Jump to content

Органоселении химия

(Перенаправлен из селеноксида )

Химия органоселения - это наука, исследующая свойства и реактивность соединений органоселении , химических соединений, содержащих углерод -химические с селенами связи . [ 1 ] [ 2 ] [ 3 ] Селен принадлежит кислороду и серу к элементам группы 16 или халкогенам, и ожидается сходства в химии. Соединения органоселения обнаружены на уровнях следов в окружающих водах, почвах и отложениях. [ 4 ]

Селен может существовать с помощью состояния окисления -2, +2, +4, +6. SE (II) является доминирующей формой в химии органоселении. Вниз по колонке группы 16 сила связи становится все более слабее (234 кДж / моль для Связь C - Se и 272 кДж/моль для C - S Связь ) и длину связи дольше ( C -SE 198 PM, C - S 181 PM и C - O 141 PM). Соединения селена являются более нуклеофильными , чем соответствующие соединения серы, а также более кислыми. P k значения XH 2 - 16 для кислорода, 7 для серы и 3,8 для селена. В отличие от сульфоксидов , соответствующие селеноксиды нестабильны в присутствии β-протонов, и это свойство используется во многих органических реакциях селена, особенно при окислении сееноксида и в элиминации сееноксида.

Первым изолированным соединением органоселения было диэтиловый селенид в 1836 году. [ 5 ] [ 6 ]

Структурная классификация органоселении соединений

[ редактировать ]
Structures of some organoselenium compounds
  • Селенолы ( R - seh ) - эквиваленты селена спиртов и тиолов . Эти соединения относительно нестабильны и, как правило, имеют неприятный запах. Бензоенеселенол (также называемый селенофенолом или PHSEH) является более кислым ( P K A 5,9), чем тиофенол (P K A 6,5), а также более окисляется до дискетенида . Селенофенол готовятся путем восстановления дифенидиселенида. [7]
  • Diselenides (R−Se−Se−R) are the selenium equivalents of peroxides and disulfides. They are useful shelf-stable precursors to more reactive organoselenium reagents such as selenols and selanyl halides. Best known in organic chemistry is diphenyldiselenide, prepared from phenylmagnesium bromide and selenium followed by oxidation of the product PhSeMgBr.[8]
  • Selanyl halides (R−Se−Cl, R−Se−Br) are prepared by halogenation of diselenides. Bromination of diphenyldiselenide gives phenylselanyl bromide (PhSeBr). These compounds are sources of "PhSe+".
  • Selenides (R−Se−R), also called selenoethers, are the selenium equivalents of ethers and sulfides. One example is dimethylselenide ((CH3)2Se). These are the most prevalent organoselenium compounds. Symmetrical selenides are usually prepared by alkylation of alkali metal selenide salts, e.g. sodium selenide. Unsymmetrical selenides are prepared by alkylation of selenoates. These compounds typically react as nucleophiles, e.g. with alkyl halides (R'−X) to give selenonium salts [RR'R"Se]+X. Divalent selenium can also interact with soft heteroatoms to form hypervalent selenium centers.[6] They also react in some circumstances as electrophiles, e.g. with organolithium reagents (R'Li) to the ate complex R'RRSeLi+.
  • Selenoxides (R−Se(=O)−R) are the selenium equivalents of sulfoxides. Most are unstable, undergoing the selenoxide elimination, but can be notionally oxidized to selenones R−Se(=O)2−R, the selenium analogues of sulfones.
  • Selenenic acid (R−Se−OH) are intermediates in the oxidation of selenols. They occur in some selenoenzymes, such as glutathione peroxidase.
  • Seleninic acids (R−Se(=O)−OH) are analogues of sulfinic acids.
  • Selenonic acids (R−Se(=O)2−OH) are analogues of sulfonic acids.
  • Peroxyseleninic acids (R−Se(=O)−OOH) catalyse epoxidation reactions and Baeyer–Villiger oxidations.
  • Selenuranes are hypervalent organoselenium compounds, formally derived from the tetrahalides such as SeCl4. Examples are of the type Ar−SeCl3.[9] The chlorides are obtained by chlorination of the selenenyl chloride.
  • Seleniranes are three-membered rings (the parent compound is selenirane or selenacyclobutane C2H4Se) related to thiiranes but, unlike thiiranes, seleniranes are kinetically unstable, extruding selenium directly (without oxidation) to form alkenes. This property has been utilized in synthetic organic chemistry.[10]
  • Selones (R2C=Se) are the selenium analogues of ketones. They are rare due to their tendency to oligomerize.[11] Diselenobenzoquinone is stable as a metal complex.[12] Selenourea is an example of a stable compound containing a C=Se bond.
  • Thioselenides (R−Se−S−R), compounds with selenium(II)–sulfur(II) bonds, analogous to disulfides.

