~~~~~~~~~~~~~~~~~~~~ Arc.Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~ 
Номер скриншота №:
✰ 39504C9A0157882D186670E1DE3E6753__1692864660 ✰
Заголовок документа оригинал.:
✰ Infinite-valued logic - Wikipedia ✰
Заголовок документа перевод.:
✰ Бесконечнозначная логика — Википедия ✰
Снимок документа находящегося по адресу (URL):
✰ https://en.wikipedia.org/wiki/Infinite-valued_logic ✰
Адрес хранения снимка оригинал (URL):
✰ https://arc.ask3.ru/arc/aa/39/53/39504c9a0157882d186670e1de3e6753.html ✰
Адрес хранения снимка перевод (URL):
✰ https://arc.ask3.ru/arc/aa/39/53/39504c9a0157882d186670e1de3e6753__translat.html ✰
Дата и время сохранения документа:
✰ 08.06.2024 20:06:30 (GMT+3, MSK) ✰
Дата и время изменения документа (по данным источника):
✰ 24 August 2023, at 11:11 (UTC). ✰ 

~~~~~~~~~~~~~~~~~~~~~~ Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~~ 
Сервисы Ask3.ru: 
 Архив документов (Снимки документов, в формате HTML, PDF, PNG - подписанные ЭЦП, доказывающие существование документа в момент подписи. Перевод сохраненных документов на русский язык.)https://arc.ask3.ruОтветы на вопросы (Сервис ответов на вопросы, в основном, научной направленности)https://ask3.ru/answer2questionТоварный сопоставитель (Сервис сравнения и выбора товаров) ✰✰
✰ https://ask3.ru/product2collationПартнерыhttps://comrades.ask3.ru


Совет. Чтобы искать на странице, нажмите Ctrl+F или ⌘-F (для MacOS) и введите запрос в поле поиска.
Arc.Ask3.ru: далее начало оригинального документа

Бесконечнозначная логика — Википедия Jump to content

Бесконечнозначная логика

Из Википедии, бесплатной энциклопедии

В логике бесконечнозначная логика (или вещественная логика , или бесконечно многозначная логика ) — это многозначная логика , в которой значения истинности составляют непрерывный диапазон. Традиционно в логике Аристотеля логика, отличная от двухвалентной логики, была ненормальной, поскольку закон исключенного третьего исключал более двух возможных значений (т. е. «истинное» и «ложное») для любого предложения . [1] Современная трехзначная логика (троичная логика) допускает дополнительное возможное значение истинности (т. е. «неопределенное»). [2] и является примером конечнозначной логики , в которой значения истинности дискретны, а не непрерывны. Бесконечнозначная логика включает в себя непрерывную нечеткую логику , хотя нечеткая логика в некоторых ее формах может дополнительно включать в себя конечнозначную логику. Например, конечнозначная логика может применяться в булевозначном моделировании , [3] [4] логика описания , [5] и дефаззификация [6] [7] нечеткой логики.

История [ править ]

Исаак Ньютон и Готфрид Вильгельм Лейбниц использовали как бесконечности , так и бесконечно малые числа для разработки дифференциального и интегрального исчисления в конце 17 века. Ричард Дедекинд определил действительные числа через определенные наборы рациональных чисел , , который в 19 веке [8] также разработал аксиому непрерывности , утверждающую, что единственное правильное значение существует в пределе любого методом проб и ошибок приближения . Феликс Хаусдорф в 1938 году продемонстрировал логическую возможность абсолютно непрерывного упорядочения слов, состоящих из двухвалентных значений, причем каждое слово имеет абсолютно бесконечную длину. Однако определение случайного действительного числа, то есть действительного числа, не имеющего никакого конечного описания, остается несколько в сфере парадоксов . [9]

Ян Лукасевич разработал систему трехзначной логики в 1920 году. Он обобщил эту систему на многозначные логики в 1922 году и продолжил разработку логики с (бесконечные в пределах диапазона) значения истинности. Курт Гёдель разработал дедуктивную систему , применимую как для конечно-, так и для бесконечнозначной логики первого порядка (формальная логика, в которой предикат может относиться к одному субъекту ), а также для промежуточной логики (формальная интуиционистская логика , которую можно использовать для предоставления доказательств). такие как доказательство непротиворечивости арифметики логическая ), и показал в 1932 году, что интуиция не может быть охарактеризована конечнозначной логикой . [10]

