Jump to content

Кривая дракона

(Перенаправлено с Твиндрагона )

Кривая дракона на шоссе

Кривая Дракона — это любой член семейства самоподобных фрактальных кривых , которые можно аппроксимировать рекурсивными методами, такими как системы Линденмайера . Кривую дракона, вероятно, чаще всего рассматривают как форму, которая получается в результате многократного сгибания полоски бумаги пополам, хотя существуют и другие кривые, называемые кривыми дракона, которые генерируются по-другому.

Шоссейный дракон

[ редактировать ]

Дракон Хайвея (также известный как дракон Хартера-Хайвея или дракон Парка Юрского периода ) был впервые исследован физиками НАСА Джоном Хейвеем, Брюсом Бэнксом и Уильямом Хартером. Он был описан Мартином Гарднером в его в Scientific American колонке «Математические игры» в 1967 году. Многие из его свойств были впервые опубликованы Чендлером Дэвисом и Дональдом Кнутом . Оно появилось на титульных страницах Майкла Крайтона романа «Парк Юрского периода» . [1]

Строительство

[ редактировать ]
Рекурсивное построение кривой
Рекурсивное построение кривой

Дракона шоссе можно построить из сегмента базовой линии путем многократной замены каждого сегмента двумя сегментами под прямым углом и с поворотом на 45° попеременно вправо и влево: [2]

Первые 5 итераций и 9-я
The first 5 iterations and the 9th

Дракон шоссе также является предельным набором следующей итерированной системы функций в комплексной плоскости:

с начальным набором точек .

Если вместо этого использовать пары действительных чисел, это то же самое, что и две функции, состоящие из

Складывание дракона

[ редактировать ]

Кривую дракона на шоссе можно построить, сложив полоску бумаги , именно так она была первоначально обнаружена. [1] Возьмите полоску бумаги и сложите ее пополам вправо. Сложите его еще раз пополам вправо. Если бы полосу развернули сейчас, разгибая каждую складку и превращая ее в поворот на 90 градусов, последовательность поворотов была бы RRL, то есть второй итерацией Дракона Хайвея. Снова согните полоску пополам вправо, и последовательность поворотов развернутой полоски теперь будет RRLRRLL — третья итерация шоссейного дракона. Продолжаем сгибать полосу пополам вправо, чтобы создать дальнейшие итерации шоссейного дракона (на практике полоса становится слишком толстой, чтобы резко сложить ее после четырех или пяти итераций).

Схемы складывания этой последовательности бумажных полосок в виде последовательности правых (R) и левых (L) складок:

  • 1-я итерация: Р
  • 2-я итерация: Р Р Л
  • 3-я итерация: Р Р Л Р Р Л Л
  • итерация: R R L L R R L R R R L L R L L . 4- я

Каждую итерацию можно найти, скопировав предыдущую итерацию, затем букву R, а затем вторую копию предыдущей итерации в обратном порядке, поменяв местами буквы L и R. [1]

Характеристики

[ редактировать ]
  • множество самоподобий В кривой дракона на шоссе можно увидеть . Наиболее очевидным является повторение одной и той же схемы под углом 45° и с коэффициентом уменьшения . Основываясь на этом самоподобии, многие из его длин представляют собой простые рациональные числа.
Длина
Самоподобия
Замощение плоскости кривыми дракона
  • Кривая дракона может замостить плоскость . Одна из возможных мозаик заменяет каждый край квадратной мозаики кривой дракона, используя рекурсивное определение дракона, начиная с отрезка линии. Начальное направление расширения каждого сегмента можно определить по раскраске квадратной плитки в шахматном порядке, расширению вертикальных сегментов на черные плитки и из белых плиток, а также расширению горизонтальных сегментов на белые плитки и из черных. [3]
  • Как кривая, заполняющая пространство , кривая дракона имеет фрактальную размерность ровно 2. Для кривой дракона с начальной длиной сегмента 1 ее площадь равна 1/2, как видно из ее мозаики на плоскости. [1]
  • Граница множества, покрытого кривой дракона, имеет бесконечную длину и фрактальную размерность. где является действительным решением уравнения [4]

Двойной дракон

[ редактировать ]
Кривая Twindragon, построенная из двух драконов шоссе.

