Jump to content

Полнота (логика)

(Перенаправлено с Полноты опровержения )

В математической логике и металогике формальная система называется полной по отношению к определенному свойству, если каждая формула, обладающая этим свойством, может быть выведена с помощью этой системы, т. е. является одной из ее теорем ; в противном случае система называется неполной .Термин «полный» также используется без уточнений, имея разные значения в зависимости от контекста, в основном относясь к свойству семантической достоверности . Интуитивно система называется полной в этом конкретном смысле, если она может вывести каждую истинную формулу.

[ редактировать ]

Свойство , обратное полноте, называется корректностью : система является корректной в отношении какого-либо свойства (в основном семантической достоверности), если каждая из ее теорем обладает этим свойством.

Формы полноты

[ редактировать ]

Выразительная полнота

[ редактировать ]

Формальный язык , выразительно завершен если он может выразить предмет, для которого он предназначен.

Функциональная полнота

[ редактировать ]

Набор логических связок , связанных с формальной системой, является функционально полным , если он может выражать все пропозициональные функции .

Семантическая полнота

[ редактировать ]

Семантическая полнота является обратной стороной устойчивости формальных систем. Формальная система является полной относительно тавтологичности или «семантически полной», когда все ее тавтологии являются теоремами , тогда как формальная система является «здравой», когда все теоремы являются тавтологиями (то есть они являются семантически действительными формулами: формулами, которые истинны при каждом интерпретация языка системы, согласующаяся с правилами системы). То есть формальная система является семантически полной, если:

[1]

Например, теорема Гёделя о полноте устанавливает семантическую полноту логики первого порядка .

Сильная полнота

[ редактировать ]

Формальная система S называется сильно полной или полной в сильном смысле , если для любого набора посылок Γ любая формула, семантически вытекающая из Γ, выводима из Γ. То есть:

Опровержение-полнота

[ редактировать ]

Формальная система S является полной по опровержению, если она способна вывести ложное из любого невыполнимого набора формул. То есть:

[2]

Любая сильно полная система полна и по опровержению. Интуитивно, сильная полнота означает, что для данного набора формул , можно вычислить каждое семантическое последствие из , а полнота опровержения означает, что для данного набора формул и формула , можно проверить , является семантическим следствием .

Примеры систем с полным опровержением включают: резолюцию SLD на предложениях Хорна , суперпозицию на эквациональной клаузальной логике первого порядка, резолюцию Робинсона на множествах предложений. [3] Последний не является строго полным: например справедливо даже в пропозициональном подмножестве логики первого порядка, но не может быть получено из по резолюции. Однако, можно вывести.

Синтаксическая полнота

[ редактировать ]

Формальная система S является синтаксически полной , или дедуктивно полной , или максимально полной , если для каждого предложения (замкнутой формулы) φ языка системы либо φ, либо ¬φ является теоремой S . Это также называется полнотой отрицания и является более сильным, чем семантическая полнота. В другом смысле формальная система является синтаксически полной тогда и только тогда, когда к ней нельзя добавить ни одно недоказуемое предложение без внесения противоречия . Истинно-функциональная логика высказываний и логика предикатов первого порядка семантически полны, но не синтаксически полны (например, утверждение пропозициональной логики, состоящее из одной пропозициональной переменной A , не является теоремой, как и ее отрицание). Теорема Гёделя о неполноте показывает, что любая вычислимая достаточно мощная система, такая как арифметика Пеано , не может быть одновременно непротиворечивой и синтаксически полной.

Структурная завершенность

[ редактировать ]

В суперинтуиционистской и модальной логике логика является структурно полной, если каждое допустимое правило выводимо.

Полнота модели

[ редактировать ]

Теория является модельно полной тогда и только тогда, когда каждое вложение ее модели является элементарным вложением .

  1. ^ Хантер, Джеффри , Металогика: введение в метатеорию стандартной логики первого порядка, University of California Press, 1971
  2. ^ Дэвид А. Даффи (1991). Принципы автоматического доказательства теорем . Уайли. Здесь: секта. 2.2.3.1, стр.33
  3. ^ Стюарт Дж. Рассел , Питер Норвиг (1995). Искусственный интеллект: современный подход . Прентис Холл. Здесь: секта. 9.7, стр.286
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 0a7cebb20421de3ecff8fb812bbbd1b8__1713736200
URL1:https://arc.ask3.ru/arc/aa/0a/b8/0a7cebb20421de3ecff8fb812bbbd1b8.html
Заголовок, (Title) документа по адресу, URL1:
Completeness (logic) - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)