Organoselenium compounds in nature

[edit]

Selenium, in the form of organoselenium compounds, is an essential micronutrient whose absence from the diet causes cardiac muscle and skeletal dysfunction. Organoselenium compounds are required for cellular defense against oxidative damage and for the correct functioning of the immune system. They may also play a role in prevention of premature aging and cancer. The source of Se used in biosynthesis is selenophosphate.

Glutathione oxidase is an enzyme with a selenol at its active site. Organoselenium compounds have been found in higher plants. For example, upon analysis of garlic using the technique of high-performance liquid chromatography combined with inductively coupled plasma mass spectrometry (HPLC-ICP-MS), it was found that γ-glutamyl-Se-methylselenocysteine was the major Se-containing component, along with lesser amounts of Se-methylselenocysteine. Trace quantities of dimethyl selenide and allyl methyl selenide are found in human breath after consuming raw garlic.[13]

Selenocysteine and selenomethionine

[edit]

Selenocysteine, called the twenty-first amino acid, is essential for ribosome-directed protein synthesis in some organisms.[14] More than 25 selenium-containing proteins (selenoproteins) are now known.[15] Most selenium-dependent enzymes contain selenocysteine, which is related to cysteine analog but with selenium replacing sulfur. This amino acid is encoded in a special manner by DNA. Selenosulfides are also proposed as biochemical intermediates.

Selenomethionine is a selenide-containing amino acid that also occurs naturally, but is generated by post-transcriptional modification.

Organoselenium chemistry in organic synthesis

[edit]

Organoselenium compounds are specialized but useful collection of reagents useful in organic synthesis, although they are generally excluded from processes useful to pharmaceuticals owing to regulatory issues. Their usefulness hinges on certain attributes, including

  • the weakness of the C−Se bond and
  • the easy oxidation of divalent selenium compounds.

Vinylic selenides

[edit]

Vinylic selenides are organoselenium compounds that play a role in organic synthesis, especially in the development of convenient stereoselective routes to functionalized alkenes.[16] Although various methods are mentioned for the preparation of vinylic selenides, a more useful procedure has centered on the nucleophilic or electrophilic organoselenium addition to terminal or internal alkynes.[17][18][19][20] For example, the nucleophilic addition of selenophenol to alkynes affords, preferentially, the Z-vinylic selenides after longer reaction times at room temperature. The reaction is faster at a high temperature; however, the mixture of Z- and E-vinylic selenides was obtained in an almost 1:1 ratio.[21] On the other hand, the adducts depend on the nature of the substituents at the triple bond. Conversely, vinylic selenides can be prepared by palladium-catalyzed hydroselenation of alkynes to afford the Markovnikov adduct in good yields. There are some limitations associated with the methodologies to prepare vinylic selenides illustrated above; the procedures described employ diorganoyl diselenides or selenophenol as starting materials, which are volatile and unstable and have an unpleasant odor. Also, the preparation of these compounds is complex.

Selenoxide oxidations

[edit]

Selenium dioxide is useful in organic oxidation. Specifically, SeO2 will convert an allylic methylene group into the corresponding alcohol. A number of other reagents bring about this reaction.

