Макроэкономическая модель
Часть серии о |
Макроэкономика |
---|
Макроэкономическая модель — это аналитический инструмент, предназначенный для описания функционирования проблем экономики страны или региона. Эти модели обычно предназначены для изучения сравнительной статики и динамики совокупных величин, таких как общее количество произведенных товаров и услуг, общий полученный доход, уровень использования производственных ресурсов и уровень цен .
Макроэкономические модели могут быть логическими, математическими и/или вычислительными; разные типы макроэкономических моделей служат разным целям и имеют разные преимущества и недостатки. [1] Макроэкономические модели могут использоваться для разъяснения и иллюстрации основных теоретических принципов; их можно использовать для проверки, сравнения и количественной оценки различных макроэкономических теорий; они могут использоваться для создания сценариев «что, если» (обычно для прогнозирования последствий изменений в денежно-кредитной , налогово-бюджетной или другой макроэкономической политике); и их можно использовать для составления экономических прогнозов . Таким образом, макроэкономические модели широко используются в академических кругах при обучении и исследованиях, а также широко используются международными организациями, национальными правительствами и более крупными корпорациями, а также экономическими консультантами и аналитическими центрами .
Типы
[ редактировать ]Простые теоретические модели
[ редактировать ]Простые описания макроэкономики из учебников, включающие небольшое количество уравнений или диаграмм, часто называют «моделями». Примеры включают модель IS-LM и Манделла-Флеминга кейнсианской неоклассической макроэкономики, а также Солоу модель модель теории роста . Эти модели имеют ряд общих особенностей. Они основаны на нескольких уравнениях с несколькими переменными, которые часто можно объяснить с помощью простых диаграмм. [2] Многие из этих моделей являются статическими , но некоторые являются динамическими , описывающими экономику на протяжении многих периодов времени. Переменные, которые появляются в этих моделях, часто представляют собой макроэкономические агрегаты (такие как ВВП или общая занятость ), а не переменные индивидуального выбора, и хотя уравнения, связывающие эти переменные, предназначены для описания экономических решений, они обычно не выводятся напрямую путем агрегирования моделей индивидуального выбора. выбор. Они достаточно просты, чтобы их можно было использовать в качестве иллюстрации теоретических положений при вводном объяснении макроэкономических идей; но поэтому количественное применение к прогнозированию, тестированию или оценке политики обычно невозможно без существенного расширения структуры модели.
Эмпирические модели прогнозирования
[ редактировать ]В 1940-х и 1950-х годах, когда правительства начали собирать данные о национальном доходе и учете продуктов , экономисты приступили к построению количественных моделей для описания динамики, наблюдаемой в данных. [3] Эти модели оценивали отношения между различными макроэкономическими переменными с использованием (в основном линейного) анализа временных рядов . Как и более простые теоретические модели, эти эмпирические модели описывали отношения между совокупными величинами, но многие из них касались гораздо более тонкого уровня детализации (например, изучение отношений между выпуском, занятостью, инвестициями и другими переменными во многих различных отраслях). Таким образом, эти модели стали включать сотни или тысячи уравнений, описывающих эволюцию сотен или тысяч цен и количеств с течением времени, что сделало компьютеры незаменимыми для их решения. Хотя выбор переменных для включения в каждое уравнение частично определялся экономической теорией (например, включение прошлых доходов в качестве определяющего фактора потребления, как предполагает теория адаптивных ожиданий ), включение переменных в основном определялось на чисто эмпирических основаниях. [4]
Голландский экономист Ян Тинберген разработал первую комплексную национальную модель, которую он построил для Нидерландов в 1936 году. Позже он применил ту же структуру моделирования к экономикам Соединенных Штатов и Соединенного Королевства . [3] Первая глобальная макроэкономическая модель, Wharton Econometric Forecasting Associates , проект LINK была инициирована Лоуренсом Кляйном . Модель была упомянута в 1980 году, когда Кляйн, как и Тинберген до него, получил Нобелевскую премию . Крупномасштабные эмпирические модели этого типа, включая модель Уортона, все еще используются сегодня, особенно в целях прогнозирования. [5] [6] [7]
Критика Лукаса эмпирических моделей прогнозирования