Дракон -близнец (также известный как дракон Дэвиса-Кнута ) может быть построен путем размещения двух кривых дракона Шоссе друг за другом. Это также предельный набор следующей итерируемой системы функций:

где исходная форма определяется следующим набором .

Ее также можно записать как систему Линденмайера – для этого нужно лишь добавить еще одну секцию в исходную строку:

  • угол 90°
  • начальная строка FX+FX+
  • правила перезаписи строк
    • Икс Х + YF
    • Y FX - Y .

Это также место точек на комплексной плоскости с одной и той же целой частью при записи в системе счисления. . [5]

Тердрагон

[ редактировать ]
Кривая Тердрагона.
Скульптура, изображающая несколько итераций системы Линденмайера, генерирующей кривую тердрагона.
Генри Сегерман

Тердрагона : записать в виде системы Линденмайера можно

  • угол 120°
  • начальная строка F
  • правила перезаписи строк
    • F F+F−F .

Это предельный набор следующей итерируемой системы функций:

Леви дракон

[ редактировать ]

Кривую C Леви иногда называют драконом Леви . [6]

Кривая Леви С.

Появление кривой дракона в наборах решений

[ редактировать ]

Получив набор решений линейного дифференциального уравнения, любая линейная комбинация решений в силу принципа суперпозиции также будет подчиняться исходному уравнению. Другими словами, новые решения получаются путем применения функции к множеству существующих решений. Это похоже на то, как итерированная система функций создает новые точки в наборе, хотя не все IFS являются линейными функциями.Аналогично, набор полиномов Литтлвуда может быть получен путем такого повторного применения набора функций.

Полином Литтлвуда – это многочлен: где все .

Для некоторых мы определяем следующие функции:

Начиная с z=0, мы можем сгенерировать все полиномы Литтлвуда степени d, используя эти функции итеративно d+1 раз. [7] Например:

Видно, что для , приведенная выше пара функций эквивалентна формулировке IFS для шоссейного дракона. То есть дракон Хайвея, итерированный до определенной итерации, описывает набор всех полиномов Литтлвуда до определенной степени, оцененных в точке .Действительно, при построении достаточно большого числа корней полиномов Литтлвуда в точках, близких к этим координатам, появляются структуры, подобные кривой дракона. [7] [8] [9]

См. также

[ редактировать ]
  1. ^ Jump up to: а б с д Табачников, Сергей (2014), «Возвращение к кривым Дракона», The Mathematical Intelligencer , 36 (1): 13–17, doi : 10.1007/s00283-013-9428-y , MR   3166985 , S2CID   14420269
  2. ^ Эдгар, Джеральд (2008), «Дракон шоссе», в книге Эдгар, Джеральд (редактор), «Мера, топология и фрактальная геометрия» , «Тексты для студентов по математике» (2-е изд.), Нью-Йорк: Springer, стр. 20–22, дои : 10.1007/978-0-387-74749-1 , ISBN  978-0-387-74748-4 , МР   2356043
  3. ^ Эдгар (2008) , «Дракон на шоссе облицовывает самолет плиткой», стр. 74–75.
  4. ^ Эдгар (2008) , «Граница Шоссе Дракона», стр. 194–195.
  5. ^ Кнут, Дональд (1998). «Позиционные системы счисления». Искусство компьютерного программирования . Том. 2 (3-е изд.). Бостон: Аддисон-Уэсли. п. 206. ИСБН  0-201-89684-2 . OCLC   48246681 .
  6. ^ Бейли, Скотт; Ким, Теодор; Стрихарц, Роберт С. (2002), «Внутри дракона Леви», The American Mathematical Monthly , 109 (8): 689–703, doi : 10.2307/3072395 , JSTOR   3072395 , MR   1927621 .
  7. ^ Jump up to: а б «Кафе n-Категория» .
  8. ^ «Неделя285» .
  9. ^ «Красота корней» . 11 декабря 2011 г.
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b43b1d17e7bd6c8c7747f4c659b39a61__1720239120
URL1:https://arc.ask3.ru/arc/aa/b4/61/b43b1d17e7bd6c8c7747f4c659b39a61.html
Заголовок, (Title) документа по адресу, URL1:
Dragon curve - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)