Схема 1. Окисление диоксида селена
Scheme 1. Selenium dioxide oxidation

In terms of reaction mechanism, SeO2 and the allylic substrate react via pericyclic process beginning with an ene reaction that activates the C−H bond. The second step is a [2,3] sigmatropic reaction. Oxidations involving selenium dioxide are often carried out with catalytic amounts of the selenium compound and in presence of a sacrificial catalyst or co-oxidant such as hydrogen peroxide.

SeO2-based oxidations sometimes afford carbonyl compounds such as ketones,[22] β-Pinene[23] and cyclohexanone oxidation to 1,2-cyclohexanedione.[24] Oxidation of ketones having α-methylene groups affords diketones. This type of oxidation with selenium oxide is called Riley oxidation.[25]

Selenoxide eliminations

[edit]

In presence of a β-hydrogen, a selenide will give an elimination reaction after oxidation, to leave behind an alkene and a SeO-selenoperoxol. The SeO-selenoperoxol is highly reactive and is not isolated as such. In the elimination reaction, all five participating reaction centers are coplanar and, therefore, the reaction stereochemistry is syn. Oxidizing agents used are hydrogen peroxide, ozone or MCPBA. This reaction type is often used with ketones leading to enones. An example is acetylcyclohexanone elimination with benzeneselenylchloride and sodium hydride.[26]

Схема 2. Устранение селеноксида карбонильных соединений
Scheme 2. Selenoxide elimination of carbonyl compounds

The Grieco elimination is a similar selenoxide elimination using o-nitrophenylselenocyanate and tributylphosphine to cause the elimination of the elements of H2O.