[ редактировать ]Эконометрические исследования первой половины 20-го века показали отрицательную корреляцию между инфляцией и безработицей, названную кривой Филлипса . [8] Эмпирические модели макроэкономического прогнозирования, основанные примерно на тех же данных, имели аналогичные последствия: они предполагали, что безработица может быть постоянно снижена за счет постоянного роста инфляции. Однако в 1968 году Милтон Фридман [9] и Эдмунд Фелпс [10] утверждал, что этот очевидный компромисс был иллюзорным. Они утверждали, что историческая связь между инфляцией и безработицей обусловлена тем фактом, что прошлые инфляционные эпизоды были во многом неожиданными. Они утверждали, что если монетарные власти постоянно повышают уровень инфляции, рабочие и фирмы в конечном итоге поймут это, и в этот момент экономика вернется к своему прежнему, более высокому уровню безработицы, но теперь с более высокой инфляцией. Стагфляция 1970-х годов , похоже, подтвердила их предсказания. [11]
В 1976 году Роберт Лукас-младший опубликовал влиятельную статью, в которой утверждал, что провал кривой Филлипса в 1970-х годах был лишь одним примером общей проблемы с эмпирическими моделями прогнозирования. [12] [13] Он отметил, что такие модели основаны на наблюдаемых отношениях между различными макроэкономическими величинами с течением времени, и что эти отношения различаются в зависимости от того, какой режим макроэкономической политики действует. В контексте кривой Филлипса это означает, что связь между инфляцией и безработицей, наблюдаемая в экономике, где в прошлом инфляция обычно была низкой, будет отличаться от зависимости, наблюдаемой в экономике, где инфляция была высокой. [14] Более того, это означает, что невозможно предсказать последствия нового политического режима, используя эмпирическую модель прогнозирования, основанную на данных предыдущих периодов, когда этот политический режим не действовал. Лукас утверждал, что экономисты не смогут предсказать последствия новой политики, если они не построят модели, основанные на экономических фундаментальных факторах (таких как предпочтения , технологии и бюджетные ограничения ), на которые не должны влиять изменения в политике.
Динамические стохастические модели общего равновесия
[ редактировать ]Отчасти в ответ на критику Лукаса экономисты 1980-х и 1990-х годов начали строить микрофонды. [15] макроэкономические модели, основанные на рациональном выборе, которые стали называть моделями динамического стохастического общего равновесия (DSGE) . Эти модели начинаются с определения набора действующих в экономике агентов , таких как домохозяйства, фирмы и правительства в одной или нескольких странах, а также предпочтений , технологий и бюджетных ограничений каждого из них. Предполагается, что каждый агент делает оптимальный выбор с учетом цен и стратегий других агентов как в текущем периоде, так и в будущем. Суммируя решения различных типов агентов, можно найти цены, которые уравнивают спрос и предложение на каждом рынке. Таким образом, эти модели воплощают своего рода равновесную самосогласованность: агенты делают оптимальный выбор при данных ценах, в то время как цены должны согласовываться с предложением и спросом агентов.
Модели DSGE часто предполагают, что все агенты данного типа идентичны (т.е. существуют « репрезентативное домохозяйство» и « репрезентативная фирма») и могут выполнять точные вычисления, которые в среднем правильно прогнозируют будущее (что называется рациональными ожиданиями ). Однако это лишь упрощающие предположения, которые не являются существенными для методологии DSGE; многие исследования DSGE направлены на больший реализм за счет рассмотрения гетерогенных агентов. [16] или различные типы адаптивных ожиданий . [17] По сравнению с моделями эмпирического прогнозирования модели DSGE обычно содержат меньше переменных и уравнений, главным образом потому, что модели DSGE труднее решать даже с помощью компьютеров . [18] Простые теоретические модели DSGE, включающие лишь несколько переменных, использовались для анализа сил, управляющих бизнес-циклами ; эта эмпирическая работа породила две основные конкурирующие концепции, называемые моделью реального делового цикла. [19] [20] [21] и новая кейнсианская модель DSGE . [22] [23] Более сложные модели DSGE используются для прогнозирования последствий изменений в экономической политике и оценки их влияния на социальное благосостояние . Однако экономическое прогнозирование по-прежнему в значительной степени основано на более традиционных эмпирических моделях, которые, как широко распространено мнение, по-прежнему обеспечивают большую точность прогнозирования воздействия экономических потрясений с течением времени.