Концепция выражения значений истинности в виде действительных чисел в диапазоне от 0 до 1 может напомнить о возможности использования комплексных чисел для выражения значений истинности. Эти значения истинности будут иметь мнимую размерность, например, от 0 до i . Двумерная или более многомерная истина потенциально может быть полезна в системах паранепротиворечивой логики . Если бы у таких систем возникло практическое применение, многомерная бесконечнозначная логика могла бы развиться как концепция, независимая от действительнозначной логики. [11]

Лотфи А. Заде предложил формальную методологию нечеткой логики и ее приложения в начале 1970-х годов. К 1973 году другие исследователи применяли теорию нечетких регуляторов Заде к различным механическим и промышленным процессам. Концепция нечеткого моделирования , возникшая в результате этого исследования, была применена к нейронным сетям в 1980-х годах и к машинному обучению в 1990-х годах. Формальная методология также привела к обобщению математических теорий в семействе нечетких логик с t-нормой . [12]

Примеры [ править ]

Базовая нечеткая логика — это логика непрерывных t-норм ( бинарных операций на действительном единичном интервале [0, 1]). [13] Приложения, включающие нечеткую логику, включают системы распознавания лиц , бытовую технику , антиблокировочные тормозные системы , автоматические коробки передач , контроллеры для систем скоростного транспорта и беспилотных летательных аппаратов , системы, основанные на знаниях и инженерной оптимизации , системы прогнозирования погоды , ценообразования и оценки рисков моделирования . системы медицинской диагностики и планирования лечения, системы торговли товарами и многое другое. [14] Нечеткая логика используется для оптимизации эффективности термостатов для управления отоплением и охлаждением, для промышленной автоматизации и управления процессами , компьютерной анимации , обработки сигналов и анализа данных . [15] Нечеткая логика внесла значительный вклад в области машинного обучения и интеллектуального анализа данных . [16]

В бесконечной логике степени доказуемости предложений могут быть выражены в терминах бесконечнозначной логики, которую можно описать с помощью вычисляемых формул, записанных в виде упорядоченных пар, каждая из которых состоит из символа степени истинности и формулы. [17]

В математике безчисловая семантика может выражать факты о классических математических понятиях и делать их выводными путем логических выводов в бесконечнозначной логике. Нечеткая логика Т-нормы может применяться для исключения ссылок на действительные числа из определений и теорем, чтобы упростить определенные математические концепции и облегчить определенные обобщения. Структура, используемая для безчисловой формализации математических понятий, известна как нечеткая теория классов. [18]

Философские вопросы, включая парадокс Сорита , рассматривались на основе бесконечнозначной логики, известной как нечеткий эпистемизм . [19] Парадокс Сорита предполагает, что если добавление песчинки к чему-то, что не является кучей, не может создать кучу, то и куча песка не может быть создана. Поэтапный подход к пределу, при котором истина постепенно «утекает», имеет тенденцию опровергать это предположение. [20]

При изучении самой логики бесконечнозначная логика послужила средством понимания природы человеческого понимания логических понятий. Курт Гёдель попытался понять человеческую способность к логической интуиции с точки зрения конечнозначной логики, прежде чем прийти к выводу, что эта способность основана на бесконечнозначной логике. [21] Открытыми остаются вопросы относительно обработки в семантике естественного языка неопределенных значений истинности. [22]

См. также [ править ]

Ссылки [ править ]