References

[edit]
  1. ^ A. Krief, L. Hevesi, Organoselenium Chemistry I. Functional Group Transformations., Springer, Berlin, 1988 ISBN 3-540-18629-8
  2. ^ S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Selenium and Tellurium Compounds, John. Wiley and Sons, Chichester, Vol. 1, 1986 ISBN 0-471-90425-2
  3. ^ Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Baldwin, J. E., Ed.; Pergamon Books Ltd.: New York, 1986 ISBN 0-08-032484-3
  4. ^ Wallschläger, D.; Feldmann, F. (2010). Formation, Occurrence, Significance, and Analysis of Organoselenium and Organotellurium Compounds in the Environment. Metal Ions in Life Sciences. Vol. 7, Organometallics in Environment and Toxicology. RSC Publishing. pp. 319–364. ISBN 978-1-84755-177-1.
  5. ^ Löwig, C. J. (1836). "Ueber schwefelwasserstoff—und selenwasserstoffäther" [About hydrogen sulfide and selenium hydrogen ether]. Annalen der Physik. 37 (3): 550–553. Bibcode:1836AnP...113..550L. doi:10.1002/andp.18361130315.
  6. ^ Jump up to: a b Mukherjee, Anna J.; Zade, Sanjio S.; Singh, Harkesh B.; Sunoj, Raghavan B. (2010). "Organoselenium Chemistry: Role of Intramolecular Interactions". Chemical Reviews. 110 (7): 4357–4416. doi:10.1021/cr900352j. PMID 20384363.
  7. ^ Organic Syntheses, Coll. Vol. 3, p. 771 (1955); Vol. 24, p. 89 (1944) Online Article.
  8. ^ Organic Syntheses, Coll. Vol. 6, p. 533 (1988); Vol. 59, p. 141 (1979) Article
  9. ^ Chemistry of hypervalent compounds (1999) Kin-ya Akiba ISBN 978-0-471-24019-8
  10. ^ Link Developments in the chemistry of selenaheterocyclic compounds of practical importance in synthesis and medicinal biology Arkivoc 2006 (JE-1901MR) Jacek Młochowski, Krystian Kloc, Rafał Lisiak, Piotr Potaczek, and Halina Wójtowicz
  11. ^ Okazaki, R.; Tokitoh, N. (2000). "Heavy ketones, the heavier element congeners of a ketone". Accounts of Chemical Research. 33 (9): 625–630. doi:10.1021/ar980073b. PMID 10995200.
  12. ^ Amouri, H.; Moussa, J.; Renfrew, A. K.; Dyson, P. J.; Rager, M. N.; Chamoreau, L.-M. (2010). "Discovery, Structure, and Anticancer Activity of an Iridium Complex of Diselenobenzoquinone". Angewandte Chemie International Edition. 49 (41): 7530–7533. doi:10.1002/anie.201002532. PMID 20602399.
  13. ^ Block, E. (2010). Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry. ISBN 978-0-85404-190-9.
  14. ^ Axley, M.J.; Böck, A.; Stadtman, T.C. (1991). "Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium". Proc. Natl. Acad. Sci. U.S.A. 88 (19): 8450–8454. Bibcode:1991PNAS...88.8450A. doi:10.1073/pnas.88.19.8450. PMC 52526. PMID 1924303.
  15. ^ Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. (2007). "From selenium to selenoproteins: synthesis, identity, and their role in human health". Antioxidants & Redox Signaling. 9 (7): 775–806. doi:10.1089/ars.2007.1528. PMID 17508906.
  16. ^ Comasseto, João Valdir; Ling, Lo Wai; Petragnani, Nicola; Stefani, Helio Alexandre (1997). "Vinylic Selenides and Tellurides - Preparation, Reactivity and Synthetic Applications". Synthesis. 1997 (4): 373. doi:10.1055/s-1997-1210. S2CID 260336441.
  17. ^ Comasseto, J (1983). "Vinylic selenides". Journal of Organometallic Chemistry. 253 (2): 131–181. doi:10.1016/0022-328X(83)80118-1.
  18. ^ Zeni, Gilson; Stracke, Marcelo P.; Nogueira, Cristina W.; Braga, Antonio L.; Menezes, Paulo H.; Stefani, Helio A. (2004). "Hydroselenation of Alkynes by Lithium Butylselenolate: an Approach in the Synthesis of Vinylic Selenides". Organic Letters. 6 (7): 1135–8. doi:10.1021/ol0498904. PMID 15040741.
  19. ^ Dabdoub, M (2001). "Synthesis of (Z)-1-phenylseleno-1,4-diorganyl-1-buten-3-ynes: hydroselenation of symmetrical and unsymmetrical 1,4-diorganyl-1,3-butadiynes". Tetrahedron. 57 (20): 4271–4276. doi:10.1016/S0040-4020(01)00337-4.
  20. ^ Doregobarros, O; Lang, E; Deoliveira, C; Peppe, C; Zeni, G (2002). "Indium(I) iodide-mediated chemio-, regio-, and stereoselective hydroselenation of 2-alkyn-1-ol derivatives". Tetrahedron Letters. 43 (44): 7921. doi:10.1016/S0040-4039(02)01904-4.
  21. ^ Comasseto, J (1981). "Stereoselective synthesis of vinylic selenides". Journal of Organometallic Chemistry. 216 (3): 287–294. doi:10.1016/S0022-328X(00)85812-X.
  22. ^ Organic Syntheses Coll. Vol. 9, p. 396 (1998); Vol. 71, p. 181 (1993) Online article Archived 2005-10-24 at the Wayback Machine
  23. ^ Organic Syntheses Coll. Vol. 6, p. 946 (1988); Vol. 56, p. 25 (1977). Online article Archived 2005-11-01 at the Wayback Machine
  24. ^ Organic Syntheses, Coll. Vol. 4, p. 229 (1963); Vol. 32, p. 35 (1952). Online article Archived 2005-11-27 at the Wayback Machine
  25. ^ Riley, Harry Lister; Morley, John Frederick; Friend, Norman Alfred Child (1932). "255. Selenium dioxide, a new oxidising agent. Part I. Its reaction with aldehydes and ketones". Journal of the Chemical Society (Resumed): 1875. doi:10.1039/JR9320001875.
  26. ^ Organic Syntheses Coll. Vol. 6, p. 23 (1988); Vol. 59, p. 58 (1979) Online Article
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: b9421ccf008a284a8fbc7d927f143246__1712234640
URL1:https://arc.ask3.ru/arc/aa/b9/46/b9421ccf008a284a8fbc7d927f143246.html
Заголовок, (Title) документа по адресу, URL1:
Organoselenium chemistry - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)