Модели DSGE и CGE
[ редактировать ]Методология, предшествовавшая моделированию DSGE, — это моделирование общего равновесия (CGE) . Как и модели DSGE, модели CGE часто основываются на предположениях о предпочтениях, технологиях и бюджетных ограничениях. Однако модели CGE сосредоточены в основном на долгосрочных отношениях, что делает их наиболее подходящими для изучения долгосрочного воздействия постоянной политики, такой как налоговая система или открытость экономики для международной торговли. [24] [25] Вместо этого модели DSGE подчеркивают динамику экономики с течением времени (часто ежеквартально), что делает их подходящими для изучения деловых циклов и циклических эффектов денежно-кредитной и фискальной политики.
Агентные вычислительные макроэкономические модели
[ редактировать ]Другой методологией моделирования является агентная вычислительная экономика (ACE) , которая представляет собой разновидность агентного моделирования. [26] Как и методология DSGE, ACE стремится разбить совокупные макроэкономические отношения на микроэкономические решения отдельных агентов . Модели ACE также начинаются с определения набора агентов, составляющих экономику, и определения типов взаимодействия отдельных агентов друг с другом или с рынком в целом. Вместо определения предпочтений этих агентов модели ACE часто сразу переходят к определению их стратегий . Или иногда указываются предпочтения вместе с исходной стратегией и правилом обучения, согласно которому стратегия корректируется в соответствии с ее прошлым успехом. [27] Учитывая эти стратегии, взаимодействие большого количества отдельных агентов (которые могут быть очень разнородными) можно смоделировать на компьютере, а затем изучить совокупные макроэкономические отношения, возникающие в результате этих индивидуальных действий.
Сильные и слабые стороны моделей DSGE и ACE
[ редактировать ]Модели DSGE и ACE имеют разные преимущества и недостатки из-за разной базовой структуры. Модели DSGE могут преувеличивать индивидуальную рациональность и предусмотрительность и недооценивать важность неоднородности, поскольку случай рациональных ожиданий и репрезентативного агента остается самым простым и, следовательно, наиболее распространенным типом модели DSGE для решения. Кроме того, в отличие от моделей ACE, может быть сложно изучать локальные взаимодействия между отдельными агентами в моделях DSGE, которые вместо этого фокусируются в основном на том, как агенты взаимодействуют через совокупные цены. С другой стороны, модели ACE могут преувеличивать ошибки в индивидуальном принятии решений, поскольку стратегии, предполагаемые в моделях ACE, могут быть очень далеки от оптимального выбора, если разработчик модели не будет очень осторожен. Связанный с этим вопрос заключается в том, что модели ACE, которые исходят из стратегий, а не предпочтений, могут оставаться уязвимыми для критики Лукаса : измененный политический режим обычно должен вызывать изменение стратегий.
См. также
[ редактировать ]- Экономическая модель
- Математическая модель
- Макроэкономика
- Экономика
- Эконометрика
- Вычислительная экономика
- Лукас критикует
- Динамическое стохастическое общее равновесие
- Агентная вычислительная экономика
- История макроэкономической мысли
- Временной ряд
- MONIAC , аналоговый компьютер, который использовал жидкостную логику для моделирования работы экономики.
Ссылки
[ редактировать ]- ^ Бланшар, Оливье (12 января 2017 г.). «Необходимость разных классов макроэкономических моделей» . Петерсоновский институт международной экономики . Проверено 22 февраля 2022 г.
- ^ Бланшар, Оливье (2000), Макроэкономика , 2-е изд., Гл. 3.3, с. 47. Прентис Холл, ISBN 0-13-013306-X .
- ^ Jump up to: а б Кляйн, Лоуренс (2004). «Вклад Яна Тинбергена в экономическую науку». Де Экономист . 152 (2): 155–157. дои : 10.1023/B:ECOT.0000023251.14849.4f . S2CID 154689887 .
- ^ Купманс, Тьяллинг К. (1947). «Измерение без теории». Обзор экономики и статистики . 29 (3): 161–172. дои : 10.2307/1928627 . JSTOR 1928627 .
- ^ Кляйн, Лоуренс Р., изд. (1991). Сравнительная эффективность эконометрических моделей США . Издательство Оксфордского университета. ISBN 0-19-505772-4 .
- ^ Экстайн, Отто (1983). Модель экономики США DRI . МакГроу-Хилл. ISBN 0-07-018972-2 .
- ^ Бодкин, Рональд; Кляйн, Лоуренс; Марва, Канта (1991). История построения макроэконометрических моделей . Эдвард Элгар.
