Jump to content

Спектральная асимметрия

В математике и физике спектральная асимметрия асимметрия в распределении спектра собственных значений оператора — это . В математике спектральная асимметрия возникает при изучении эллиптических операторов на компактных многообразиях и придает глубокий смысл теореме Атьи-Зингера об индексе . В физике он имеет множество применений, обычно приводящих к дробному заряду из-за асимметрии спектра оператора Дирака . Например, вакуумное математическое ожидание барионного числа определяется спектральной асимметрией гамильтониана . Спектральная асимметрия полей ограниченных кварков является важным свойством модели кирального мешка . Для фермионов он известен как индекс Виттена и его можно понимать как описание эффекта Казимира для фермионов.

Определение

[ редактировать ]

Дан оператор с собственными значениями , из которых одинаковое количество положительных и отрицательных, спектральную асимметрию можно определить как сумму

где это знаковая функция . Могут использоваться и другие регуляторы , такие как регулятор дзета-функции .

Необходимость как положительного, так и отрицательного спектра в определении является причиной того, что спектральная асимметрия обычно возникает при изучении операторов Дирака .

В качестве примера рассмотрим оператор со спектром

где n — целое число, охватывающее все положительные и отрицательные значения. Непосредственно можно показать, что в этом случае подчиняется для любого целого числа , и это для у нас есть . График следовательно, представляет собой периодическую пилообразную кривую.

Обсуждение

[ редактировать ]

Со спектральной асимметрией связано вакуумное математическое ожидание энергии, связанной с оператором, энергией Казимира , которая определяется выражением

Эта сумма формально расходится, и расхождения необходимо учитывать и устранять с помощью стандартных методов регуляризации.

  • М.Ф. Атья, В.К. Патоди и И.М. Зингер, Спектральная асимметрия и риманова геометрия I , Proc. Кэмб. Фил. Соц., 77 (1975), 43-69.
  • Линас Вепстас, А.Д. Джексон, А.С. Гольдхабер, Двухфазные модели барионов и киральный эффект Казимира , Physics Letters B140 (1984) с. 280-284.
  • Линас Вепстас, А.Д. Джексон, Обоснование хиральной сумки , Physics Reports, 187 (1990) с. 109-143.
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 75aa544d5b2cee9d7c4d7f79ecf3aa8e__1628388300
URL1:https://arc.ask3.ru/arc/aa/75/8e/75aa544d5b2cee9d7c4d7f79ecf3aa8e.html
Заголовок, (Title) документа по адресу, URL1:
Spectral asymmetry - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)