88348bae847437e9d850.html
Заголовок, (Title) документа по адресу, URL1:
Unitary element - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)