- ^ Филлипс, AW (1958), «Взаимосвязь между безработицей и скоростью изменения денежной заработной платы в Соединенном Королевстве 1861–1957», Economica , 25 (100): 283–299, doi : 10.2307/2550759 , JSTOR 2550759
- ^ Фридман, Милтон (1968), «Роль денежно-кредитной политики», American Economic Review , 58 (1), Американская экономическая ассоциация: 1–17, JSTOR 1831652.
- ^ Фелпс, Эдмунд С. (1968), «Динамика денежной заработной платы и равновесие на рынке труда», Журнал политической экономии , 76 (4): 678–711, doi : 10.1086/259438 , S2CID 154427979
- ^ Бланшар, Оливье (2000), соч. соч., гл. 28, с. 540.
- ^ Лукас, Роберт Э. младший (1976), «Оценка эконометрической политики: критика» (PDF) , Серия конференций Карнеги-Рочестер по государственной политике , 1 : 19–46, doi : 10.1016/S0167-2231(76)80003- 6
- ^ Гувер, Кевин Д. (1988). «Эконометрика и анализ политики» . Новая классическая макроэкономика . Оксфорд: Бэзил Блэквелл. стр. 167–209 . ISBN 0-631-14605-9 .
- ^ Бланшар, Оливье (2000), соч. соч., гл. 28, с. 542.
- ^ Эдмунд С. Фелпс, редактор (1970), Микроэкономические основы теории занятости и инфляции. Нью-Йорк, Нортон и Ко. ISBN 0-393-09326-3 .
- ^ Круселл, Пер ; Смит, Энтони А. младший (1998). «Неоднородность доходов и богатства в макроэкономике». Журнал политической экономии . 106 (5): 243–277. дои : 10.1086/250034 . S2CID 17606592 .
- ^ Джордж В. Эванс и Сеппо Хонкапоха (2001), Обучение и ожидания в макроэкономике . Издательство Принстонского университета, ISBN 0-691-04921-1 .
- ^ ДеДжонг, Д.Н. с К. Дэйвом (2007), Структурная макроэконометрика . Издательство Принстонского университета, ISBN 0-691-12648-8 .
- ^ Кидланд, Финн Э .; Прескотт, Эдвард К. (1982). «Время создавать и агрегировать колебания». Эконометрика . 50 (6): 1345–70. дои : 10.2307/1913386 . JSTOR 1913386 .
- ^ Томас Ф. Кули (1995), Границы исследования делового цикла . Издательство Принстонского университета.
- ^ Эндрю Абель и Бен Бернанке (1995), Макроэкономика , 2-е изд., Гл. 11.1, стр. 355-362. Аддисон-Уэсли, ISBN 0-201-54392-3 .
- ^ Ротемберг, Хулио Дж.; Вудфорд, Майкл (1997). «Эконометрическая основа для оценки денежно-кредитной политики, основанная на оптимизации» (PDF) . Ежегодник макроэкономики NBER . 12 : 297–346. дои : 10.1086/654340 . JSTOR 3585236 . S2CID 154438345 .
- ^ Вудфорд, Майкл (2003). Проценты и цены: основы теории денежно-кредитной политики . Издательство Принстонского университета. ISBN 0-691-01049-8 .
- ^ Шовен, Джон Б.; Уолли, Джон (1972). «Расчет общего равновесия последствий дифференцированного налогообложения доходов от капитала в США» (PDF) . Журнал общественной экономики . 1 (3–4): 281–321. дои : 10.1016/0047-2727(72)90009-6 . Архивировано из оригинала (PDF) 26 февраля 2022 г. Проверено 12 июля 2019 г.
- ^ Кехо, Патрик Дж.; Кехо, Тимоти Дж. (1994). «Букварь по статическим прикладным моделям общего равновесия» (PDF) . Ежеквартальный обзор Федерального резервного банка Миннеаполиса . 18 (1): 2–16.
- ^ Тесфацион, Ли (2003). «Агентная вычислительная экономика» (PDF) . Рабочий документ № 1 по экономике Университета штата Айова .
- ^ Брок, Уильям; Оммес, Автомобили (1997). «Рациональный путь к случайности». Эконометрика . 65 (5): 1059–1095. дои : 10.2307/2171879 . JSTOR 2171879 .
Внешние ссылки
[ редактировать ]- Классическая и кейнсианская модель AD-AS - интерактивная онлайн-модель канадской экономики.
- FAIRMODEL – модели США для скачивания
- JAMEL - интерактивная агентская макроэкономическая модель в режиме онлайн.