  1. ^ Вайсштейн, Эрик (2018). «Закон исключенного третьего» . MathWorld — веб-ресурс Wolfram.
  2. ^ Вайсштейн, Эрик (2018). «Трёхзначная логика» . MathWorld — веб-ресурс Wolfram.
  3. ^ Клоулттер, Уоррен А. (1976). «Логические значения для нечетких множеств» . Диссертации и диссертации, статья 2025 . Заповедник Лихай.
  4. ^ Перович, Александр (2006). «Нечеткие множества – булевозначный подход» (PDF) . 4-й совместный сербско-венгерский симпозиум по интеллектуальным системам . Конференции и симпозиумы в Университете Обуда.
  5. ^ Черами, Марко; Гарсия-Серданья, Анхель; Эстева, Фрэнсис (2014). «О конечнозначной логике нечеткого описания» . Международный журнал приближенного рассуждения . 55 (9): 1890–1916. дои : 10.1016/j.ijar.2013.09.021 . hdl : 10261/131932 .
  6. ^ Шокерт, Стивен; Янссен, Йерун; Вермейр, Дирк (2012). «Проверка выполнимости в логике Лукасевича как удовлетворение конечных ограничений». Журнал автоматизированного рассуждения . 49 (4): 493–550. дои : 10.1007/s10817-011-9227-0 .
  7. ^ «1.4.4 Дефаззификация» (PDF) . Нечеткая логика . Швейцарский федеральный технологический институт в Цюрихе. 2014. с. 4. Архивировано из оригинала (PDF) 9 июля 2009 г. Проверено 16 мая 2018 г.
  8. ^ Джонс, Роджер Бишоп (1996). «Реальные цифры – немного истории» .
  9. ^ Ракер, Руди. «разделы 311 «Бесконечно малые и сюрреалистические числа» и 317 «Случайные действительные числа» ». Бесконечность и разум . Издательство Принстонского университета.
  10. ^ Манкосу, Паоло; Зак, Ричард; Бадеса, Каликсто (2004). «7.2 Многозначная логика». 9. Развитие математической логики от Рассела до Тарского 1900-1935 гг . Издательство Оксфордского университета. стр. 418–420. ISBN  9780199722723 . {{cite book}}: |work= игнорируется ( помогите )
  11. ^ Гершенсон, Карлос. «Многомерная логика: модель паранепротиворечивой логики» . Cogprints Когнитивные науки Архив EPrint.
  12. ^ Гарридо, Анхель (2012). «Краткая история нечеткой логики» . Ревиста ЭдуСофт. , Редакция
  13. ^ Чиньоли, Р.; Эстева, Ф; Годо, Л.; Торренс, А. (2000). «Базовая нечеткая логика — это логика непрерывных t-норм и их остатков». Мягкие вычисления . 4 (2): 106–112. дои : 10.1007/s005000000044 .
  14. ^ Сингх, Харприт; Гупта, Мадан М.; Мейтцлер, Томас; Хоу, Цзэн-Гуан; Гарг, Кум Кум; Соло, Ашу М.Г. (2013). «Реальные применения нечеткой логики» . Достижения в нечетких системах . 2013 : 1–3. дои : 10.1155/2013/581879 .
  15. ^ Клингенберг, Брайан. «Приложения нечеткой логики» . Инженерный факультет Кальвин-колледжа.
  16. ^ Хюллермайер, Эйке (2005). «Нечеткие методы в машинном обучении и интеллектуальном анализе данных: состояние и перспективы» (PDF) . Нечеткие множества и системы . 156 (3): 387–406. дои : 10.1016/j.fss.2005.05.036 . S2CID   10034299 . Архивировано из оригинала (PDF) 17 мая 2018 г.
  17. ^ Готвальд, Зигфрид (2005). «12. Расширения стиля Павелки» (PDF) . Многозначная логика . philpapers.org: 40–41. дои : 10.1016/B978-044451541-4/50021-X . S2CID   8412503 . Архивировано из оригинала (PDF) 17 мая 2018 г.
  18. ^ Бехоунек, Либор (2009). «Безчисловая математика, основанная на нечеткой логике T-нормы» (PDF) . Университет Остравы. S2CID   9991521 . Архивировано из оригинала (PDF) 17 мая 2018 г.
  19. ^ Макфарлейн, Джон (2010). Нечеткий эпистемизм (PDF) . Издательство Оксфордского университета. {{cite book}}: |work= игнорируется ( помогите )
  20. ^ Паоли, Франческо (2003). «Действительно нечеткий подход к парадоксу Соритов». Синтезируйте . 134 (3): 363–387. дои : 10.1023/А:1022995202767 .
  21. ^ Бёрджесс, Джон. «Три вида интуиции во взглядах Гёделя на континуум» (PDF) .
  22. ^ «Мораль: адекватная теория должна позволять нашим утверждениям, связанным с понятием истины, быть рискованными: они рискуют стать парадоксальными, если эмпирические факты крайне (и неожиданно) неблагоприятны. Не может быть никакого синтаксического или семантического «сита», которое отсеивало бы исключая «плохие» случаи, сохраняя при этом «хорошие»… Я несколько не уверен, существует ли определенный фактический вопрос о том, справляется ли естественный язык с пробелами в истинностных значениях — по крайней мере, теми, которые возникают в связи с семантическими парадоксами. по схемам Фреге , Клини , ван Фраассена или, возможно, кого-нибудь другого». Крипке, Саул (1975). «Очерк теории истины» (PDF) . Журнал философии . 72 (19): 690–716. дои : 10.2307/2024634 . JSTOR   2024634 .
Arc.Ask3.Ru: конец оригинального документа.
Arc.Ask3.Ru
Номер скриншота №: 39504C9A0157882D186670E1DE3E6753__1692864660
URL1:https://en.wikipedia.org/wiki/Infinite-valued_logic
Заголовок, (Title) документа по адресу, URL1:
Infinite-valued logic - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть, любые претензии не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, денежную единицу можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)